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Abstract. Generalized Laguerre polynomials L(α)
n (x) are classical orthogonal poly-

nomial sequences that plays an important role in various branches of analysis and
mathematical physics. Schur (1929) was the first to study the algebraic proper-
ties of these polynomials by proving that L(α)

n (x) where α ∈ {0, 1,−n − 1} are
irreducible. For α = u + 1

2 with integer u satisfying 1 ≤ u ≤ 45, we prove that
L
(α)
n (x) and L(α)

n (x2) of degrees n and 2n, respectively, are irreducible except when
(u, n) = (10, 3) where we give a factorization. The cases u = −1, 0 are due to Schur.
Further we consider more general polynomials Gα(x) and Gα(x2) of degrees n and
2n, respectively, and prove that they are either irreducible or have a factor of degree
in {1, n− 1}, {1, 2, 2n− 2, 2n− 1}, respectively, except for an explicitly given finite
set of pairs (u, n). We also show that these exceptional pairs other than one for
Gα(x) and six for Gα(x2) are necessary. Further for a general u > 0 we give an
upper bound for the degree of factor of Gα(x) and Gα(x2) in terms of u.

1. Introduction

For positive integer n and real number α, the generalized Laguerre polynomials are
given by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) . . . (j + 1 + α)

(n− j)!j!
(−x)j

and L(0)
n (x) is called the Laguerre polynomial. If α = −k with k a positive integer,

then

L(−k)
n (x) = (−x)k

L
(k)
n−k(x)

n(n− 1) · · · (n− k + 1)
,(1)

see [Sz75, formula 5.2.1]. We shall restrict ourselves to the case that α is a rational
number. The generalized Laguerre polynomial satisfies second order linear differential
equation

xy
′′

+ (α + 1− x)y
′
+ ny = 0, y = L(α)

n (x)

and the difference equation

L(α)
n (x)− L(α−1)

n (x) = L
(α)
n−1(x).
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They have been extensively studied in various branches of mathematics and math-
ematical physics. Schur [Sch31], [Sch73] was the first to establish interesting and
important algebraic properties of these polynomials. His work, along with the work
of Gow [Gow89] and Filaseta, Kidd, Trifonov [FilKiTr] on the irreducibilty of L(α)

n (x)
for n ≡ 2 (mod 4) with n > 2, settled the inverse Galois problem explicitly that for
every positive integer n > 1, there exists an explicit Laguerre polynomial of degree
n whose Galois group is the alternating group An. We consider whether L(α)

n (x) is
irreducible over Q. By irreducibility of a polynomial, we shall always mean its irre-
ducibility overQ. Schur [Sch31], [Sch73] proved that L(0)

n (x) and L(1)
n (x) are irreducible

for all n. Filaseta and Lam [FilLa02] proved that for a fixed rational number α which
is not a negative integer, L(α)

n (x) is irreducible for all but finitely many n. We observe
from (1) that L(−k)

n (x) is reducible whenever k is a positive integer. The irreducibility
of generalized Laguerre polynomial L(α)

n (x) for an arbitrary given rational number α
with denominator greater than 4 is not known. We give an account of the known
results on irreducibilty of L(α)

n (x) and its generalizations when the denominator of α
is at most 4. Let α be a rational number with denominator equal to d ≥ 1 written in
its reduced form. Then α can be uniquely written as

α = α(u) = u+
a

d
(2)

where u, a ∈ Z with a = 0 if d = 1 and 1 ≤ a < d, gcd(a, d) = 1 if d > 1. Thus α = u
if d = 1.

Let d = 1. Laishram and Shorey [LaSh11] showed that for integers α with 0 ≤
α ≤ 50, L

(α)
n (x) is irreducible for all n except for n = 2, α ∈ {2, 7, 14, 23, 34, 47}

and n = 4, α ∈ {5, 23} where it has a linear factor. The above result with 0 ≤
α ≤ 10 was already proved by Filaseta, Finch and Leidy [FilFiLe08]. Further it has
been established that L(−1−n−r)

n (x) with 0 ≤ r ≤ 22 is irreducible. The case r = 0
was proved by Schur [Sch73] and we observe that this is the truncated exponential
series. A new proof of this case was given by Coleman [Col87] depending on Newton
polygons. This initiated a new method and it was considerably refined by Filaseta
[Fil94]. The case r = 2 was proved by Sell [Sell04], r = 1 and 3 ≤ r ≤ 8 by Hajir
[Haj95], [Haj09] and 9 ≤ r ≤ 22 by Nair and Shorey [NaSh15]. The case r = n
was established by Filaseta and Trifonov [FilTr02] and it confirms immediately a
conjecture of Grosswald that the Bessel polynomials are irreducible. Hajir [Haj09]
conjectured that L(−1−n−r)

n (x) with r ≥ 0 is irreducible for all n. He proved that for
a given r there exists an explicit number B(r) such that for n > B(r), L

(−1−n−r)
n (x)

is irreducible and the value of B(r) is considerably improved in [NaSh15].

Let d = 2. Then α = u + 1
2
and L

(α)
n (x) with u ∈ {−1, 0} are connected with

Hermite polynomials given by

H2n(x) = (−1)n22nn!L
(− 1

2
)

n (x2) and H2n+1(x) = (−1)n22n+1n!xL
( 1
2
)

n (x2).

Schur [Sch31], [Sch73] proved that L(− 1
2
)

n (x2) and L
( 1
2
)

n (x2) are irreducible implying
the irreducibility of H2n(x) and H2n+1(x)/x. We prove
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Theorem 1. Let 1 ≤ u ≤ 45 and α = u+ 1
2
. The polynomials L(α)

n (x2) are irreducible

except when (u, n) = (10, 3). In such a case L( 21
2
)

3 (x2) = −1
48

(2x2 − 15)(4x4 − 132x2 +
1035).

Since the irreducibility of L(α)
n (x2) implies the irreducibility of L(α)

n (x), we derive
the following result for L(α)

n (x).

Corollary 1.1. Let 1 ≤ u ≤ 45 and α = u + 1
2
. Then L

(α)
n (x) are irreducible except

when (u, n) = (10, 3). In such a case L( 21
2
)

3 (x) = − 1
48

(2x− 15)(4x2 − 132x+ 1035).

Let d ∈ {3, 4}. Laishram and Shorey [LaSh15] proved that L(α)
n (x) is irreducible

whenever α ∈ {±1
3
,±2

3
,±1

4
,±3

4
}.

Now we consider the irreducibility of some extension of generalized Laguerre poly-
nomials. For integers a0, a1, . . . , an and α given by (2), let

Gα(x) = Gn(x;α) =
n∑
j=0

aj(n+ α)(n− 1 + α) · · · (j + 1 + α)dn−jxj

=
n∑
j=0

ajx
j(

n∏
i=j+1

(a+ (u+ i)d)).

We observe that

Gα(x) = dnn!L(α)
n (

x

d
) if aj = (−1)j

(
n

j

)
(3)

and therefore the irreducibility of Gα(x) implies the irreducibility of L(α)
n (x).We have

Gα(xd) = Gn(xd;α) =
dn∑
j=0

bjx
j where bj =

al
n∏

i=l+1

(a+ (u+ i)d) if j = dl

0 otherwise.

We observe that the irreducibility of Gα(xd) implies the irreducibility of Gα(x). The
result of Filaseta and Lam [FilLa02] already stated for L(α)

n (x) is also valid for Gα(x).
If |a0an| = 1, Schur [Sch31] proved that Gα(x) is irreducible if α = 0 and also if α = 1
unless n + 1 is a power of 2 where it may have a linear factor or n = 8 where it
may have a quadratic factor. Further Laishram and Shorey [LaSh11] showed that for
k ≥ 2, Gα(x) with |a0an| = 1 has no factor of degree k when α is an integer satisfying
0 ≤ α ≤ 40 if k = 2 and 0 ≤ α ≤ 50 if k ≥ 3 except for an explicitly given finite
set of triples (n, k, α) and we refer to [LaSh11] for a complete list of exceptions. In
fact it has no factor of degree ≥ 5 unless (n, k, α) ∈ {(17, 5, 11), (19, 5, 9), (40, 5, 12)}.
Shorey and Tijdeman [ShTi10] proved the above assertion when 0 ≤ α ≤ 30 if k ≥ 5
and 0 ≤ α ≤ 10 if 3 ≤ k ≤ 4. Further Laishram and Shorey [LaSh12] proved that
Gα(x) with α ∈ {1

3
, 2
3
, 1
4
, 3
4
} and |a0an| = 1 is either irreducible or linear polynomial

times an irreducible polynomial of degree n− 1.
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For an integer |ν| > 1, we denote by P (ν) the greatest prime factor of ν and we
put P (±1) = 1. Let A be the set of all integers a with P (a) ≤ 2. Thus

A = {±2t : t ≥ 0, t ∈ Z}.

Let S = {(1, 121), (8, 59), (8, 114), (9, 4), (9, 113), (9, 163), (9, 554), (15, 23), (15, 107),
(16, 106), (20, 102), (21, 101), (26, 155), (26, 287), (30, 92), (36, 86), (43, 1158), (44, 716)}.
Observe that if a polynomial of degree m has a factor of degree k < m, then it has a
factor of degree m− k. Therefore given a polynomial of degree m, we always consider
a factor of degree k where 1 ≤ k ≤ m

2
. We prove

Theorem 2. Let 1 ≤ u ≤ 45 and α = u + 1
2
. Let a0, an ∈ A. Then Gα(x2) has

no factor of degree ≥ 3 except when (u, n) ∈ {(1, 12), (6, 7), (9, 113), (10, 3), (21, 101)}
or (u, n) ∈ S or (u, n) = (44, 79) where it may have a factor of degree 3 or 4 or 6,
respectively.

Since irreducibility of Gα(x2) implies the irreducibility of Gα(x), the following result
for Gα(x) is a straightforward consequence of Theorem 2.

Corollary 1.2. Let 1 ≤ u ≤ 45 and α = u + 1
2
. Let a0, an ∈ A. Then Gα(x) has no

factor of degree ≥ 2 except when (u, n) ∈ S or (u, n) = (44, 79) where it may have a
factor of degree 2 or 3, respectively.

The exceptions (u, n) ∈ S are necessary as we see that in these cases Gα(x) has a
quadratic factor with suitable choice of aj’s. See Section 9 for details. We are not able
to find a suitable choice of aj’s in the case (u, n) = (44, 79) for which Gα(x) may have
a factor of degree 3 and (u, n) ∈ {(1, 12), (6, 7), (9, 113), (10, 3), (21, 101)} for which
Gα(x2) may have a factor of degree 3. Finch and Saradha [FiSa10] showed that for
1 ≤ u ≤ 13, the polynomials Gα(x) with a0, an ∈ A have no factor of degree ≥ 2
except for (u, n) ∈ {(1, 121), (8, 59), (8, 114), (9, 4), (9, 113), (9, 163), (9, 554)} where it
may have either a linear factor or a quadratic factor. We remark that this result is
not assumed in the proof of Corollary 1.2.

