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Abstract

Given positive integers a, b, let M = M (a,b) and N = N(a,b) be a minimal pair of
positive integers such that we always have ged(M —i, N —j) > 1 for all 1 <14 < a and
1 < j <b. We give upper and lower bounds for M, N.

1 Introduction

In [5], Pighizzini and Shallit defined for a positive integer n the function S(n) which is the
least positive integer r such that there exists m € {0,1,...,r} with ged(r —i,m — j) > 1
for 0 <i,57 < mn. The above greatest common divisor condition is equivalent to the fact that
a lattice point (0,0) # (x,y) € Z* with ged(x,y) > 1 is nonvisible from the origin (see [3]).
They showed that

S(n) < eFroMinlosn gy o0, (1)

and computed S(n) and the corresponding m’s for n = 1,2, 3. This function was also studied
in Wolfram’s book [7, p. 1093] who computed S(4).
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Here, we generalize the function S(n). Given positive integers a, b, let (M (a,b), N(a,b))
be a minimal pair of positive integers such that ged(M — i, N — j) > 1 for all 1 <i < a and
1 < j <b. Here, by minimal, we mean that if both (M(a,b), N(a,b)) and M'(a,b), N'(a,b))
satisfy the requirements, then M(a,b) < M'(a,b) and N(a,b) > N’(a,b) (or vice-versa).
Without loss of generality, we assume that a > b. In this note, we prove the following result.
We always write p for a prime number.

Theorem 1. If a > b, we then have
(i) max{M(a,b), N(a,b)} < exp((6/7%+ o(1))ablogab) as b — .
(ii) max{M (a,b), N(a,b)} < exp(0.721521ablogab) if b > 100.
(11i) We have
M (a,b) > exp((c1 + o(1))blogab) and N(a,b) > exp((c1 + o(1))alogab),

where )
e =1-) — =0547753. ..

p>2

provided b — oo in such a way that logloga = o(b).
Taking a = b = n, (i) above shows that
S(n) < exp((12/7* + o(1))n*logn) as  n — 0o,
which improves (1). We also give a lower bound for S(n). We prove
Theorem 2. Forn > 1, we have
S(n) > exp(.82248nlogn).

We also give an algorithm for computing M and N for a given a and b. This is stated in
Section 3 and values of M and N are computed for some small values of a, b. The proof of
Theorem 2 is given in Section 4.

2 Preliminaries

For a positive integer ¢, let p; denote the ¢-th prime. Thus p; =2,ps = 3,.... Forreal x > 1,
let

m(x) = Z 1 and 6(z) = Zlogp.

p<w p<z

From the prime number theorem, we have 7(z) < syz/logx and 6(p,;) < soflog ¢ for positive
constants s1, So. The following results give explicit values of s; and ss.

Lemma 3. Let x be real and positive and ¢ be a positive integer. We have
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x 1.2762
) < 1 1.
(1) m(z) < gz ( + log = ) for x>

(1) pe > Llogl for € > 1.

(i17) O(pe) < L(logl + loglog ¢ — .75) for ¢ > 8.

(iv) 0(z) >z (1 - ) for x> 41.

log x

1 1
(v) Z — <loglogx + 0.2615 + —— for z > 1.
o< log” x

The estimates (i7), (iv) and (v) are [6, (3.12), (3.16), (3.20)], respectively. The estimate
() is due to Dusart [1] and (éi7) is derived from estimates in [1]. See also [2].
For given integers j > r > 1, let

r'=r'(j) = #{i: 1 < i <rand ged(i, §) = 1},
Let

Rj::max{rl—m21§T<j}a
J

where ¢(j) is the Euler-phi function. It is easy to see that R, = 1—1/p. For a real number z,
let {} denote the fractional part of z; i.e., {x} = 2 — |z|. We prove the following estimate.

Lemma 4. If n > 100, then

> " R; < 375nlogn — .432n — 10.

j=1

Proof. For 1 <r < j, we have

we-gll gl gl

plj pqlj parlj
where p,q,r, ... are primes dividing j. Since
1 1 1
LRV B
J “ P ) par
plj pqlj par|j
we get

el s ) sl

pq|j



Since r/s < |r/s| +1 —1/s holds for positive integers r, s, we get

B, <Z<1——> Z<1_L>+...

