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IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE
POLYNOMIALS III

SHANTA LAISHRAM AND T. N. SHOREY

ABSTRACT. For a positive integer n and a real number «, the generalized Laguerre
polynomials are defined by
L@ =3 (a1t e) (1 ba)(e)
= 3t (n —3)!

These orthogonal polynomials are solutions to Laguerre’s Differential Equation
which arises in the treatment of the harmonic oscillator in quantum mechanics.
Schur studied these Laguerre polynomials for its interesting algebraic properties.
He obtained irreducibility results of Lgli%)(x) and L%i%)(ﬁ) and derived that the
Hermite polynomials Hs,(z) and Hz%lm are irreducible for each n. In this arti-
cle, we extend Schur’s result by showing that the family of Laguerre polynomials
L,(nq)(x) and LY (z4) with ¢ € {£3,+£2,+£1,£3}, where d is the denominator of ¢,
are irreducible for every n except when ¢ = %,n = 2 where we give the complete
factorization. In fact, we derive it from a more general result.

1. INTRODUCTION

For a positive integer n and a real number «, the generalized Laguerre polynomials
are defined by

U@@)2530%+®0r—r+®-~@+1+ax—@{

=)

Let d > 1 and ¢ be a rational number with denominator equal to d written in its
reduced form

a

d

where u, « € Z with 1 < a < d and ged(a, d) = 1. For integers ag, aq, - - - a,, let

g=u+

G(x) = Gy(x) = > a;(n+q)(n—1+4q) - (j+ 1+ g)d" 2’

=0
:Zajxj H (a+ (u+1i)d)
=0 i=j+1
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This is an extension of Hermite polynomials and generalized Laguerre polynomials.
In fact, when a; = (—1)’ (?), we obtain d"n‘L(q)( ) and Hermite polynomials are
given by

Hop(z) = (=1)"22"n! L2 (22) and Hopyr (z) = (—1)"22 nlz L) (22).

Therefore we call G(z) the generalized Hermite-Laguerre polynomial. We have

n

dn . P
. a a+(ut+i)d) it j=dl
G(2?) = Gy(z%) = E bjz’ where b; = lilz_L( ( ) /

7=0 0 otherwise.

We observe that the irreducibility of G,(z¢) implies the irreducibility of G, (z). There
is a slight difference in the notation of this paper from that of [ShTil0], [LaSh12]
and [LaSh09]; G,(z) here is G,41(z) in the above papers. The first result on the
irreducibility of these polynomials is due to Schur. Schur [Sch29] proved that G_1 (xz)
with a, = 4+1 and ag = =£1 are irreducible and this implies the 1rredu01b1hty of
Hermite poynomial Hs,. Schur [Sch31] also established the irreducibility of M
by showing that Ga( r?) with a, = +1 and ag = +1 is irreducible except for n = 12
where it may have a quadratic factor. In this paper, we extend Schur’s result by
proving

Theorem 1. Let q € {i%,i%,ii,i%}. The Laguerre polynomials L%q)(x) and

L%q)(xd), where d is the denominator of q, are irreducible for every n except when
q= %1’”:2 where

1 1 1 1
LV (z) = o5z —3)(42 — 15) and LV (a4 = o5t = 3)(da' — 15).

In fact we derive Theorem 1 from the following general result extending the the-
orems of [LaSh12] and [LaSh09]. For a non-zero integer m, we denote by P(m) the
greatest prime divisor of m with the convention P(+1) = 1. Observe that if a poly-
nomial of degree m has a factor of degree k& < m, then it has a co-factor of degree
m — k. Therefore when we consider a factor of a polynomial of degree m, we always
mean the factor whose degree is < %

Theorem 2. Let q € {£3,+2}. Assume that P(aga,) < 3 and further 2 t agay zf
a+3(n+u) is a power of 2. Then the polynomials G(x) and G(2*) with q € {—3, -3

are both irreducible except when q = —%, n = 2 where G(x) may have a linear factor
and G(2*) may have a cubic factor or when q = —3,n = 43 where G(23) may have a

factor of degree 5. Further the polynomials G(x) and G(x3) with q € {3, 3} are both
wrreducible except possibly when