We follow the method of Coleman- Filaseta based on Newton polygons. For ap-
plying this method, we restrict a0, an to |a0an| = 1 in the above results on Gα(x) or
Gα(x2) and more generally to a0, an ∈ A in Theorem 2. This is because we need that
the Newton polygon of Gα(x) lies above the Newton polygon of Gα(x) with a′js equal
to 1 [See Corollary 4.2] and we consider Newton polygons with respect to small primes
including 3 in the proof of Theorem 2. The arguments of the proof of Theorem 2 are
valid for larger values of u but the bound u ≤ 45 is close to the optimal in the sense
that otherwise tables of Najman [Naj10] on SM = {n ≥ 1 : n odd, P (n(n+ 2)) ≤M}
withM ≤ 100 will not suffice and extending these tables SM withM > 100 is compu-
tationally very difficult. Before we turn to state our next result, we give two remarks
on Theorem 2.

Remarks (i) For the exceptions given in Theorem 2, we check that Gα(x) with
|a0an| = 1 and aj = 1 for 1 ≤ j < n have no factor of degree ≥ 2 and hence these
polynomials have no factor of degree ≥ 2. Thus for 1 ≤ u ≤ 45, the polynomials
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given by
n∑
j=0

n∏
i=j+1

(1 + 2(u+ i))xj are either irreducible or linear polynomial times an

irreducible polynomial of degree n− 1.

(ii) We check the assertion of Theorem 1 when (u, n) = (10, 3). Further we check
that Gα(x2) with aj = (−1)j

(
n
j

)
is irreducible for the exceptions other than (u, n) =

(10, 3) given in Theorem 2. Therefore we derive from Theorem 2 and (3) that it
suffices to prove in Theorem 1 that L(α)

n (x2) has no factor in degree {1, 2} when
(u, n) 6= (10, 3).

In the next result, we bound the degree of any factor of Gα(x2) in terms of u where
α = u+ 1

2
and u is any positive integer.

Theorem 3. Let α = u + 1
2

with u ≥ 1 and (u, n) /∈ {(1, 12), (1, 121)}. Assume that
Gα(x2) with a0, an ∈ A has a factor of degree l with 3 ≤ l ≤ n. Then

(i) u > 1.35l
2
− 1.2, if l = n and n odd

(ii) u > 1.35l
2
− 0.5, otherwise.

Thus u > 1.35l
2
− 1.2 always in Theorem 3. Further it admits the following conse-

quence for Gα(x).

Corollary 1.3. Let α = u + 1
2

with u ≥ 1 and (u, n) 6= (1, 121). Assume that Gα(x)
with a0, an ∈ A has a factor of degree l ≥ 2. Then u > 1.35l − 0.5.

As already pointed out after the statement of Corollary 1.2, the assumption (u, n) 6=
(1, 121) is necessary. A weaker estimate u > l in Corollary 1.3 is proved in [LaSh12,
Theorem 2]. The proofs of our theorems depend on the following estimate on the
greatest prime factor of product of consecutive odd integers and it is of independent
interest. For positive integers m, d and k ≥ 2 with gcd(m, d) = 1, we write

∆(m, d, k) = m(m+ d) · · · (m+ d(k − 1)).

We prove

Theorem 4. Let k ≥ 2, m > 2k and m is odd. Then

P (∆(m, 2, k)) >



3.5k if m ≤ 2.5k

4k if m > 2.5k

4.7k if m > 3.5k

5k if m > 3.5k unless 76 ≤ k ≤ 149 or 152 ≤ k ≤ 155

6k if m > 4.5k and k ≤ 38

except for (m, k) ∈ T, where T = {(5, 2), (7, 2), (25, 2), (33, 2), (75, 2), (243, 2), (11, 3),
(117, 3), (9, 4), (15, 4), (19, 4), (21, 4), (115, 4), (13, 5), (19, 5), (17, 6), (15, 7), (21, 8),
(37, 8), (19, 9), (41, 9), (87, 19), (89, 19), (81, 23)}.



6 Laishram, Nair and Shorey

We observe that the exceptions in Theorem 4 are necessary. The first result in the
direction of Theorem 4 is due to Sylvester [Syl1892] who proved that a product of k
consecutive positive integers each exceeding k is divisible by a prime greater than k.
This result has been extended to

P (∆(m, d, k)) > k for m ≥ d+ k

by Sylvester [Syl1892] and

P (∆(m, d, k)) > k for d > 1, (m, d, k) 6= (2, 7, 3)

by Shorey and Tijdeman [ShTi10]. Sharper estimates have been obtained and we refer
to [ShTi15] for an account of results on the greatest prime of a product of consecutive
terms in arithmetic progressions. We give two earlier results on Theorem 4. For d = 2
and m odd, it follows from [LaSh06a, Corollary 1] that

P (∆(m, 2, k)) > 2k

unless (m, k) = (1, 2). Further, Laishram and Shorey [LaSh12] proved that

P (∆(m, 2, k)) > 4k for m > 2.5k

unless (m, k) ∈ {(5, 2), (7, 2), (25, 2), (243, 2), (9, 4), (13, 5), (17, 6), (15, 7), (21, 8), (19, 9)}
and the exceptions are necessary. The proof of Theorem 4 depends on the combi-
natorial ideas of Erdős, elementary prime number theory [Lemmas 2.1,2.2], com-
putational result on Grimm’s problem [LaSh09], the tables of Lehmer [Leh64] and
Najman [Naj10]. Sharper results can be obtained for sufficiently large k but they are
not relevant for our purpose. For ε > 0, it is shown in [ShTi15] that abc conjecture
implies

P (∆(m, 2, k)) > (
1

2
− ε)k logm for k ≥ 2, m ≥ m0

where m0 is a number depending only on ε.

The techniques in this paper are also valid for more general polynomials Gα(x) and
Gα(x2) where the denominator d of α is ≥ 5, but we need sharper lower bounds for
the greatest prime factor of products of terms in arithmetic progression with common
difference d. For example assuming

P (∆(m, d, k)) > (k + u)d for m > kd, (m, d) = 1,

it follows immediately from [ShTi07, Lemma 10.1], that Gα(x) with a0, an ∈ A has
no factor of degree k ≥ 2. In particular G 1

d
(x) has no factor of degree k ≥ 2 whenever

P (∆(m, d, k)) > kd for m > kd, (m, d) = 1.

As already remarked, the preceeding estimate with d = 2 is proved in [LaSh06a,
Corollary 1] and in [LaSh12], [LaSh15] for d = 3, 4 respectively, except for (m, d, k) ∈
{(125, 3, 2), (21, 4, 2), (45, 4, 2)}.

We give preliminaries for the proofs of this paper in Section 2 and we prove The-
orem 4 in Section 3. We introduce Newton polygons and state further results based
on Newton polygons required in the proof of Theorem 2 in Section 4. Further we
prove irreducibility criterion for Gα(x2) for the proof of Theorem 2 in Section 5. We
continue with the proofs of lemmas required for Theorem 2 in Section 6. Further we
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prove Theorem 2, Corollary 1.2 in Section 6. Finally we prove Theorem 1, Corollary
1.1 in Section 7 and Theorem 3, Corollary 1.3 in Section 8. We give in Section 9
the factorizations of exceptional cases of Theorem 2. All the calculations other than
finding the solutions of Thue equations have been carried out by using MATHEMAT-
ICA. In particular, the irreducibility of polynomials has been checked by using Factor
command in MATHEMATICA. The Thue equations have been solved in integers by
SAGE.

2. Preliminaries

We always write p for a prime number. For an integer ν > 1, we denote by ω(ν)
the number of distinct prime divisors of ν and we put ω(1) = 0. For a positive real
ν, we write

π(ν) =
∑
p≤ν

1 , θ(ν) =
∑
p≤ν

log p.

For a prime p and a non zero integer r, we denote ordp(r) to be the maximal power
of p dividing r. Further we write νp(r) for ordp(r) and νp(r) = ν(r) if it is clear from
the context. We define ν(0) = +∞. Further bνc will denote the greatest integer less
than or equal to ν and dνe the least integer greater than or equal to ν. For sets A
and B, we denote by A \B the set of all elements in A which are not in B. We recall
some well-known estimates from prime number theory.

Lemma 2.1. For ν > 1, we have

(i) π(ν) ≤ ν

log ν

(
1 +

1.2762

log ν

)
(ii) ν(1− 3.965

log2 ν
) ≤ θ(ν) < 1.00008ν

(iii) pν ≥ ν(log ν + log log ν − 1)

(iv)
√

2πν(ν
e
)νe

1
12ν+1 ≤ ν! ≤

√
2πν(ν

e
)νe

1
12ν

(v) ordp((ν − 1)!) ≥ ν−p
p−1 −

log(ν−1)
log p

.

The estimates (i), (ii), (iii) and (iv) are due to Dusart [Dus98, p.14], [Dus99] and
[Rob55, Theorem 6], respectively. We give a proof for (v).

Let ph ≤ ν − 1 < ν ≤ ph+1 so that h =
⌊
log(ν−1)

log p

⌋
. We have

ordp((ν − 1)!) =

⌊
ν − 1

p

⌋
+ · · ·+

⌊
ν − 1

ph

⌋
and ⌊

ν − 1

pi

⌋
≥ ν − 1

pi
− 1 +

1

pi
=
ν

pi
− 1 for 1 ≤ i ≤ h.
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Therefore

ordp((ν − 1)!) ≥ ν

p

(
1− 1

ph

1− 1
p

)
− h

=
ν

p− 1
− ν

ph(p− 1)
− h

≥ ν − p
p− 1

− log(ν − 1)

log p
.

�

Lemma 2.2. Let p be a prime. For any integer l ≥ 1, write l in base p as l =
ltp

t + lt−1p
t−1 + · · ·+ l1p+ l0 where 0 ≤ li ≤ p− 1 for 0 ≤ i ≤ t and lt > 0. Then

νp(l!) =
l − σp(l)
p− 1

where σp(l) = lt + lt−1 + · · ·+ l1 + l0.

This is due to Legendre. For a proof, see [Hasse, Ch.17, p263].

In the sequel, we will assume that m is an odd positive integer. Let

M0 = 1.9× 1010.(4)

The next result is [LaSh12, Corollary 2.3].

Lemma 2.3. Let M0 < m ≤ 131× 2k. Then P (∆(m, 2, k)) ≥ m.

Lemma 2.4. Let k ≥ 2 and 2k < m < 6k. Then

P (∆(m, 2, k)) >


3.5k if m ≤ 2.5k

4k if 2.5k < m ≤ 3.5k

5k if 3.5k < m ≤ 4.5k

6k if 4.5k < m < 6k

(5)

unless (m, k) ∈ {(5, 2), (7, 2), (11, 3), (9, 4), (15, 4), (19, 4), (21, 4), (13, 5), (19, 5), (17, 6),
(15, 7), (21, 8), (37, 8), (19, 9), (41, 9), (87, 19), (89, 19), (81, 23)}.

Proof. We observe that the exceptions in Lemma 2.4 are necessary. The first two
estimates are contained in [LaSh12, Theorem 3] and we prove the remaining two.
Let m > 3.5k. For 2 ≤ k ≤ 20 and m < 6k, the assertion follows by computing
P (∆(m, 2, k)). Thus k > 20. We observe that {m,m+ 2, . . . ,m+ 2(k− 1)} contains
all primes between 5k and 5.4k if 3.5k < m ≤ 4.5k since m ≤ 4.5k < 5k < 5.4k <
5.5k − 2 < m + 2(k − 1). Similarly the above set contais all primes between 6k and
6.4k if 4.5k < m < 6k. Therefore (5) holds if θ(5.4k) > θ(5k) and θ(6.4k) > θ(6k).