: pgr
plj pqr|j

Let w(j) be the number of distinct prime divisors of j and put w; = (7). Then

R<Zwt Z = owl)-1 _ Z—

t odd p\] plj
Thus, for n > 100, we have

100

DS DR EINY

]>100 §>100 plj

100

A 1 1 &
— Z Rj_QW(J)—l_Z5 +§Zgw0 Zz_

J=1 pli Jj=1 Jj=2 p\]

] — . nl|1
< —1304 Sy 2203 = - 2
< 30 778+2j:1 LJP (2)

p<n p
Assuming n > 100, we have

23l = 205 -0) 20 ()

p<n p<n p<b

> (n+1) ) (l — L) > 432(n+1). (3)

2
o D 101p

As in the proof of [4, Lemma 9] for n > 248, and using exact computations for n € [101, 247],
we obtain

> 2¢0) 120 < 375nlogn  forall  n > 100. (4)
=2
Combining above estimates (2), (3) and (4), we get the assertion of the lemma. O

Lemma 5. For a positive integer n, we have

Z(p —l—logn—irl (5)

Proof. We have

PR B G- ) - s )

=1 7=1 j=1 j=1 7j=1

<.



Hence, inequality (5) follows from

= u(y) > d 6 1
ZH 1%‘2@ +Zz—; /nu—ZZEJF;

i>n i>n

and

]

We now define two functions f and g on N with values in the positive real numbers given

by

f(n) = 4 =1 #U0)] if < 100,
6n/7? +logn +1 if n > 100,

and

(n) Z?Zl R; if n <100,
n)=
g 375nlogn — .432n — 10 if n > 100.

We observe from Lemmas 4 and 5 that inequalities f(n) < 6n/n% +1logn + 1 for n > 1 and
g(n) < .375nlogn hold for all n > 7.

3 Proof of Theorem 1
3.1 Proof of the upper bounds (i) and (ii) in Theorem 1
Let a and b be positive integers with a > b. If p| M and p | N for each p < b, then
ged(M —i,N —j5)>1 for 1<i<a,1<j5j<b and ged(i,j)# 1.
If p| M and N =1 (mod p) for every b < p < a, then
ged(M —i,N —1)>1 for b<i<a.
Let
T:=T(a,b): ={(4,j): 1 <i<a,1<j<bged(i,j)=1}\{(3,1):b<i<a},
and let t = #T. We label the elements of T'(a,b) as
T(a,b) = {(i,j) : 1 <1<t}

in lexicographic order. Hence, (i1, j1) = (1, 1), (i2,52) = (1,2),. ...



We consider the system of congruences

M, N =
M

0 (modp) for p<b;
0 (modp) and N =1 (modp) for b<p<a;

and
M =i, (mod prpy+e) and N =j mod prpyye) for 1 <0<t

By the Chinese Remainder Theorem, we get

max(M,N) < H De- (6)
(<7t(a)+t

We now estimate m(a) + t. For every 1 < j <b, write a = jg; +r; where 0 <r; < j. By
dividing a into intervals of length j, we obtain

t+a—>b = Z(quO(j)—l—r;):aZgD(,j) +Z (T;—%(j))

IA
S
MQ“
<&
+
MQ“
s

Jj=1 J=1
which gives
b N/ b
- -1 b+mla)+)> R,
t+7(a) < ab <ZJ1 ‘P(Ij)/] " ( )aszl J) .

Assume that b > 100. By Lemmas 4, 5, 3 (i) and the fact that a > b, we obtain

23:1 )/ —1 " b+ 7(a) +Z?‘:1 R;
b ab
6 loghb b+ .375blogb — .432b — 10 + m(a)
— + ==+
72 b ab
6 N log b N 568 + 2 logb N a(1+ 1.2762/loga) — 10
2 b a abloga
6 N 11logb n 1 1 1.2762 _ 10
2 8b blogb log b b2’

IN

IN

IN

In particular,
t+7(a) < (% + 0(1)) ab  when b — 0. (8)
7r

Additionally, since the last expression (7) is a decreasing function of b, we obtain

t+m(a) <.67252ab  for b > 100.



Define hy(b) = .67252 if b > 100 and for b < 100 let this function be defined in the following
way':

22:1 () —1
b
b+ > Ry +mla) b+ 30 R, 1 1.2762
ab 1016 blog 101 (1 log 101> '

ho(b)

—+ max
b<a<100

We then obtain from a > b and Lemma 3 (i) that ¢ + 7(a) < ho(b)ab.
If m(a) +t < 7, then max(M, N) < 510510. In fact, b < a < 4 in that case. Hence, we

now assume that 7(a) +¢ > 8. By Lemma 3 (i) and (i7i) and from the fact that a > b, we
have

[T »e < exp(abho(b)(log ho(b)ab + loglog ho(b)ab — .75)

L<n(a)+t
log ho(b) + log log ho(b)ab — .
< exp (abho(b)logab 1+ =2 o(b) +loglog ho(b)ab — .75
log ab
log h log log ho(b)b? — .
< oxp (ot logab (1.4 o) E B Ho 0 = 751
(0)

= exp(hi(b)ablogb).

