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ON THE GALOIS GROUPS OF GENERALIZED LAGUERRE
POLYNOMIALS

SHANTA LAISHRAM

Abstract. For a positive integer n and a real number α, the generalized Laguerre
polynomials are defined by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

These orthogonal polynomials are solutions to Laguerre’s Differential Equation
which arises in the treatment of the harmonic oscillator in quantum mechanics.
Schur studied these Laguerre polynomials for its interesting algebraic properties. In

this short article, it is shown that the Galois groups of Laguerre polynomials L
(α)
n (x)

is Sn with α ∈ {± 1
2 ,±

1
3 ,±

2
3 ,±

1
4 ,±

3
4} except when (α, n) ∈ {( 1

4 , 2), (− 2
3 , 11), ( 2

3 , 7)}.
The proof is based on ideas of p−adic Newton polygons.

1. Introduction

For a positive integer n and a real number α, the generalized Laguerre polynomials
are defined by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

These orthogonal polynomials has a wide range of applications in several areas of
mathematics. Not long after its appearance in the literature early in the twentieth
century, it became evident, in the hands of Schur, that the generalized Laguerre
polynomials also enjoys algebraic properties of great interest. In fact the irreducibility
of these polynomials is connected to finding explicit examples as solutions to Hilbert’s
Inverse Galois Problem. We refer to [FKT12] for more details.

It was shown that L(α)(x) is irreducible for α ∈ {±1
2
} in [Sch29] and [Sch31] and

for α ∈ {±1
3
,±2

3
,±1

4
,±3

4
} in [LaSh, Theorem 1] except when α = 1

4
, n = 2. By using

these results of irreducibility, it was shown in [SaSh15, Theorem 1.4] that the Galois
group of L(α)(x) is Sn for n ≥ n0 where n0 = 182, 876, 1325 if q ∈ {±1

2
}, q ∈ {±1

3
,±2

3
}

and q ∈ {±1
4
,±3

4
}, respectively. In this short note, we give a complete result for all

n. Here Sn is the Symmetric Group on n symbols and An is the Alternating Group
on n symbols. We prove
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Theorem 1. Let α ∈ {±1
2
,±1

3
,±2

3
,±1

4
,±3

4
}. The Galois group of Laguerre poly-

nomials L
(α)
n (x) is Sn for every n ≥ 1 except when (α, n) ∈ {(1

4
, 2), (−2

3
, 11), (2

3
, 7)}

where it is An for (α, n) ∈ {(−2
3
, 11), (2

3
, 7)} and S1 for (α, n) = (1

4
, 2).

We give a proof of Theorem 1 in Section 3. The proof of Theorem 1 is an application
of a result of Hajir [Haj05] based on p−adic Newton polgons, see Lemmas 2.1 and
2.2. The new ingredient in this paper is the clever use of Lemma 2.1 as Lemma 2.2
instead of [SaSh15, Lemma 3.3]. In fact the proof of [SaSh15, Theorem 1.4] can be
much shortened by using Lemma 2.2.

2. Preliminaries

Hajir [Haj05] gave a criterion for an irreducible polynomial to have large Galois
group using Newton polygons. We restate the result which is [Haj05, Lemma 3.1].

Lemma 2.1. Let f(x) =
∑m

j=0

(
m
j

)
cjx

j ∈ Q[X] be an irreducible polynomial of degree

m. Let p be a prime with m
2
< p < m− 2 such that

(i) ordp(c0) = 1,
(ii) ordp(cj) ≥ 1 for 0 ≤ j ≤ m− p,

(iii) ordp(cp) = 0.

Then p divides the order of Galois group of f over Q. In fact, this Galois group is
Am if disc(f) ∈ Q∗2 and Sm otherwise.

We will be applying the above lemma to following polynomial. Let α = u
v

with
u, v ∈ Z, gcd(u, v) = 1 and v > 0. Let

G(x, u, v) : = vnn!L(u
v
)(
−x
v

)

=
n∑
j=0

(
n

j

)
(u+ vn)(u+ v(n− 1)) · · · (u+ v(j + 1))xj.

(1)

In [Sch31], Schur showed that its discriminant is given by

D(u,v)
n := Disc(G(x, u, v)) =

n∏
j=2

jj(
u

v
+ j)j−1.

We write D
(u,v)
m = bY 2, Y ∈ Q with

b =

{
3·5···n·(u+2v)(u+4v)···(u+(n−1)v

vδ
if n ≡ 1, 3(mod 4)

3·5···(n−1)·(u+2v)(u+4v)···(u+nv
vδ

if n ≡ 0, 2(mod 4)
(2)

where δ = 0 if n ≡ 0, 1(mod 4) and 1 if n ≡ 2, 3(mod 4).

We now apply Lemma 2.1 to G(x, u, v). We prove
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Lemma 2.2. Let 1 ≤ r < v, gcd(r, v) = 1 and p be a prime with

p > v, p ≡ r−1u(mod v) and
u+ v + nv

r + v
≤ p ≤ n− 3.(3)

Let G(x, u, v) be given by (1) be an irreducible polynomial of degree n. Assume that
|u| < v. Then the Galois group of G(x, u, v) is An or Sn according as b (given by (2))
is a square or not an square of an integer.

Proof. We apply Lemma 2.1 with

cj = (u+ vn)(u+ v(n− 1)) · · · (u+ v(j + 1)).

Since 1 ≤ r < v, we have u+v+nv
r+v

> n
2

and hence n
2
< p < n− 2 is valid. It suffices to

check conditions (i)− (iii) of Lemma 2.1.