Let (r, s) = (5, 5.4) or (6, 6.4). Then from Lemma 2.1 (ii), we see that θ(sk) > θ(rk)
if

sk

(
1− 3.965

log2(sk)

)
> 1.00008× rk
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that is, if

k >
1

s
exp

(√
3.965s

s− 1.00008r

)
.

This is true for k ≥ 452. For 21 ≤ k ≤ 451, we check that there is always a prime
in the intervals (5k, 5.4k) and (6k, 6.4k) except for k = 23 in the first interval. For
k = 23, the assertion follows by computing P (∆(m, 2, 23)) for each 46 < m < 138. �

The following result concerns Grimm’s conjecture [LaSh06b, Theorem 1].

Lemma 2.5. Let x ≤ M0 where M0 is given by (4) and l be such that x + 1, x +
2, . . . , x + l are all composite integers. Then there exist distinct primes pi such that
pi | (x+ i) for each 1 ≤ i ≤ l.

As a consequence, we have

Lemma 2.6. Let 6k < m ≤M0. Then P (∆(m, 2, k)) > 5k for k ≥ 66.

Proof. We may assume that m + 2i is composite for all 0 ≤ i < k, otherwise the
assertion follows since m > 6k. Since m is odd, m + 2i + 1 with 0 ≤ i < k are even
and then m,m+1,m+2, . . . ,m+2k−1 are all composite. Then by Lemma 2.5, there
are distinct primes Pj with Pj|(m+j−1) for 1 ≤ j ≤ 2k. Therefore ω(∆(m, 2, k)) ≥ k
implying P (∆(m, 2, k)) ≥ pk+1. By Lemma 2.1 (iii), we have pk+1 ≥ k log k which is
> 5k for k ≥ 149. For 66 ≤ k < 149, we check that pk+1 > 5k. Hence the assertion
follows. �

Let

SM = {n ≥ 1 : n odd, P (n(n+ 2)) ≤M} and S ′M = {n ≥ 1 : n odd, P (n(n+ 4)) ≤M}.

The sets SM and S ′M for M ≤ 31 are given by tables in Lehmer [Leh64, Tables IIA]
and for M = 100 by tables in Najman [Naj10]. These tables are written with entry
n+1 and n+2 when n ∈ SM and n ∈ S ′M , respectively. These tables, in particular the
tables of Najman, turn out to be very useful in finding lower bounds for the greatest
prime factor of a product of terms in arithmetic progression and their applications to
divisibility properties of generalized Laguerre polynomials. It is convenient to use the
tables of Najman for values larger than 106 and carry out the computations directly
for values ≤ 106. We prove

Lemma 2.7. Let m > 6k and 2 ≤ k ≤ 38. Then P (∆(m, 2, k)) > 6k unless (m, k) ∈
{(25, 2), (33, 2), (75, 2), (243, 2), (117, 3), (115, 4)}.

Proof. Let k ≥ 2, m > 6k. Assume that P (∆(m, 2, k)) < 6k. Then ω(∆(m, 2, k)) ≤
π(6k)− 1 since 2 - ∆(m, 2, k).

Let k = 2. Then P (m(m+ 2)) ≤ 11 which implies m ∈ S11. Since m ≥ 13, we have
m ∈ {25, 33, 75, 243}.
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Let 3 ≤ k ≤ 6. Then P (∆(m, 2, k)) ≤ 31. Therefore m, m + 2 ∈ S31. For every n
with both n and n+ 2 ∈ S31 and 3 ≤ k ≤ 6, we check that P (∆(n, 2, k)) > 6k except
for k = 3, n = 117 and k = 4, n = 115. Thus (m, k) ∈ {(117, 3), (115, 4)}.

Let 7 ≤ k ≤ 27 and m > 106. For every prime with 100 < p < 6k, we delete a term
in {m,m+ 2, . . . ,m+ 2(k − 1)} divisible by p. Then the number of remaining terms
is at least k− π(6k) + π(100) > dk

2
e. Hence there is some i0 with 0 ≤ i0 ≤ k− 2 such

that P ((m+ 2i0)(m+ 2(i0 + 1))) ≤ 100. Then m+ 2i0 = n ∈ S100. We check that

P

(
2∏
i=1

(n+ 2 + 2i)

)
> 162 ≥ 6k and P

(
2∏
i=1

(n− 2i)

)
> 162

for each n ∈ S100. This is a contradiction.

Let 28 ≤ k ≤ 38 and m > 106. We observe that k − π(6k) + π(100) > dk
3
e and we

argue as above to derive that one of the following holds.

(i) There exists 0 ≤ i0 ≤ k − 2 such that n = m+ 2i0 ∈ S100

(ii) There exists 0 ≤ i
′
0 ≤ k − 3 such that n = m+ 2i

′
0 ∈ S ′100.

Assume (i). We check that P

(
3∏
i=1

(n+ 2 + 2i)

)
> 228 ≥ 6k and P

(
4∏
i=1

(n− 2i)

)
>

228 ≥ 6k for each n ∈ S100, with n > 106.Assume (ii). We check that P

(
3∏
i=1

(n+ 4 + 4i)

)
>

228 and P

(
4∏
i=1

(n− 4i)

)
> 228 for all n ∈ S ′100, with n > 106. This is a contradiction.

Thus it remains to consider the cases 7 ≤ k ≤ 38 and m ≤ 106. We check that
P (∆(m, 2, 6)) > 228 ≥ 6k for m ≥ 50000. Thus m < 50000. Since m > 6k, we check
that P (∆(m, 2, k)) > 48, P (∆(m, 2, k)) > 66, P (∆(m, 2, k)) > 84, P (∆(m, 2, k)) >
108, P (∆(m, 2, k)) > 150, P (∆(m, 2, k)) > 198 and P (∆(m, 2, k)) > 228 for 7 ≤ k ≤
8, 9 ≤ k ≤ 11, 12 ≤ k ≤ 14, 15 ≤ k ≤ 18, 19 ≤ k ≤ 25, 26 ≤ k ≤ 33 and 34 ≤ k ≤ 38,
respectively. Hence the result. �

Lemma 2.8. Let m > 6k and 2 ≤ k ≤ 75. Then P (∆(m, 2, k)) > 5k unless (m, k) ∈
{(25, 2), (243, 2)}.

Proof. For the exceptions given in Lemma 2.7 we check that P (∆(m, 2, k)) > 5k
except for (m, k) ∈ {(25, 2), (243, 2)}. Therefore we derive from Lemma 2.7 that
k ≥ 39. Let P (∆(m, 2, k)) < 5k.

Let 39 ≤ k ≤ 75 and m > 106. Now k − π(5k) + π(100) > dk
3
e. Then one of the

following holds:

(i) There exists 0 ≤ i0 ≤ k − 2 such that n = m+ 2i0 ∈ S100

(ii) There exists 0 ≤ i
′
0 ≤ k − 3 such that n = m+ 2i

′
0 ∈ S

′
100.
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Assume (i). We check that P

(
3∏
i=1

(n+ 2 + 2i)

)
> 375 ≥ 5k and P

(
4∏
i=1

(n− 2i)

)
≥

375 ≥ 5k for each n ∈ S100 with n > 106.Assume (ii). We check that P

(
3∏
i=1

(n+ 4 + 4i)

)
>

375 and P

(
4∏
i=1

(n− 4i)

)
> 375 ≥ 5k for all n ∈ S ′100. This is a contradiction.

Thus it remains to consider the cases 39 ≤ k ≤ 75 and m ≤ 106. We check
that P (∆(m, 2, 7)) > 375 ≥ 5k for m > 50000. Thus we may assume that m ≤
50000. Since m > 5k, we check that P (∆(m, 2, k)) > 240, P (∆(m, 2, k)) > 335 and
P (∆(m, 2, k)) > 375 for 39 ≤ k ≤ 48, 49 ≤ k ≤ 67 and 68 ≤ k ≤ 75, respectively.
Hence the assertion. �

3. Proof of Theorem 4

For more details upto inequality (6), we refer to [LaSh12, Section 3] with d = 2.
Let D > 1 be a real number. Let v = m

2k
. Assume that P (∆(m, 2, k)) ≤ Dk. Then

ω(∆(m, 2, k)) ≤ π(Dk)− 1.

For every prime p ≤ Dk dividing ∆, we delete a term m+2ip such that ordp(m+2ip)
is maximal. Then we are left with a set T with 1 + t := |T | ≥ k−π(Dk) + 1 := 1 + t0
with t0 = k− π(Dk). Let t0 ≥ 0 so that T is non-empty. We arrange the elements of
T as m+ 2i0 < m+ 2i1 < · · · < m+ 2it0 < · · · < m+ 2it. Let

P =

t0∏
ν=0

(m+ 2iν) ≥ 2k−π(Dk)+1

k−π(Dk)∏
i=0

(vk + i).

For a prime p dividing P, we observe that p > 2 and

ordp(P) ≤ ordp((k − 1− ip)!ip!) ≤ ordp((k − 1)!).

Therefore

P ≤ (k − 1)!2−ord2((k−1)!).

By comparing the upper and lower bound for P, we get

2π(Dk) ≥ 2k+12ord2((k−1)!)(vk)k+1−π(Dk)

(k − 1)!
.(6)

By using the estimates for ord2((k− 1)!) and (k− 1)! given in Lemma 2.1, we obtain

(2vk)π(Dk) >
(2vk)k+12k−2(k − 1)−1√

2π(k − 1)(k−1
e

)k−1 exp
(

1
12(k−1)

)
=

(
4ev

k

k − 1

)k
v
√
k

2e
√

2π

√
k

k − 1
exp

(
− 1

12(k − 1)

)
.
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By taking logarithms on both sides and using the estimates for π(ν) given in Lemma
2.1 (i) and log(2vk)

log(Dk)
= 1 +

log 2v
D

log(Dk)
, we derive

0 >
1

2
log

v2k

8πe2
− 1

12(k − 1)
(7)

+ k

(
log(4ev)−D

(
1 +

log 2v
D

log(Dk)

)(
1 +

1.2762

log(Dk)

))
.

Let v be fixed with 2v ≥ D. Then

F (k, v) := log(4ev)−D
(

1 +
log 2v

D

log(Dk)

)(
1 +

1.2762

log(Dk)

)
is an increasing function of k. Let k1 := k1(v) be such that F (k, v) > 0 for all k ≥ k1.
Then we observe that the right hand side of (7) is an increasing function for k ≥ k1.
Let k0 := k0(v) ≥ k1 be such that right hand side of (7) is positive. Thus (7) is not
valid for k ≥ k0 implying (6) is not valid for k ≥ k0. Also for a fixed k, if (7) is not
valid at some v = v0, then (6) is also not valid at v = v0. Observe that for a fixed k, if
(6) is not valid at some v = v0, then (6) is also not valid when v ≥ v0. Therefore for
a given v = v0 with 2v0 ≥ D, there exists k0(v0) such that (6) is not valid for (k, v)
with k ≥ k0(v0) and v ≥ v0.