Here,

log ho(b) + log log ho(b)b* — .75
hi(b) = ho(b) (1+ 8o(%) igfz o®) )

Making b — oo, we get (i) of Theorem 1 from (8). For b > 100, since hy(b) = .67252, we get

n log ho(b) + loglog ho(b) - 101% — .75
log 1012

ha(b) < ho(b) ( ) < 721521 = ¢,

which proves (ii) of Theorem 1. Our arguments give upper bounds for M(a,b) and N(a,b)
in smaller ranges of b as well. That is, for b < 100, we get hy(b) < ¢;1(b), where the values of
¢y are given by:

b c1 b c1 b c1 b c1 b 1

2 19432 || 3 | 1.1429 || 4 | .9344 | 5 | .99964 6 .8587
7 1.9074 || 8 | .8448 || 9 | .8279 || 10 | .7813 11 | .8186
12 | 7718 || 13 | .8034 || 14 | .7752 || 15 | .7608 16 | .7435
17 | .7689 || 18 | .7419 || 19 | .7646 || 20 | .7454 | > 21 | .7463

3.2 Proof of the lower bound (iii) of Theorem 1

Let M, N satisfy the conditions of Theorem 1. For each pair (i,7) with 1 < i < a and
1 <j <b, let p;; be the least prime dividing ged(M — i, N — j). We consider the set

P={py: 1<i<al1<j<b}
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Suppose that p € P. If p | ged(M —i, N —j) and p | ged(M —i', N —j’) for some 1 < i,i' < a
and 1 < j,5' <bwith (¢,5) # (¢',7). Then p | (i — ') and p | (j — j'). In particular, p < a.
Thus, given p € P, let (ig, jo) be the least pair with 1 < iy < a and 1 < jo < b such that
p| ged(M — i, N — j). Then every other pair (¢,7) with 1 <i < a and 1 < j < b such that
p | ged(M —i, N — j) has the property that i = ig +up and j = jo + vp for some nonnegative
integers u,v with 0 < u < |[(a —1)/p] and 0 < v < |(b—1)/p|. Thus, for a fixed p, the
number of pairs (7, j) for which p = p;; is at most

e[S DS e T S o

Putting also

T=T(a,0)={(i,j): 1<i<a, 1<j<0},
and summing up the above inequality (9) over all the possible primes p € P, we get that

#T:ab§2(1+a;b+;§—g)g#P+(a+b)Z%+abZ]%. (10)

peEP

r<a p<a
By the prime number theorem, in the right, the second sum is

(a+0b) (logloga + O(1)) = o(ab)
because of the assumption that loglogt = o(b) as b — co. Put

02221%21—01

p>2

and P = #P. We then get that
ab < P+ (ca+o(l))ab or P > (c;+o(l))ab (b — 00).

Now it is clear that

M > [ M-i=]]p

1<i<a pEP
> H pr = exp((1 4 o(1))Plog P) = exp ((c1 + o(1))ablog ab) ,
k<P

implying the desired inequality (iii) on M. A similar argument proves the inequality for N.
Hence, (iii) of Theorem 1 is proved. ]

4 Proof of Theorem 2

We now prove Theorem 2 by computing M (a,a) for a > 1. We follow the same arguments
as in Section 3.2 with a = b and arrive at

_ a-1 a1’
4T =a S#P+2ZL > J+Z{ . J :

p<a r<a




giving

—1 —11? 1 1
#PZ@Q—QZVL J—ZLG J zaQ—QaZ——aQ L (11)
p<a p p<a p p<a p p<a p
and
#P
M > T]p=]]pi = expOpsr)). (12)
pEP i=1

Let a < 100. We explicitly compute the integral part of the middle term of (11), which
we call it P,, and compute (Hfl‘l pi)% to get a lower bound of M giving the assertion for
a < 100. In fact we get M > exp(aloga) for a > 2. Now we take a > 101. Then from
Lemma 3 (v) and

100

Z%SQ(Q)—ZZ%—F > ]%g.4604,

p>a p i=1 p<100

we get

1
HP >a® — 46040 — 2a (log loga + .2615 + — )
log” a

21ogloga+.523+bgi2a} o 508942
> . a

>a? {.5396 —

a

since a > 101. This together with (12) and Lemma 3 (¢7) and (iv) gives

1
M :5032a*1og(.5032a%)(1 — ———r
> exp ( 5032a" log(.5032a")( log(.5032a?) )>
log .5032 1
5032a2(1 24 —— )1 — v — ooy
> exp ( 5032a(log a)(2 + log a ) log(.5032a2)))

> exp(.82248a” log a)

since a > 101. Hence, the proof. O
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