(1) 14+ 3n = 2% where G%(x) may have a linear factor and G%(x:i) may have a
quadratic or a cubic factor.
(i7) 24 3n = 2% and n # 42 where Gg(xS) may have a quadratic factor.
(4ii) 2+ 3n = 2°5¢,b > 0,¢ > 0 where G%((IJ) may have a linear factor and Gg(mﬁ)
may have a cubic factor.
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(iv) n = 42 where G%({E) may have a quadratic factor and G%([LB) may have a
factor of degree in {2,4,5,6}.
Theorem 3. Let ¢ € {£3,+3}. Assume that P(aga,) < 3 and further P(aga,) <
2 if a +4(n + u) is a power of 3 when q € {—}L,—%} and 3|(a + 4n) when q €
1,2}, Then the polynomials G%(m) and Gfg(:c‘l) are both irreducible. Further
Gii(x),Gir (z*), Gs(x) and G%(x‘l) are irreducible except possibly when 3+4(n—1) =
3% ifq= —i; 1+4n =3%°b,c>0,b+c>0ifq= %l and 3+4n =TV if ¢ = % where
G,(z) may have a linear factor and G, (z*) may have a factor of degree 4.

It follows from Theorem 3 that if n is a multiple of 3, then G,(x*) is irreducible
for ¢ € {5, £2}. In Theorem 2, the case ¢ = —2,n = 2 is necessary since Gy(z) =
(x4 2)? and G, (z) = (2® 4+ 2)? when ag = a; = ay = 1. The assumptions on aga,, in
Theorems 2 and 3 are satisfied if |ag| = |a,| = 1; in fact the assumptions of Theorem 3
are satisfied if P(aga,) < 2. Therefore the assertions of Theorems are valid whenever
lag| = |a,| = 1 and further for Theorem 3 whenever P(apa,) < 2.

The proofs of Theorems 2 and 3 are given in Sections 5 — 7. Further we prove
Theorem 1 in Section 8. The following result used in the proof of Theorem 3 is also
of independent interest.

Theorem 4. Let k > 2,n > 4k and 2{n. Then
(1) Pn(n+4)---(n+4(k—1))) >4(k+1)
unless k =2,n € {11,21,45,77,121} and k = 3,n = 117.

As an immediate consequence of Theorem 4, we obtain
Corollary 1.1. Let k > 2,n > 4k and 21n. Then
(2) Pn(n+4)---(n+4(k—1))) >4k
unless k = 2,n € {21,45}.

We give a proof of Theorem 4 in Section 4. In Section 2, we give some preliminaries
and in Section 3, we give statements and results on Newton polygons.

The proof of Theorems 1-3 involve combinations of ideas of p—adic Newton poly-
gons with estimates on the greatest prime factor of a product of consecutive terms
of an arithmetic progression. The new ingredients in the paper are Theorem 4 and
the exploitation of arithmetic properties of some special numbers arising out of ap-
plication of Newton polygon ideas and extending the arguments for G,(x) to G,(x?)
where d is the denominator of q.

2. PRELIMINARIES

For positive integers m, d, k, we write

A(m,d, k) =m(m+d)---(m+dk—1)).
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Recall that for an integer m > 1, we denote by P(m) the greatest prime factor of m
and we put P(1) = 1. The following result is [LaSh12, Theorem 3].

Lemma 2.1. Let k > 2 and d = 3. Let m and k be positive integers such that 31 m
and m > 3k. Then

(3) P(A(m,3,k)) > 3k unless (m,k) = (125,2).

For a prime p and a nonzero integer r, we define v(r) = v,(r) to be the nonnegative
integer such that p*™|r and p*™+! { r. We define v(0) = 4-00. The following classical
result is due to Legendre. See for example, Hasse [Hasse, Ch. 17, no. 3, p. 263].

Lemma 2.2. Let p be a prime. For any integer m > 1, write m in base p as
m = myp’ +m_p"t 4 map +mg
where 0 <m; <p—1 for0<i<t. Then

vy (ml) = =5
p—1
where sy(m) = my +my_1 + -+ + mq + my is the sum of digits of m in base p. In
particular v,(m!) < ﬁ since s,(m) > 1.

The next lemma is on solutions of some equations.