Let D = 5 so that P (∆(m, 2, k) ≤ 5k. The assertion of Theorem 4 with k ≥ 2 and
m < 6k follows from Lemma 2.4. Thus m > 6k. By Lemmas 2.3, 2.6, 2.8 and 2.7, we
may assume that k ≥ 76, and further

m > max{M0, 131× 2k}.(8)

By taking v = 131 in (7), we obtain k0 = 53000. Therefore (6) is not valid for all
k0 ≥ 53000 and for all v ≥ 131. This implies k < 53000. Then we see from (8) that
v = m

2k
≥ M0

2·53000 ≥ 105. By taking v = 105 in (7), we obtain k0 = 426. Therefore (6)
is not valid for k ≥ 426 and v ≥ 105. Thus k < 426. Then v ≥ M0

2·426 and further we
get k0 ≤ 231. Therefore k < 231 as above. For each 180 ≤ k < 231, we find that (6)
is not valid at v = M0

2k
and hence for all v ≥ M0

2k
. Thus we may assume that k < 180.

Let 150 ≤ k < 180. We continue as in [LaSh09, Section 3] with d = 2 to obtain

m ≤ ((k − 1)!
∏
p≤pl

pL0(p))
1

k+1−π(Dk)(9)

for every l ≥ 1 where

L0(p) =

{
min

(
0, hp(k + 1− π(Dk))−

∑hp
u=1b

k−1
pu
c
)

if p - d
−ordp((k − 1)!) if p | d

with hp ≥ 0 such that b k−1
php+1 c ≤ k + 1 − π(Dk) < bk−1

php
c. Taking l = 3 and D = 5

in (9), we find that m < M0 when 150 ≤ k < 180 except for k = 152, 153, 154, 155.
Thus 76 ≤ k ≤ 149 or 152 ≤ k ≤ 155 by (8).

Let 76 ≤ k ≤ 149 or 152 ≤ k ≤ 155 where it remains to show that P (∆(m, 2, k)) >
4.7k. Now we take D = 4.7. For each 112 ≤ k ≤ 149 and 152 ≤ k ≤ 155, we check
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that (6) is not valid at v = M0

2k
and hence for all v ≥ M0

2k
which is a contradiction.

Thus k < 113. Further taking l = 4 and D = 4.7 in (9), we find that m < M0 when
101 ≤ k < 113. Thus k ≤ 100.

Let 76 ≤ k < 100. We observe that k − π(4.7k) + π(100) > dk
3
e. Therefore one of

the following holds:
(i) There exists 0 ≤ i0 ≤ k − 2 such that n = m+ 2i0 ∈ S100

(ii) There exists 0 ≤ i
′
0 ≤ k − 3 such that n = m+ 2i′0 ∈ S

′
100.

Thus n ≥ m > M0 by (8). For all n ∈ S100 with n > M0, we check that P

(
3∏
i=1

(n+ 2 + 2i)

)
>

466 > 4.7k and P

(
2∏
i=1

(n− 2i)

)
> 466. Also for n ∈ S ′100 with n > M0, we

check that P

(
3∏
i=1

(n+ 4 + 4i)

)
> 466 and P

(
4∏
i=1

(n− 4i)

)
> 466. Therefore

P (∆(m, 2, k)) > 466 > 4.7k for 76 ≤ k < 100.

Now we take k = 100. For m > M0 and 1 ≤ i < 100 such that m + 2i = n with
n ∈ S100, we check that P (∆(m, 2, k)) > 4.7k. Hence we may assume that for every
m and 1 ≤ i < 100, m + 2i /∈ S100. For every prime 100 < p ≤ 4.7k, we delete a
term in {m,m + 2, . . . ,m + 2(k − 1)} divisible by p. Let 0 ≤ i1 < i2 < · · · < il ≤ 99
be such that m + 2ij is in the remaining set where l ≥ k − (π(4.7k) − π(100)).
Since m + 2i /∈ S100 for each 1 ≤ i < 100, we observe that ij+1 − ij ≥ 3 implying
k − 1 ≥ il − i1 ≥ 3(l − 1) ≥ 3(k − π(4.7k) + 24). Since k = 100, we find that
l = k − (π(4.7k) − π(100)) = 34 otherwise 3(l − 1) ≥ 102 > k − 1 which is a
contradiction. Thus i34 − i1 = 99 implying i1 = 0, ij+1 = ij + 3 for each 1 ≤ j ≤ 33.
In other words P (m(m+ 6)(m+ 12) · · · (m+ 6 · 33)) ≤ 100.

Set X = m−6. Sincem is odd, X is odd. We have P ((X+6) · · · (X+6·34)) ≤ 100.
Suppose 3|X. Then putting Y = X

3
, we get P ((Y + 2) · · · (Y + 2 · 34)) ≤ 100 which

implies Y +2 < 6 ·34 by Lemma 2.8 with k = 34. This is not possible since 3(Y +2) =
X+ 6 = m > M0. Hence we may assume that 3 - X. Then 3 - (X+ 6) · · · (X+ 6 ·34).
After deleting terms X + 6i divisible by primes 37 ≤ p ≤ 100, we are left with at
least 20 terms divisible by primes 5 ≤ p ≤ 31. Out of these, there are at most two
terms each divisible by prime p ∈ {17, 19, 23, 29, 31}, at most 3 terms divisible by 13
and at most 4 terms divisible by 11. After deleting these terms divisible by a prime
p ≥ 11, we are left with at least 3 terms divisible by 5 and 7. Out of these, there is a
term X + 6i where ord5(X + 6i) ≤ 2 and ord7(X + 6i) ≤ 1. Since 3 - X + 6i, we get
X + 6 ≤ 52 × 7 = 175. This contradicts X + 6i ≥ m > M0. �
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4. Newton Polygons

Let f(x) =
m∑
j=0

ajx
j ∈ Z[x] with a0am 6= 0 and let p be a prime. Let S be the

following set of points in the extended plane

S = {(0, ν(am)), (1, ν(am−1)), (2, ν(am−2)), . . . , (m, ν(a0))}.

Consider the lower edges along the convex hull of these points. The left most endpoint
is (0, ν(am)) and the right most endpoint is (m, ν(a0)). The endpoints of each edge
belong to S and the slopes of the edges increase from left to right. When referring
to the edges of a Newton polygon, we shall not allow two different edges to have the
same slope. The polygonal path formed by these edges is called the Newton polygon
of f(x) with respect to the prime p and we denote it by NPp(f). The endpoints of the
edges on NPp(f) are called the vertices of NPp(f). We denote the Newton function
of f with respect to the prime p as the real function fp(x) on the interval [0,m] which
has the polygonal path formed by these edges as its graph. Hence fp(i) = ν(am−i)
for i = 0, m and at all points i such that (i, ν(am−i)) is a vertex of NPp(f). We need
the following lemma proved in [ShTi10, Lemma 2.13].

Lemma 4.1. Let k,m and r be integers with m ≥ 2k > 0. Let g(x) =
m∑
j=0

bjx
j ∈ Z[x]

and let p be a prime such that p - bm. Let denote by gp(x) the Newton function of
g(x) with respect to p. Let a0, a1, . . . , am be integers with p - a0am . Put f(x) =
m∑
j=0

ajbjx
j ∈ Z[x]. If gp(k) > r and gp(m) − gp(m − k) < r + 1 , then f(x) cannot

have a factor of degree k.

Lemma 4.1 implies the following result of [Fil94, Lemma 2] where the condition
|a0am| = 1 is replaced by p - a0am.

Corollary 4.2. Let l, k,m be integers with m ≥ 2k > 2l ≥ 0. Suppose g(x) =
m∑
j=0

bjx
j ∈ Z[x] and p be a prime such that p - bm and p | bj for 0 ≤ j ≤ m− l− 1 and

the right most edge of the NPp(g) has slope < 1
k
. Then for any integers a0, a1, . . . , am

with p - a0am, the polynomial f(x) =
m∑
j=0

ajbjx
j cannot have a factor with degree in

[l + 1, k].

Proof. Since p|bj for 0 ≤ j ≤ m − l − 1, we have gp(K) > 0 for K ∈ [l + 1, k]. Let
(m1, gp(m1)) be the starting point of the right most edge of NPp(g). Then

1

m−m1

≤ gp(m)− gp(m1)

m−m1

<
1

k
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giving m1 < m − k ≤ m −K for K ≤ k. Hence for K ∈ [l + 1, k], we observe that
(m−K, gp(m−K)) lie on the right most edge implying gp(m)−gp(m−K)

K
< 1

k
≤ 1

K
. Thus

gp(m)−gp(m−K) < 1. Now we apply Lemma 4.1 with r = 0 to get the assertion. �

5. Irreducibility Criterion

Lemma 5.1. For any odd y and a prime p, we have

νy := νp(3 · 5 · · · y) ≤ y − 1

2(p− 1)
+

log y

2 log p
.

Proof. We may assume that p > 2, otherwise the assertion follows immediately. By
Lemma 2.2,

νy = ν(y!)− ν((
y − 1

2
)!)

=
y − σp(y)

p− 1
−

(y−1
2
− σp(y−12 ))

p− 1
=

y+1
2
− σp(y) + σp(

y−1
2

)

p− 1
.

(10)

Now we write y in base p as

y = asp
s + as−1p

s−1 + · · ·+ a1p+ a0, 0 ≤ aj < p for 0 ≤ j ≤ s, as > 0.

Write aj = 2bj + δj with δj ∈ {0, 1} for 0 ≤ j ≤ s. Since y is odd, δj = 1 for an odd
number of j′s, say j1 > j2 > · · · > j2t−1, t ≥ 1. Then

σp(y) = 2
s∑
j=0

bj + 2t− 1(11)

and

y − 1

2
=

s∑
j=0

bjp
j +

∑2t−1
l=1 pjl − 1

2

=
s∑
j=0

bjp
j +

∑t−1
l=1 {pj2l(pj2l−1−j2l − 1) + 2pj2l}+ (pj2t−1 − 1)

2

=
s∑
j=0

bjp
j +

t−1∑
l=1

(
p− 1

2
pj2l(1 + p+ · · ·+ pj2l−1−j2l−1) + pj2l

)
+
p− 1

2
(1 + · · ·+ pj2t−1−1).

Therefore

σp(
y − 1

2
) =

s∑
j=0

bj + t− 1 +
p− 1

2

(
t−1∑
l=1

(j2l−1 − j2l) + j2t−1

)

≤
s∑
j=0

bj + t− 1 +
s(p− 1)

2
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since
∑t−1

l=1(j2l−1 − j2l) + j2t−1 = j1 − (j2 − j3) − · · · − (j2t−2 − j2t−1) ≤ j1 ≤ s. This
together with (11) gives

σp(
y − 1

2
)− σ(y) ≤ s(p− 1)

2
− t−

s∑
j=0

bj ≤
s(p− 1)

2
− 1 ≤ (p− 1) log y

2 log p
− 1

since ps ≤ y and t ≥ 1. Now the assertion follows from (10). �

Lemma 5.2. Let 1 ≤ k ≤ n
2

and a0, a1, . . . , an ∈ Z.

(i) Suppose there is a prime p with

p|
k−1∏
l=0

(1 + 2u+ 2(n− l)), p -
k∏
l=1

(1 + 2u+ 2l)(12)

satisfying

p > max(2k, 1 +
√

2(u+ 1)) and p - a0an.(13)

Then Gα(x2) does not have a factor of degree in {2k − 1, 2k}. Further when
n is odd and k = n−1

2
, Gα(x2) does not have a factor of degree n = 2k + 1.

(ii) Let u ≤ 45 and k = 2. Suppose there is a prime p ≥ 5 satisfying (12) and
p - a0an and further p 6= 5 when u ∈ {8, 9, 33, 34} and p 6= 7 when u ∈ {20, 21}.
Then Gα(x2) does not have a factor of degree 3 and 4.