Since p ≡ r−1u(mod v), we get p|(u + iv) for some i. Let i0 be the least positive
integer i with this property. Then 1 ≤ i0 < p. Further let u + i0v = pr0. Then
r0 ≡ r(mod v). We claim that r0 < v. Suppose not. Then u + i0v = pr0 ≥ pv ≥
(i0 + 1)v since i0 < p contradicting |u| < v. Thus r0 < v. This with r0 ≡ r(mod v)
and 1 ≤ r < v implies r = r0. Since u+v+nv

r+v
≤ p, we have

u+ v + (n− p)v ≤ rp = r0p = u+ i0v

giving i0 > n−p. Thus n−p < i0 < p. This gives i0−p < 0 and i0 +p > n and hence
u+i0v is the only multiple of p in {u, u+v, · · · , u+nv}. Further u+i0v = pr < pv < p2

implying p||(u + i0v). Hence conditions (i) − (iii) of Lemma 2.1 are valid and the
assertion follows. �

The above Lemma contains [SaSh15, Lemma 3.3]. We also need the following result
on b being a square or not.

Lemma 2.3. Let 2 ≤ n ≤ 1325,

α =
u

v
∈ {±1

2
,±1

3
,±2

3
,±1

4
,±3

4
}

and b be given by (2). Then b is square only when (u, v, n) ∈ {(−2, 3, 3), (−2, 3, 11), (2, 3, 7)}.

Proof. First we check that for 2 ≤ n ≤ u + 2v, the assertion is valid. Hence we now
take n > u+ 2v. Let

n1 =

{
n
2

if n is even
n−
2

if n is odd.

Assume u 6= ±2 if v = 3. Then we see that b is divisible by every prime p ≡ u(mod
2v) with n < p ≤ u+ 2vn1 to the first power. Hence if there is such a prime, b cannot
be a square. For u + 2v < n ≤ 1325, we check that this is true. Thus we now take
v = 3, u = ±2. Let u1 = u

2
. Then

(u+ 2v) · · · (u+ 2n1v) = 2n1(u1 + v)(u1 + 2v) · · · (u1 + n1v)

and hence b is not an square if there is a prime p with n < p ≤ u1+n1v and p ≡ u1(mod
v) where v = 3. We check that this is the case for u + 2v < m ≤ 1325 except when
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u = −2,m ∈ {5, 6, 7, 11} and u = 2,m = 19. For u = −2,m ∈ {5, 6, 7, 11} and
u = 2,m = 19, we check that b is not a square except when u = −2,m = 11. Hence
the assertion follows. �

3. Proof of Theorem 1

Let

α =
u

v
∈ {±1

2
,±1

3
,±2

3
,±1

4
,±3

4
}.

As mentioned before, it was shown that L(α)(x) is irreducible for α ∈ {±1
2
} in [Sch29]

and [Sch31] and in [LaSh] for α ∈ {±1
3
,±2

3
,±1

4
,±3

4
} except when α = 1

4
, n = 2 and

hence same is true for G(x, u, v). For n ≤ 13, we check in SAGE for n ≤ 11 and
MAGMA for n = 12, 13 that the assertion of Theorem 1 is valid.

Hence we may suppose that n > 13. Further we can take n ≤ 1325 by [SaSh15,
Theorem 1.4]. It suffices to prove that G(x, u, v) has Galois group Sn. We use Lemmas
2.2 and 2. It suffice to find a prime p with

p > v, p ≡ r−1u(mod v) and
u+ v + nv

r + v
≤ p ≤ n− 3.

for some r, 1 ≤ r < v, gcd(r, v) = 1. Let α = u
v
∈ {±1

2
}. We check that there is

a prime p with 2n+2+u
3
≤ p ≤ n − 3 except when u = 1, n = 19. We check that for

n = 19, the Galois group of L( 1
2
)(x) is Sn.

Let α = u
v
∈ {±1

3
,±2

3
}. Since 1 ≤ r < 3, we need to find a prime p with

3n

4
+

3 + u

4
≤ p ≤ n− 3, p ≡ u(mod 3)

or
3n

5
+

3 + u

5
≤ p ≤ n− 3, p ≡ 2u(mod 3).

Hence it suffices to find a prime p with 3n
4

+ 3+u
4
≤ p ≤ n− 3 or

3n

5
+

3 + u

5
≤ p <

3n

4
+

3 + u

4
, p ≡ 2u(mod 4).

We check that this is the case except when

u = −1 :n = 15

u = −2 :n ∈= 19

u = 1 :n ∈ {18, 19}
u = 2 :n ∈ {14, 15, 31}.

For these values of u
3

and n, we check in MAGMA that Galois group of L(u
3
)(x) is Sn.

Let α = u
v
∈ {±1

4
,±3

4
}. Since r ∈ {1, 3}, we need to find a prime p with

4n

5
+

4 + u

5
≤ p ≤ n− 3, p ≡ u(mod 4)
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or
4n

7
+

4 + u

7
≤ p ≤ n− 3, p ≡ 3u(mod 4).

Hence it suffices to find a prime p with 4n
5

+ 4+u
5
≤ p ≤ n− 3 or

4n

7
+

4 + u

7
≤ p <

4n

5
+

4 + u

5
, p ≡ 3u(mod 4).

We check that this is the case except when

u = −1 :n ∈ {14, 15, 30, 31}
u = −3 :n ∈ {20, 21, 23}
u = 1 :n ∈ {19, 20, 21}
u = 3 :n ∈ {14, 29, 30, 31}.

For these values of u
4

and n, we check check in MAGMA that Galois group of L(u
4
)(x)

is Sn. This completes the proof of Theorem 1. �
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