Lemma 2.3. Let x > 0,y > 0,z > 0 be integers. The solutions of the following
equations are given by

Equation Solutions
) | —W=%1,0,0€{2,35}|3-2=1,22-83=15-2=132-25=1
(19) | 243V =5%2"+3V =77 24+3=521+32=52224+3=7
(121) 2t3Y — 5% = +1 2-3-5=1,22.3-52= -1
(iv) 3rHY — 2% = 41 3-5—-2t=-1
() 275V — 37 = +1 2. 5-3"=1,2"-5—3"=—_1

The assertion (i) is a special case of Catalan’s Conjecture, now Mihailescu’s The-
orem when z > 1,y > 1. The case z = 1 or y = 1 is immediate. The assertion (ii) is
due to Nagell [Nagh8]. For assertions (iii) — (v), see [LaSh06a, Lemma 4].

The next lemma is [LaSh12, Corollary 2.12] together with computations for X < 80.
Lemma 2.4. Let X > 1,31 X and 1 < i < 7. Then the solutions of

P(X(X +3i) =5 and 2|X(X + 3i)
are given by
(1, X) € {(1,2),(1,5),(1,125),(2,4), (2,10), (2,250), (3,1), (3, 16), (4, 8),
(4,20), (4,500, (5,5), (5, 10), (5, 25), (5,625), (6, 2), (6,32), (7, 4)}.

We also need the following result which is [LaSh12, Corollary 2.3] and [LaSh09,
Corollary 4.3].
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Lemma 2.5. Let d € {3,4}, ged(n,d) = 1 and 6450 < n < 10.6 - 3k if d = 3 and
10° < n <1384k if d = 4. Then P(A(n,d, k)) > n.

Let p; ,; denote the ith prime congruent to [ modulo p. Let 8,,(4,1) = pit1,0— Dipi-
The following lemma is a computational result.

Lemma 2.6. (i) Let | € {1,2}. Then 65(i,1) < 60 for p;3; < 6450.

(id) Let 1 € {1,3}. Then d4(i,1) < 270 for p;ay < 1.1-107 except when (p; a1, pit1.41) €
{(7856441,7856713), (10087201, 10087481), (3358151, 3358423),
(5927759, 5928031), (9287659, 9287939) }.

3. NEWTON POLYGONS

Let f(r) = Y " ya;27 € Z[z] with aga,, # 0 and p be a prime. Let S be the
following set of points in the extended plane:

S = {(07 V(am»’ (17 V(am—l))7 (27 V(am—Z))> T (m -1, V(al))’ (mv V(CLO))}'

Consider the lower edges along the convex hull of these points. The left-most endpoint
is (0,v(a,,)) and the right-most endpoint is (m, v(ap)). The endpoints of each edge
belong to S and the slopes of the edges increase from left to right. When referring
to the edges of a Newton polygon, we shall not allow two different edges to have the
same slope. The polygonal path formed by these edges is called the Newton polygon
of f(x) with respect to the prime p and we denote it by N P,(f). The end points of the
edges on N P,(f) are called the vertices of NP,(f). We define the Newton function of
f with respect to the prime p as the real function f,(x) on the interval [0, m] which
has the polygonal path formed by these edges as its graph. Hence f,(i) = v(am—;)
for i = 0,m and at all points ¢ such that (i, v(amn—;)) is a vertex of NP,(f). We need
the following result which is a refinement of a lemma due to Filaseta [Fil95, Lemma
2]. This was proved in [ShTil0, Lemma 2.13].

Lemma 3.1. Let k,m and r be integers with m > 2k > 0. Let g(x) = 37" (b2’ €
Z[z] and let p be a prime such that p t b,,. Denote the Newton function of g(z)
with respect to p by g,(z). Let ag,aq,...,an be integers with p { aga,,. Put f(x) =
>oigabia? € Zlx]. If go(k) > 1 and g,(m) — gy,(m — k) < r+1, then f(x) cannot
have a factor of degree k.

As in [ShTil0, Corollary 2.14], Lemma 3.1 implies the above result of Filaseta
where the condition |aga,,| = 1 is replaced by p t aga,,.