Proof. (i) We use Corollary 4.2. We write (m, k, l) = (2n, 2k, 2(k − 1)) and

g(x) =
2n∑
j=0

bjx
j where bj =


n∏

i=l+1

(1 + 2(u+ i)) if j = 2l

0 otherwise.

(14)

Then p - b2n and p|bj for 0 ≤ j ≤ 2n− 2k by (12) and p|b2n−2k+1 since b2n−2k+1 = 0.
Consider the Newton polygon NPp(g) with respect to p. The slope of the right most
edge of NPp(g) is given by

max
1≤j≤n

{
νp(b0)− νp(b2j)
2n− (2n− 2j)

}
.

Let

∆j =

j∏
l=1

(1 + 2u+ 2l) =
b0
b2j
.(15)

Then by Corollary 4.2, it is enough to show that

ν(∆j) <
2j

2k
=
j

k
for 1 ≤ j ≤ n(16)

to conclude that Gα(x2) cannot have a factor of degree in {2k − 1, 2k}.
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Now let n be odd and k = n−1
2
. We apply Corollary 4.2 where (m, k, l) is given by

(2n, 2k + 1, 2k) and g(x) by (14). Then p - b2n and p|b2n−2k. Since p|bj for 0 ≤ j ≤
2n− 2k − 1, we derive from Corollary 4.2, as above, that it suffices to show that

ν(∆j) <
2j

2k + 1
for 1 ≤ j ≤ n.(17)

We observe that (16) will follow from (17). Therefore it is enough to prove (17) to
conclude the assertion of Lemma 5.2(i).

Let j0 be the least positive integer j such that p|(1+2u+2j) and write 1+2u+2j0 =
pl0. Then j0 ≥ k + 1 since p - ∆k by (12). Also j0 ≤ p. Hence pl0 ≤ 1 + 2u + 2p
implying p(p− l0) = p2− pl0 ≥ p2− 2p+ 1− 2(u+ 1) = (p− 1)2− 2(u+ 1) > 0 since
p > 1 +

√
2(u+ 1) by (13). Therefore l0 < p and hence ν(∆j0) = 1 < 2j0

2k+1
. Also

observe that ν(∆j) = 0 < 2j
2k+1

for each 1 ≤ j < j0.

Hence we consider j > j0. To show ν(∆j) < 2j
2k+1

, we can restrict to those j
such that p|(1 + 2u + 2j). Then p|(j − j0). Put j = j0 + pt with t ≥ 1. Then
1 + 2u+ 2j = p(l0 + 2t) and

ν(∆j) = ν(pl0(p(l0 + 2)) · · · p(l0 + 2t)).

Therefore

ν(∆j) = t+ 1 + ν(l0(l0 + 2) · · · (l0 + 2t))(18)

implying

ν(∆j) ≤ t+ 1 + ν(3 · 5 · · · (l0 + 2t)).(19)

Recall that
2j

2k + 1
=

2(j0 + pt)

2k + 1
≥ 2(k + 1 + pt)

2k + 1
≥ 1 +

1

2k + 1
+

2pt

2k + 1
.(20)

We consider two cases:

Case I: Let l0 + 2t < p2. Let t ≥ 3. Then since l0 < p and p ≥ 2k + 1 by (13), we get

ν(∆j) ≤ t+ 1 +

(
1 +

l0 + 2t

2p

)
< t+ 2 +

(
p+ 2t

2p

)
< 3 + t(1 +

1

p
) ≤ 3 + t(1 +

1

2k + 1
)

≤ 1 + 2t < 1 +
1

2k + 1
+

2pt

2k + 1
≤ 2j

2k + 1

by (20). Further ν(∆j) ≤ 3 if t = 1 and ν(∆j) ≤ 4 if t = 2 by (19) and l0 < p.
Therefore for t ∈ {1, 2}, we have

ν(∆j) ≤ 1 + 2t ≤ 1 +
2pt

2k + 1
<

2j

2k + 1

by (20).
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Case II: Let l0+2t ≥ p2. Then ν(∆j) ≤ t+1+ l0+2t−1
2(p−1) + log(l0+2t)

2 log p
by (19) and Lemma 5.1.

Since 2j
2k+1

> 1 + 2pt
2k+1

by (20), it suffices to show that 2p
2k+1

≥ 1 + l0+2t−1
2t(p−1) + log(l0+2t)

2t log p
=

1 + 1
p−1 + l0−1

2t(p−1) + log(l0+2t)
2t log p

. Since l0 < p, we prove

1

2t
+

log(l0 + 2t)

2t log p
≤ 2p

2k + 1
− 1− 1

p− 1
.

By observing that the left hand side is a decreasing function of t and using l0 + 2t ≥
p2, l0 < p and p ≥ 2k + 1 ≥ 3, we obtain

1

2t
+

log(l0 + 2t)

2t log p
≤ 1

p2 − l0
+

log p2

(p2 − l0) log p
=

3

p2 − l0

≤ 3

p2 − p
≤ 3

32 − 3
=

1

2
≤ 2p

2k + 1
− 1− 1

p− 1
.

This proves (i).
Remarks:(a) We observe that the condition p > 1 +

√
2(u+ 1) is required only in

deriving l0 < p in the above proof. This observation is used in the proof of (ii).
(b) If n is odd and k = n−1

2
, we observe that the assumption (12) can be relaxed to

p|
k∏
l=0

(1 + 2u+ 2(n− l)).

For the proof of (ii), we may suppose that p ∈ {5, 7} since u ≤ 45 and k = 2
otherwise the assertion follows from (i). As in the proof of (i), it suffices to show that
ν(∆j) <

j
2
. [See (16).] Let j0, l0 be as defined in (i) given by pl0 = 1 + 2u + 2j0 and

we may assume that l0 ≥ p otherwise the assertion follows as in (i); see the above
remark. Also ν(∆j) = 0 for 1 ≤ j < j0. Further from pl0 ≤ 1 + 2u + 2p, we get l0 ≤
2 + 2u+1

p
≤ 2 + 91

5
< 21. Since l0 is odd, we get l0 ≤ 19. Also 3 = k + 1 ≤ j0 ≤ p ≤ 7.

Thus 1 + 2u + 2j0 ≤ 105. If p - l0, ν(∆j0) = 1 < 3
2
≤ j0

2
. If p|l0, then p = 5 implies

1 + 2u+ 2j0 ∈ {25, 75} and p = 7 implies 1 + 2u+ 2j0 ∈ {49}. Let j0 ∈ {3, 4}. Then
p = 5 implies u ∈ {8, 9, 33, 34} and p = 7 implies u ∈ {20, 21}. This is not possible by
our assumption. Thus we obtain j0 ≥ 5 whenever p|l0 and thus ν(∆j0) = 2 < 5

2
≤ j0

2
in this case. Hence we may assume that j > j0 and we may restrict to those j such
that p|(1 + 2u + 2j). As in (i), we have j = j0 + pt ≥ 3 + 5t. Since l0 ≤ 19, we have
ν(l0(l0 + 2) · · · (l0 + 2t) ≤ 1 for t ≤ 2 and ν(l0(l0 + 2) · · · (l0 + 2t) ≤ 2 for 3 ≤ t ≤ 4.
Thus in all these cases, we derive from (18) that ν(∆j) <

3+5t
2
≤ j

2
. Therefore t ≥ 5.

To show ν(∆j) <
j
2
, it suffices to show 2t+ 2 + 2ν(3 · 5 · · · (l0 + 2t)) < 3 + 5t by (19).

Since by Lemma 2.2 and t ≥ 5

2ν(3 · 5 · · · (l0 + 2t)) ≤ 2ν((l0 + 2t)!) <
2(l0 + 2t)

p− 1
≤ 2(19 + 2t)

4
< 1 + 3t,

the assertion follows. �

Corollary 5.3. Let 1 ≤ k ≤ n
2
. Suppose there is a prime p satisfying (12) and (13).

Then Gα(x) does not have a factor of degree k.
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Proof. Assume that Gα(x) has a factor of degree 1 ≤ k ≤ n
2
. Then Gα(x2) has a

factor of degree 2k. Since there is a prime satisfying (12) and (13), the assumptions
in Lemma 5.2(i) are satisfied and we conclude that Gα(x2) has no factor of degree
2k. This is a contradiction. �

6. Proof of Theorem 2

First, we continue with some lemmas for the proof of Theorem 2 in this section.
We always asssume that 1 ≤ u ≤ 45 and α = u+ 1

2
in these lemmas. Let 1 ≤ k ≤ n

2
.

Since the degree of Gα(x2) is equal to 2n, it suffices to consider the factors of Gα(x2)
of degrees in [3, n]. A factor of degree ≤ n of Gα(x2) has degree in {2k − 1, 2k} or
2k + 1 when n = 2k + 1 for some 1 ≤ k ≤ n

2
.

Let 2 ≤ k ≤ n
2
. We write

m = 1 + 2(u+ 1) + 2(n− k).(21)

Assume that Gα(x2) has a factor of degree in {2k − 1, 2k} or Gα(x2) has a factor of
degree 2k+ 1 and k = n−1

2
. By Lemma 5.2(i), we may restrict to those m and k such

that

p > max(2k, 1 +
√

2(u+ 1)), p|∆(m, 2, k) imply p|
k∏
l=1

(1 + 2u+ 2l).(22)

For a pair (m, k), we say that (22) is valid if it holds for every prime p and (22) is
not valid if there exists a prime p which does not satisfy (22). Therefore

P := P (∆(m, 2, k)) < 2k + 2(u+ 1)(23)

whenever (22) holds. Since n ≥ 2k, we have P < m by (21) and (23). In particular,
each of integers m,m+ 2, . . . ,m+ 2(k − 1) is composite.

Lemma 6.1. Let 2 ≤ k ≤ n
2
. Assume that Gα(x2) has a factor of degree in {2k−1, 2k}

or Gα(x2) has a factor of degree 2k + 1 when n = 2k + 1. Then either k ≤ 22, 2k ≤
u ≤ 45 or (u, n, k) ∈ {(1, 12, 2), (1, 121, 2)}.

Proof. Let m be given by (21). Let the assumptions in Lemma 6.1 be satisfied. Then
(22) and (23) are valid. Let (m, k) ∈ T where T is given in Theorem 4. We consider
all the triples (u,m, k) with 1 ≤ u ≤ 45 and (m, k) ∈ T. First we exclude those triples
(u,m, k) for which (23) is not satisfied. For each of the remaining pairs (u,m, k),
we check that there exists a prime p which does not satisfy (22) unless k = 2 and
(u,m) ∈ {(1, 25), (1, 243)}. Thus (u, n, k) ∈ {(1, 12, 2), (1, 121, 2)} by (21). Therefore
we may assume that (m, k) /∈ T. Since m > 2k, we obtain from Theorem 4 and (23)
that 3.5k ≤ P < 2k + 2(u + 1) implying 1.5k < 2(u + 1). This gives m > 3.5k
by (21) and k < 62 since u ≤ 45. By using Theorem 4 and (23) again, we get
4.7k ≤ P < 2k + 2(u + 1) implying u + 1 > 1.35k and k ≤ 34. Hence by Theorem
4 and (23), we obtain 5k ≤ P < 2k + 2(u + 1) implying u + 1 > 1.5k. This gives
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m > 5k. Finally, by using Theorem 4 and (23) again, we obtain 6k ≤ P < 2k+2(u+1)
implying u+ 1 > 2k. Hence

k ≤ 22 and 2k ≤ u ≤ 45.

�

Lemma 6.2. Let 2 ≤ k ≤ n
2

such that n = 2k + 1. Then Gα(x2) has no factor of
degree 2k + 1.

Proof. Assume that Gα(x2) has a factor of degree 2k+ 1 = n. Then m = 2(u+k) + 5
by (21). By Lemma 6.1, we have k ≤ 22 and 2k ≤ u ≤ 45 since the possibilities
(u, n, k) ∈ {(1, 12, 2), (1, 121, 2)} are excluded by 2k + 1 = n. For each k ≤ 22 and
2k ≤ u ≤ 45, we check that (23) is not satisfied except for (u, k) = (8, 2). This gives
(u, n) = (8, 5) and in this case, the vertices of Newton polygon with respect to p = 23
are given by {(0, 0), (4, 0), (10, 1)} and the slope of the right most edge is 1

6
< 1

5
. Thus

Gα(x2) does not have a factor of degree 5 by Corollary 4.2 when (u, n) = (8, 5). �

We recall the set S given in Theorem 2.

Lemma 6.3. Let 2 ≤ k ≤ n
2

and Gα(x2) has a factor in degree {2k − 1, 2k}. Then
either (u, n) ∈ S ∪ {(1, 12), (5, 8), (6, 7), (8, 5)}, k = 2 or (u, n, k) ∈ (44, 79, 3).

Proof. Let 2 ≤ k ≤ n
2
and we assume that Gα(x2) has a factor of degree {2k− 1, 2k}.

Then (22) and (23) are valid. Now by Lemma 6.1, we have k ≤ 22, 2k ≤ u ≤ 45 or
(u, n, k) ∈ {(1, 12, 2), (1, 121, 2)}. The latter possibility is excluded since (1, 121) ∈ S.

Let 5 ≤ k ≤ 22. Let m > 106. By (23), we have P (∆(m, 2, k)) < 2k+2(u+1). For
k ≤ 22 and 2k ≤ u ≤ 45, we check that k−π(2k+2(u+1)+π(100) >

⌈
k
2

⌉
. Therefore

after deleting terms in m,m+ 2, . . . ,m+ 2(k− 1) divisible by primes > 100, there is
at least one 0 ≤ i < k such that P ((m+ 2i)(m+ 2i+ 2)) ≤ 100. Hence m+ 2i ∈ S100.
Then for N ∈ S100, and N > 106, we check that P ((N + 2)(N + 4)(N + 6)) > 136
and P ((N − 2)(N − 4)) > 136. This is a contradiction since 2k + 2(u + 1) ≤ 136.
Thus m ≤ 106. For each 3500 < m ≤ 106, we check that P (∆(m, 2, 7)) > 136 and
further P (∆(m, 2, 6))) > 104 and P (∆(m, 2, 5)) > 102. Hence we may assume that
m ≤ 3500. For 2k + 2(u + 1) < m ≤ 3500, we check that (22) is not valid for each
k ≤ 22 and 2k ≤ u ≤ 45.

Let 3 ≤ k ≤ 4. Then 2k+ 2(u+ 1) ≤ 100 which implies m ∈ S100 by (23). Let m >
106. We check that for N ∈ S100 and N > 106 that P ((N + 2)(N + 4)(N + 6)) > 100
and further P ((N + 2)(N + 4)) > 100 except for N = 5337421. For m = 5337421 and
k = 3, we can choose p = 97 for 6 ≤ u ≤ 44 and p = 67 for u = 45 so that (22) is not
valid. This is a contradiction. Thus m ≤ 106. For each 3 ≤ k ≤ 4, we first compute

U(k) = {100 < m ≤ 106 : P (m(m+ 2) · · · (m+ 2(k − 1))) ≤ 100}

and then compute

V (k, u) = {2k + 2(u+ 1) < m ≤ 100 or m ∈ U(k) : (22) is valid}
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for each 2k ≤ u ≤ 45. We are left with only (k, u,m) = (3, 44, 243). This implies
(k, u, n) = (3, 44, 79) by (21).

Let k = 2. Then u ≥ 4 and by (23), we get P (m(m + 2)) ≤ 4 + 2(u + 1) < 100.
Thus m ∈ S4+2(u+1) ⊂ S100. For each m ∈ S4+2(u+1) with m > 106 and 4 ≤ u ≤ 45,
we check that there is a prime p ≥ 11 such that p|m(m+ 2) but p - (2u+ 3)(2u+ 5).
Hence we may suppose by (22) that m ≤ 106. For each 4 ≤ u ≤ 45, we compute

W (u) = {m : 2k + 2(u+ 1) < m ≤ 106, P (m(m+ 2)) < 100}
W0(u) = {m : m ∈ W (u),∃ p ≥ 11, p|m(m+ 2), p - (2u+ 3)(2u+ 5)}

and further

W1(u) =


{m ∈ W (u) \W0(u) : ∃ p ≥ 5, p|m(m+ 2), p - (2u+ 3)(2u+ 5)} if u /∈
{8, 9, 20, 21, 33, 34}
{m ∈ W (u) \W0(u) : 7|m(m+ 2), 7 - (2u+ 3)(2u+ 5)} if u ∈ {8, 9, 33, 34}
{m ∈ W (u) \W0(u) : 5|m(m+ 2), 5 - (2u+ 3)(2u+ 5)} if u ∈ {20, 21}.

We denote by W2(u) the complement of W0(u) ∪ W1(u) in W (u). By (22) and
Lemma 5.2(ii), we need to consider only W2(u). For 4 ≤ u ≤ 45, we have (u,m) ∈
{(5, 25), (6, 25), (8, 25), (8, 133), (8, 243), (9, 25), (9, 243), (9, 343), (9, 1125), (15, 75),
(15, 243), (16, 243), (20, 243), (21, 243), (26, 361), (26, 625), (30, 243), (36, 243), (43, 2401),
(44, 1519)} where m ∈ W2(u). By (21) with k = 2, we have (u, n) = (u, m+1

2
− u)

which we use to conclude that the set of above pairs is equal to the set of pairs (u, n)
consisting of S ∪ {(5, 8), (6, 7), (8, 5)} other than {(1, 121)}. �

Lemma 6.4. (a) Let (u, n) ∈ S ∪ {(1, 12), (5, 8), (6, 7), (8, 5)}. If Gα(x2) has a
factor of degree 3, then (u, n) ∈ {(1, 12), (6, 7), (9, 113), (21, 101)}.

(b) Gα(x2) has no factor of degree 4 when (u, n) ∈ {(1, 12), (5, 8), (6, 7), (8, 5)}.
(c) Gα(x2) has no factor of degree 5 when (u, n) = (44, 79).

Proof. (a) Wemay assume that (u, n) /∈ {(1, 12), (6, 7), (9, 113), (21, 101)}. Let (u, n) =
(9, 4). We apply Lemma 4.1 with p = 3, r = 1 to g(x) given by (14) to conclude that
Gα(x2) cannot have a factor of degree 3 in this case. Now we show that for the
remaining pairs Gα(x2) has no factor of degree 3. Let p be the largest prime di-
viding (1 + 2u + 2(n − 1))(1 + 2u + 2n) with p - (2u + 3). We take p = 3 for
(u, n) = (16, 106), p = 5 for (u, n) ∈ {(5, 8), (8, 5), (30, 92)}, p = 7 for (u, n) ∈
{(1, 121), (8, 59), (8, 114), (15, 23), (15, 107), (20, 102), (36, 86), (43, 1158)}, p = 19 for
(u, n) = {(26, 155), (26, 287)}, p = 23 for (u, n) ∈ {(9, 163), (9, 554)} and p = 31 for
(u, n) = (44, 716). As in the proof of Lemma 5.2, we derive from Corollary 4.2 with
k = 3 and l = 2 that it suffices to show ν(∆j) <

2j
3
for 1 ≤ j ≤ n where ∆j is given by

(15). Clearly this is true for j = 1 since p - (2u+ 3). Let 1 ≤ j1 ≤ j be the such that
ν(1+2u+2j1) is maximal. Observe that 1+2u+2j1 ≤ 1+2u+2n ≤ 1+2·3+2·1158 < 55

if (u, n) 6= (16, 106) and 1 + 2u + 2j1 ≤ 245 < 36 if (u, n) = (16, 106). Therefore by
Lemma 2.2, we get

ν(∆j) ≤ ν(1 + 2u+ 2j1) + ν((j − 1)!) < 5 +
j − 1

p− 1
< 5 +

j − 1

2
<

2j

3

for j > 27. Thus j ≤ 27. For 2 ≤ j ≤ min(27, n), we check that ν(∆j) <
2j
3
.
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(b) Let (u, n) = (1, 12). We apply Lemma 4.1 with p = 3, r = 1 to g(x) given by
(14). Then g3(4) = 10

9
> 1, g3(24) − g3(20) = 4

3
< 2. Thus Gα(x2) does not have a

factor of degree 4. Similarly the cases (u, n) ∈ {(5, 8), (6, 7), (8, 5)} are excluded by
Lemma 4.1 with p = 3 and r = 1.

(c) Let (u, n) = (44, 79). We use Corollary 4.2 with k = 5, l = 4. Taking p = 19, as
in the proof of Lemma 5.2, it suffices to show ν(∆j) = ν(

∏j
l=1(91 + 2(l − 1))) < 2j

5

for 1 ≤ j ≤ 79. This is true for 1 ≤ j ≤ 5. Since 192 - (91 + 2(l − 1) for 1 ≤ l ≤ 79,
we see that ν(∆j) ≤ 1 + ν((j − 1)!) < 1 + j−1

18
< 2j

5
for j > 5. Hence Gα(x2) does not

have a factor of degree 5.

�

Proof of Theorem 2. Assume that Gα(x2) has a factor of degree 3 ≤ t ≤ n. We
take

k =


t−1
2

if t = n odd
t
2

if t is even
t+1
2

if t is odd and t 6= n.

Thus k ≤ n
2
since t ≤ n. Also k ≥ 2 unless t = n = 3. Let (t, n) 6= (3, 3). Then

k ≥ 2. By Lemmas 6.2, we may assume that Gα(x2) has a factor of degree in
{2k − 1, 2k}. Now we derive from Lemma 6.3 that Gα(x2) may have factors only
of degrees {3, 4} or {5, 6} at S ∪ {(1, 12), (5, 8), (6, 7), (8, 5)} or (44, 79), respectively.
By Lemma 6.4(a) and 6.4(b), we see that Gα(x2) may have a factor of degree 3 only
when (u, n) ∈ {(1, 12), (6, 7), (9, 113), (21, 101)} and a factor of degree 4 only when
(u, n) ∈ S. Finally, we conclude from Lemma 6.4(c) that Gα(x2) does not have a
factor of degree 5 and hence, it may have a factor of degree 6 when (u, n) = (44, 79).

It remains to consider the case t = n = 3. Then k = 1. By Lemma 5.2(i) if we
can find a prime p satisfying p|(2u+ 7), p - (2u+ 3) and (13), then Gα(x2) does not
have a factor of degree 3. For u ≤ 45, we check that we can always find such a prime
p except for u ∈ {1, 9, 10, 19, 21, 28, 34, 37}. We apply Corollary 4.2 with (m, k, l) =
(6, 3, 2), g(x) given by (14) and (u, p) ∈ {(1, 7), (9, 23), (19, 43), (21, 47), (28, 61), (34, 73),
(37, 79)}. We find that the slope of the right most edge of NPp(g) is < 1

3
in each case.