Corollary 3.2. Let I, k,m be integers with m > 2k > 2l > 0. Suppose g(z) =
Z;n:[] bjx? € Zlx] and p be a prime such that p{ by, and p|b; for 0 < j <m—1—1 and
the right most edge of the N P,(g) has slope < % Then for any integers ag, aq, ..., an
with p{ agap, the polynomial f(x) = 3 7" a;bjx’ cannot have a factor with degree in

1+1,K].
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Proof. Since p|b; for 0 < j < m — 1 — 1, we have g,(K) > 0 for K € [l +1,k|. Let
(m1, gp(m1)) be the starting point of the rightmost edge of NP,(g). Then
L gl —glm) 1
m-—mq m—my k
giving my; < m—k < m—K for K < k. Hence for K € [I+1,k], (m—K, g,(m—K)) lie
on the rightmost edge implying m=gn=K) = < . Thus g,(m)—g,(m—K) < 1.

K
Now we apply Lemma 3.1 with » = 0 to get the assertion. 0

Unless otherwise mentioned, we always take [ = k — 1 while using Corollary 3.2.
Next we need the following result generalizing [L.aSh09, Lemma 1] where the case
u = —1 was proved.

Lemma 3.3. Let u € {—1,0} and 1 <k < 5. Suppose there is a prime p satisfying
p>d,p>min(2k,d(d — 1))

and
() T+ wtn =), pt[](+ @+ ) ptage.

Then G(x) has no factor of degree k and G(x%) does not have a factor of degree in
[dk —d + 1, dk].

Proof. We use Corollary 3.2. We take (m,k,l) to be (n,k,k — 1) for G(x) and
(dn,dk,d(k — 1)) for G(z?). Let

Aj=(a+ (u+1)d) - (a+ (u+j)d).
It suffices to show that

A 1
(5) gbj:yp( ;) — for1<j<n.

J
Let jo > 1 be the minimum j such that p|(a+(u+j)d) and we write a+(u+jo)d = plo.
Then jo > k since p 1 Ay. Note that jo < p. Further 1 <y < d otherwise lo > d + 1
and p < plp —pd = a+ (u+ jo— p)d < a+ud < d < p, a contradiction. Also
p(d—1) > ply = a+ (u+jo)d > a+ (u+ k + 1)d. We may restrict to those j such
that o+ (u+ j)d = pl for some [. Then (j — jo)d = p(l — ly) implying d|(I — ly) since
ged(p, d) = 1. Writing [ = Iy + sd, we get j = jo + ps. Note that if p|(a + (u + i)d),
then a + (u +1i)d = p(lp + rd) for some r > 0. Hence we have

(6) vp(A;) = vp((plo)(p(lo + ) - - - (plo + sd)) = s + 1+ vy (lo(lo + d) - - - (lo + s))

for some integer s > 0. Further we may suppose that s > 0 otherwise the assertion
follows since p > d > [y and jo > k. We consider two cases.

o

Case I: Assume that s < p. Then p divides at most one term of {lp+id : 0 <1i < s}

and we obtain from (6) and lo + sd < (s +1)d < p? that ¢; < ===, Thus ¢; < ;

if s(p —k) > ksince jo—k+s(p—k)—k>1+s(p—Fk)—k. If p> 2k, then
s(p — k) > k. Thus we may suppose that p < 2k. Then p > d(d — 1). Since
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p(d—1) > a+ (u+ k+ 1)d, we obtain s(p — k) > k if s > d — 1. We may suppose

s < d—2. Then ly+sd < d—1+(d—2)d < p and therefore ¢; = jjizl)s < k+1f(rkl+1)s < %

Case II: Let s > p. Let o < s be such that v,(ly + rod) is maximal. Then
log(lp + sd) s
+ .
logp p—1

We have p > d+ 1. This with Iy < d —1 < p < s imply log(ly + sd) <logs(d+1) =
log s + log(d + 1) < log s + log p. Hence

Vp(A)) < s+ 1+ v,(log+rod) + vp(1rol(s — 1)) < s+ 1+

log s
log p

Since % = j‘ﬁTps > 1+ £s, it is enough to show that

+ 1

(A)<S+1+pi+

P 1 1 log s
>1+—+- .
k= + —1+ +slogp

Since s > p, the right hand side of the above inequality is at most 1 + jﬁ + % and
therefore it suffices to show