HenceGα(x2) has no factor of degree 3 for the above values of u other than u = 10. �

Proof of Corollary 1.2 : If Gα(x) has a factor of degree k ≥ 2, then Gα(x2) has a
factor of degree 2k ≥ 4. Then the assertion follows from Theorem 2.

7. Proof of Theorem 1

Let (u, n) 6= (10, 3) and α = u+ 1
2
. We consider

L(α)
n (x2) =

n∑
j=0

(
n

j

) n∏
i=j+1

(1 + 2(u+ i))x2j
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and we observe that L(α)
n (−x

2

2
) = L(α)n (x2)

2nn!
by (3). By Remark (ii) after the statement

of Theorem 2 in Section 1, it suffices to show that L(α)
n (−x

2

2
) does not have a factor

of degree in {1, 2}. Therefore it suffices to prove that L(α)
n (x2) does not have a factor

of degree in {1, 2}. By Lemma 5.2, we may suppose that

p|(2n+ 2u+ 1)⇒ p|(2u+ 3) or p ≤ 1 +
√

2(u+ 1).(24)

Let

p|n(2n+ 2u+ 1) and p odd(25)

and we denote by j1 := j1(p) = 1, 2, 3, 5 according as p ≥ 11, p = 7, p = 5, p = 3,
respectively. First we prove three lemmas for the proof of Theorem 1.

Lemma 7.1. Let p be a prime satisfying (25) and assume that

ν(∆j)− ν
((

n

j

))
< j for 1 ≤ j ≤ j1.(26)

Then L(α)
n (x2) does not have a factor of degree in {1, 2}.

Proof. If p|n, then p|
(
n
j

)
for 1 ≤ j < p which together with p|∆j for j ≥ p implies

p|
(
n
j

)
∆j for j ≥ 1 where ∆j is given by (15). This is also true when p|(2n+ 2u+ 1).

Now we apply Corollary 4.2 with g(x) = L(α)
n (x2), k = 2 and l = 0 to conclude that

it suffices to show

ν(∆j)− ν
((

n

j

))
< j for 1 ≤ j ≤ n.(27)

It suffices to prove (27) for j > j1 by (26) and in this case, we show that ν(∆j) < j
which implies (27). Since u ≤ 45 and p ≥ 3, we have

ν(∆j) ≤
log(2u+ 1 + 2j)

log p
+ ν((j − 1)!)

≤ log(91 + 2j)

log p
+
j − 2

p− 1
≤ log(91 + 2j)

log 3
+
j − 2

2
≤ j

2
+

log(30 + j)

log 3
< j

for j ≥ 7 by Lemma 2.2. Thus (27) is valid for j ≥ 7. Let j ≤ 6. Then 2u+1+2j ≤ 103
implying νp(∆j) ≤ 1, 2, 3, 5 according as p ≥ 11, p = 7, p = 5, p = 3, respectively.
Thus ν(∆j) ≤ j1 < j. �

Since ν(
(
n
j

)
) ≥ ν(n) for 1 ≤ j < p, the following result ia an immediate consequence

of Lemma 7.1.

Corollary 7.2. Let p be a prime satisfying (25) and assume that{
ν(∆j)− ν(n) < j for 1 ≤ j < min(j1 + 1, p)

ν(∆j) < j for min(j1 + 1, p) ≤ j ≤ j1.
(28)

Then L(α)
n (x2) does not have a factor of degree in {1, 2}.
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Lemma 7.3. Let P (n) = 2. Then L(α)
n (x2) does not have a factor of degree in {1, 2}.

Proof. Assume that P (n) = 2 and we write 2n = 2a. Then a ≥ 2 since n > 1. Let
p|(2n+ 2u+ 1). Then it is clear that (25) holds so that it suffices to prove (26). First,
we derive from (24) that

p|(2u+ 3) or p ∈ {3, 5, 7}

since u ≤ 45. Now we exclude the latter possibility.

Let p ∈ {5, 7}, p|(2n + 2u + 1) and p - (2u + 3). Then j1 ≤ 3 and (26) is valid for
p except when 2u + 5 ∈ {25, 75}, 5|(2n + 2u + 1), 7 - (2n + 2u + 1) and 2u + 5 = 49
,7|(2n+ 2u+ 1), 5 - (2n+ 2u+ 1). Hence we have following possibilities:

2u+ 5 = 25, 2a + 21 = 5b · 23c

2u+ 5 = 75, 2a + 71 = 3b · 5c · 73d

2u+ 5 = 49, 2a + 45 = 7b · 47e.

The last equation is not possible by modulo 8 unless a = 2. Then (u, n) = (22, 2).
Consider the first equation 2a + 21 = 5b · 23c. The solutions for this equation can
be found by transforming it into Thue equations of the form 5β123γ1X3 − 2α1Y 3 =
21 where a = 3α + α1, b = 3β + β1, c = 3γ + γ1, 0 ≤ α1, β1, γ1 ≤ 2, X =
5β23γ and Y = 2α, We solve these Thue equations using SAGE and we use this
method of solving equations without any reference. The solutions for these equa-
tions give (u, n) = (10, 2). Similarly we solve the second equation which implies
(u, n) ∈ {(35, 2), (35, 25), (35, 29)}. For these values of (u, n), we check that L(α)

n (x2)
is irreducible. Thus for p ∈ {5, 7}, p|(2n+ 2u+ 1) implies p|(2u+ 3).

Let p = 3, p|(2n+2u+1) but p - (2u+3). Since 3 - n, we get 3 - (2u+1) and hence
3 | (2u+ 5). For these values of u, p = 3 and j1 = 5 we check that (26) holds except
when 2u+5 ∈ {9, 27, 45, 63, 75, 81}. Then we get from (24) the following possibilities.

2u+ 5 = 9, 2a + 5 = 3b · 7c

2u+ 5 = 27, 2a + 23 = 3b · 5c

2u+ 5 = 45, 2a + 41 = 3b · 43c

2u+ 5 = 63, 2a + 59 = 3b · 61c

2u+ 5 = 81, 2a + 77 = 3b · 79c

2u+ 5 = 75, 2a + 71 = 3b · 73d.

We find that the solutions of the above equations are given by

(u, n) ∈ {(2, 2), (2, 8), (2, 29), (11, 2), (38, 2)}

and we check that L(α)
n (x2) is irreducible for each of the above pairs of (u, n).
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Hence we conclude that p|(2n + 2u + 1) implies p|(2u + 3). Further by using
ω(2u+ 3) ≤ 2 since u ≤ 45, we get the following equations:

pb − 2a = 2u+ 1 if ω(2u+ 3) = 1 and p|2u+ 3

pbqc − 2a = 2u+ 1 if ω(2u+ 3) = 2 and pq|(2u+ 3).

The solutions of these equations are given by (u, n) ∈ {(6, 24), (9, 4), (9, 26), (16, 23), (21, 24),

(24, 24), (30, 26), (36, 4), (44, 212)}. We check that L(α)
n (x2) is irreducible for these val-

ues of (u, n). �

Lemma 7.4. Assume that L(α)
n (x2) has a factor of degree in {1, 2}. Then P (n) = 3.

Proof. We have P (n) ≥ 3 by Lemma 7.3. Assume that P (n) > 3 and L(α)
n (x2) has

a factor of degree in {1, 2}. We shall contradict Corollary 7.2 by satisfying (28) for
some prime such that (25) is valid. For a prime p, let j ≤ j1(p) = j1.

Since P (n) > 3, there exists a prime p ≥ 5 dividing n. If p ≥ 11, then j1 = j1(p) =
1, ν(∆j) ≤ 1 and (28) follows since ν(n) > 0. Let p = 7. Then j1 = 2, ν(∆j) ≤ 2
and (28) follows for j = 2 since ν(n) > 0. Thus we may suppose that j = 1. Then
ν(2u+ 3) = 2 otherwise (28) holds since ν(n) > 0. Now we have 2u+ 3 = 49 implying
u = 23. Let q be a prime dividing 2n + 2u + 1. Then, since u = 23, we derive from
(24) that q ≤ 7 and further q 6= 7 since 7|n. Thus q ∈ {3, 5}, j1(q) ≤ 5 and we check
that νq(∆j) < j for j ≤ 5 implying (28) with p replaced by q. Hence we conclude that
P (n) ≤ 5.

It remains to consider the case p = 5. Then j1 = 3 and ν(∆j) ≤ 2. Therefore (28) is
valid with j = 3. Thus j ≤ 2 and (28) is satisfied for j = 2 since ν(n) > 0. Further, we
observe that ν5(n) = 1 otherwise (28) is valid. Thus j = 1 and we may suppose that
ν(2u + 3) = 2 since ν(n) > 0 otherwise (28) is satisfied. Therefore 2u + 3 ∈ {25, 75}
implying u ∈ {11, 36}. Let q be a prime divisor of 2n+ 2u+ 1. Then q 6= 5 since 5|n
and we derive from (24) that (q, u) = (3, 11), (3, 36) or (7, 36). The last possibility
is excluded by checking that νq(∆j) < j for 1 ≤ j ≤ 2 implying (28). Therefore
2n + 2u + 1 = 3a where a is a positive integer. Thus 3 - n and 2n = 5 · 2b for some
positive integer b since ν5(n) = 1. We obtain the equation 3a− 5 · 2b = 2u+ 1. Taking
modulo 5, we obtain a is odd. If b ≥ 3, we get a contradiction modulo 8. Hence b ≤ 2
and for these possibilities of b, the equation does not have a solution. �

Proof of Theorem 1. By Lemma 7.4, it remains to consider the case P (n) = 3.
Let p = 3 and p|n. Thus j1 = 5 and let j ≤ j1. Then ν(∆j) ≤ 5 and (26) is valid for
j = 5 since ν(

(
n
j

)
) ≥ ν(n) ≥ 1. Thus we may assume that j ≤ 4. Further we show

that we need to consider the following possibilities with respect to prime p = 3.

(i) j = 1 : ν(2u+ 3) = a, ν(n) ≤ a− 1, 2 ≤ a ≤ 4;

(ii) j = 2 : ν(2u+ 5) = a, ν(n) ≤ a− 2, 3 ≤ a ≤ 4;

(iii) j = 3 : ν(2u+ 7) = a, ν(n) ≤ a− 2, 3 ≤ a ≤ 4;

(iv) j = 4 : ν((2u+ 3)(2u+ 9)) = 5, ν(n) = 1.
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Let j = 1. By (26) we need to consider ν(2u+ 3) > ν(n) which is listed in (i). Let
j = 2. Then ν(

(
n
2

)
) = ν(n). By (26), we need to consider only when ν(∆j) > 1+ν(n).

Therefore we have ν(∆j) = a, ν(n) ≤ a − 2, 3 ≤ a ≤ 4. Since 3 divides exactly
one of the terms 2u + 3 or 2u + 5, these cases are covered in (i) and (ii). Let j = 3.
By (26) and since ν(

(
n
3

)
) = ν(n) − 1, we need to consider when ν(∆j) ≥ 2 + ν(n).

Therefore we have ν(∆j) = a, ν(n) ≤ a − 2, 3 ≤ a ≤ 4. In view of the cases j = 1
and j = 2 , it remains to consider ν(2u + 7) = a, ν(n) ≤ a − 2, 3 ≤ a ≤ 4. Let
j = 4. By (26) and since ν(

(
n
4

)
) = ν(n) + ν(n − 3) − 1, we need to consider when

ν(∆j) ≥ 3 + ν(n) + ν(n − 3) ≥ 5. Therefore ν(∆j) = ν((2u + 3)(2u + 9)) = 5 and
ν(n) = ν(n− 3) = 1.

Consider (i). We have 2u+ 3 ∈ {9, 27, 45, 63, 81} and hence 3|u. Let q be a prime
dividing 2n+2u+1. Then q 6= 3 since 3|u and 3|n. We derive from (24) that q ∈ {5, 7}
and we check that (28) is valid with q ∈ {5, 7} except when

2u+ 3 = 45, 5|(2n+ 2u+ 1), 7 - (2n+ 2u+ 1)

2u+ 3 = 63, 7|(2n+ 2u+ 1), 5 - (2n+ 2u+ 1).

In both cases, ν3(n) = 1 and hence 2n = 3 · 2r for some integer r > 0. We have

2u+ 3 = 45, 2n = 3 · 2r, 2n+ 43 = 5α implying 5α − 3 · 2r = 43

2u+ 3 = 63, 2n = 3 · 2r, 2n+ 61 = 7β implying 7β − 3 · 2r = 61.

If r ≥ 3, then modulo 8 gives a contradiction. Hence r ≤ 2 and we check that there
are no solutions.

Consider (ii). Then 2u + 5 ∈ {27, 81}, and hence 3 - (2n + 2u + 1) since 3|n.
From (24), we get q|(2n + 2u + 1) implies q = 5 if 2u + 5 = 27 and q ∈ {5, 7, 79} if
2u+ 5 = 81. For these values of q, we see that (28) is valid except when

2u+ 5 = 27, q|(2n+ 2u+ 1) implying q = 5

2u+ 5 = 81, q|(2n+ 2u+ 1) implying q = 79.

Also ν3(n) = 1 if 2u+ 5 = 27 and ν3(n) ∈ {1, 2} if 2u+ 5 = 81 by (ii). Hence we get
an equation 5α − 3 · 2r = 23 in the first case and 79β − 3k · 2r = 77, k ∈ {1, 2} in the
latter case. These are excluded by modulo 8.

Consider (iii). We have 2u+7 ∈ {27, 81}, ν3(n) = 1 if 2u+7 = 27 and ν3(n) ∈ {1, 2}
if 2u+ 7 = 81. Let 2u+ 7 = 27. By (24), q|(2n+ 2u+ 1) implying q ∈ {3, 5, 23}. Thus
2n + 2u + 1 = 3α · 5β · 23γ and 2n = 3 · 2r implying 3α · 5β · 23γ − 3 · 2r = 21. Since
α ≥ 1, 3α−1 ·5β ·23γ−2r = 7. This gives (u, n) ∈ {(10, 3), (10, 12), (10, 24), (10, 192)}.
We check that L(α)

n (x2) is irreducible except for (u, n) = (10, 3) which is already
excluded in the begining of Section 7. Let 2u + 7 = 81. Then u = 37 and by (24),
q|(2n + 2u + 1) implying q ∈ {3, 5, 7, 11}. If 5|(2n + 75), then 5|n which is not
possible. Thus 5 - (2n + 75) and we have 2n + 2u + 1 = 2n + 75 = 3α · 7β · 11γ and
2n = 3k · 2r, k ∈ {1, 2} implying 3α · 7β · 11γ − 3k · 2r = 75. Let k = 1. If β ≥ 1,
then modulo 7 gives a contradiction. Thus 3α−1 · 11γ − 2r = 25. It has the only
solution 3 · 11 − 23 = 25 giving n = 12. We check that L(α)

n (x2) is irreducible when
(u, n) = (37, 12). Let k = 2. Then 3α ·7β ·11γ−32 ·2r = 75 implying α = 1 and we have
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7β · 11γ − 3 · 2r = 25. The solutions of this equation give (u, n) ∈ {(37, 36), (37, 144)}
in which cases we check that L(α)

n (x2) is irreducible.

Now we consider (iv). We have 2u + 3 ∈ {75, 81}. Then 3 - (2n + 2u + 1) as
ν3(n) = 1. By (24), q|(2n + 2u + 1) implies q ∈ {5, 7}. We check that (28) is valid
for 2u+ 3 = 81 with q ∈ {5, 7}. Let 2u+ 3 = 75. If 7|(2n+ 2u+ 1), we see that (28)
is valid with q = 7. Hence 2n + 2u + 1 = 5α which, together with 2n = 3 · 2r, gives
5α − 3 · 2r = 73. There are no solutions for this equation. �

8. Proof of Theorem 3

Assume that Gα(x2) has a factor of degree l with 3 ≤ l ≤ n. Since (u, n) /∈
{(1, 12), (1, 121)}, the assertion of Theorem 3 holds for all exceptions in Theorem 2.
Therefore u ≥ 46 by Theorem 2.

Case (i) Let l = n and n odd. Let u ≤ 1.35l
2
− 1.2 and we take k = n−1

2
= l−1

2
. Since

u ≥ 46, we have l ≥ 70 implying k ≥ 34. Further (21), (22), (23) are valid by Lemma
5.2 as in the proof of Theorem 2. Thus m = 2u + 2k + 5 > 2k and we get from
Theorem 4 that P (∆(m, 2, k)) > 3.5k which, together with (23), gives u > .75k − 1.
Therefore m > 3.5k. Now we apply Theorem 4 again to derive P (∆(m, 2, k)) > 4.7k
which, along with (23), implies u > 1.35k − 1

2
> 1.35l

2
− 1.2 since k = l−1

2
.

Case (ii) Let u ≤ 1.35l
2
− 0.5. Then l ≥ 69 since u ≥ 46. If l is even, we take k = l

2
.

Since l ≤ n, we have n ≥ 2k. If l is odd, we have l ≤ n− 1. We take k = l+1
2

and then
n ≥ 2k.

Hence n ≥ 2k and k ≥ 35. Since Gα(x2) has a factor of degree in {2k − 1, 2k}, we
see that (21),(22) and (23) are valid. Then m > 2k by (21). Now we apply Theorem
4 twice as in Case (i) to conclude that u > 1.35k − 1

2
≥ 1.35l

2
− 1

2
. �

Proof of Corollary 1.3: Assume that Gα(x) has a factor of degree l ≥ 2 and u ≤
1.35l − 0.5 Then Gα(x2) has a factor of degree 2l ≥ 4. Thus (u, n) 6= (1, 12) by
Theorem 2 and then the assertion follows from Theorem 3(ii). �

9. Factorization of Gα(x)

The factorizations for some Laguerre polynomials have been obtained in [ShTi10]
without using computers and therefore it has not been possible to factorize Laguerre
polynomials of large degree in [ShTi10]. We thank Professor Michael Filaseta for
explaining us a method to carry out the computations on the computer and we explain
this method for finding the factorization in the case (u, n) = (15, 23). For convenience,
we write f(x) = Gα(x).

Let (u, n) = (15, 23). Initially we assume all aj’s to be 1. Then the coefficients of
xn, xn−1 and xn−2 are 1, 77 and 77 ·75, respectively, which are composed of 3, 5, 7 and
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11. Now we consider the Newton polygon of f(x) with respect to primes 3, 5, 7, 11
which are given by

NP3(f) ={(0, 0), (1, 0), (7, 2), (16, 6), (22, 9), (23, 10)}
NP5(f) ={(0, 0), (1, 0), (21, 5), (23, 6)}
NP7(f) ={(0, 0), (14, 2), (21, 4), (23, 5)}
NP11(f) ={(0, 0), (22, 2), (23, 3)}.

Each of NP3(f), NP5(f), NP7(f) have edges of length 2 and slope 1
2
. By choosing a1

to be a multiple of 11, we modify the vertices of NP11(f) to {(0, 0), (21, 2), (23, 3)} to
get an edge of slope 1

2
without any changes in NP3(f), NP5(f), NP7(f). Hence a qua-

dratic factor q(x) = x2 +Ax+B of f(x) may have a Newton polygon with respect to
3, 5, 7, 11 having an edge of length 2 and slope 1

2
if 3|A, 3||B, 5|A, 5||B, 7|A, 7||B, 11|A,

11||B. So a possible quadratic factor can be q(x) = x2 + 1155. Equating remainder
obtained by dividing f(x) with q(x) to be 0 and solving the system of equations we
get the following values for the coefficients aj’s. Thus for (u, n) = (15, 23), G(x) with
{a0, a1 . . . an}={1, 11, 1, 269, 0, 18, 0, 142, 0, 255, 0, 6, 0, 38, 0, 2, 0, 356, 0, 869, 0, 1449167,
0, 1} has a quadratic factor x2 + 1155.

Let (u, n) = (8, 59). Then Gα(x) with {a0, a1, . . . , an}= {1, 1, 80, 70, 653, 271,
576, 2, 2, 540, 55, 427, 5, 2, 85, 35, 316, 17, 93, 18, 514, 10, 8, 32, 603, 22,
108, 102, 10, 60, 585, 161, 69, 127, 480, 74, 7, 16, 5, 418, 198, 1198, 7, 1, 638,
318, 79, 23, 97, 2, 34, 36, 67, 173, 217, 500, 153, 3182477123845074506664566503,
5284872575202700721255121305, 1} has a quadratic factor x2 + 105x+ 1995.

Let (u, n) = (9, 4). A factorization has already been given in [FiSa10, p.4].

Let (u, n) = (30, 92). Then Gα(x) with {a0 = 1, a1 = 7, a2 = 13, a88 = 15, a89 =
15, a90 = −7522, a91 = −71267, a92 = 1} and all other aj’s to be 0 has a quadratic
factor x2 + 35x+ 315.

Let (u, n) = (36, 86). Then Gα(x) =
n∑
j=0

aj(
n∏

i=j+1

(1 + 2(u+ i)))xj with a0 = 1, a1 =

5, a2 = 11, a79 = 35, a80 = 42, a81 = 127, a82 = 477, a83 = 52, a84 = −5348598, a85 =
−25850555, a86 = 1 and all other a′js to be 0 has a quadratic factor x2 + 35x+ 525.

Let (u, n) = (44, 716). Then Gα(x) with {a0 = 1, a1 = 13, a2 = 1, a710 =
2821, a711 = 2418, a712 = 2341, a713 = 231, a714 = −6042090470827, a715 = −76358140
82870, a716 = 1} and all other aj’s to be 0 has a quadratic factor x2 + 1209x+ 8463.

For the remaining pairs (u, n) we give the details of the quadratic factor q(x) of
Gα(x2). Here suitable integer coefficients a′js of Gα(x2) are obtained by equating the
remainder obtained by dividing Gα(x2) with q(x) to be 0 and solving the system of
equations.
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(u, n) q(x) (u, n) q(x)
(1, 121) x2 + 105x+ 105 (16, 106) x2 + 105x+ 105
(8, 114) x2 + 105x+ 105 (20, 102) x2 + 35x+ 105
(9, 113) x2 + 35x+ 105 (21, 101) x2 + 35x+ 315
(9, 163) x2 + 345x+ 2415 (26, 155) x2 + 627x+ 627
(9, 554) x2 + 2415x+ 2415 (26, 287) x2 + 3135x+ 3135
(15, 107) x2 + 35x+ 105 (43, 1158) x2 + 1869
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