1 2 p
7 14+ —— < =,
(7) M
Let p > 2k. Then p > 2k + 1 > k + 2 and the left hand side of (7) is at most
1 2 2 k+2 _p
1+ — <1+ - < £
T T w1 TR T TR S

Thus we may assume that p < 2k. Then p > d(d — 1). Further d > 3 since
pd—1) > a+ (u+k+ 1)d and p < 2k. Therefore the left hand side of (7) is
at most

3 1
R S S Y )

The following corollary easily follows from Lemma 3.3.
Corollary 3.4. Let u € {0,—1} and n > 2k > 0. Suppose that P(aga,) < d and
Plla+dlu+n—k+1))---(a+dlu+n))>du+k+1).

Then Gy(z) does not have a factor of degree k and G,(z%) do not have a factor of
degree in {dk,dk — 1,...,dk —d+1}.

4. PROOF OF THEOREM 4

Let k > 2,n > 4k and 2 t n. Assume that P(n(n+4)---(n+4(k—1))) < 4(k+1).
Let

Sy ={m:Pim(m+4)) < M}.



8 SHANTA LAISHRAM AND T. N. SHOREY

The set Sy for M < 31 is given in [Leh64] and for M = 100 in [Najl0]. In fact,
m = x — 2 with x listed in the table [Naj10] and m = N — 4 for N listed in [Leh64,
Table ITIA].

Let & = 2. Then P(n(n + 4)) < 11 implying n € Sy;. Since n > 8, we have
n € {11,21,45,77,121}.

Let 3 < k < 8. Since w(A(n,4,k)) < m(4k + 3), there are at least k — m(4k + 3) +
m(31) > [%] terms n-+4i such that P(n+4:) < 31. Therefore there is some ¢ such that
P((n+4i)(n+4(i+1))) < 31. Then n+4i = m € Ss; for some 0 < i < k—2. For each
0 <i < k, we check that P((m—4i)(m—4(i—1))---m(m+4)--- (m+4(k—1—1))) >
4(k + 1) except when k = 3,m = 117,i = 0. Therefore except for k = 3,n = 117, we
have P(A(n,4,k)) > 4(k+1). Thus k£ > 9.

Let 9 < k < 67. We observe that k — m(4k + 3) + 7(100) > [£]. Hence there
is some iy with 0 < ig < k — 2 such that P((n + 4io)(n + 4(ip + 1))) < 100. Then
n 4 4ip = m € Sygo. Suppose m > 107. We check that P([];_,(m — 4i)) > 280 and
P([T, (m+4+47)) > 280 for each m € Sygo and m > 107. Thus P([]}Zy (n+4i) > 280
implying the assertion when n + 4i > 107. Thus we can assume that m < 107.

Then n < n + 4i, < 107. We compute that P([5_,(n + 4i)) > 280 except when
8

n € {465,469,473,885,1513}. For these values of n, we see that P(H(n + 4i)) > 52

which is > 4(k + 1) for 9 < k < 12. Further for these values of n, we also have
P(T1:2,(n + 4i)) > 280 which is > 4(k + 1) for 13 < k < 67.

Thus we may suppose that k£ > 67. Since P(A(n,4,k)) < n, there is a prime
piag such that pay < n—4 <n <n+4k—-1) < n+4k < piy14;. Hence
Piv14s — Diag > 4(k+1). Let n < 1.1-10". By Lemma 2.6, we can assume that
ke {67, 68, 69} and Dial S n—4<n< n—|—4(k:—1) < n+4k S Di+1,4, for (pi,4,l;pi+1,4,l)
listed in Lemma 2.6. For such values of n, we check that that P(Hfzo(n +4i)) > 280.
Hence we can assume that n > 1.1-107.

Since P(A(n,4,k)) < 4k + 3, we have w(A(n,4,k)) < m(4k + 3) — 1. We continue
like [LaSh09, Section 3] with d = 4,¢t = w(4k + 3) — 1 to obtain

=)
(5) ns<@—nq1¢WQ

p<pi

for every [ > 1 where

Lo(p) = {min(O, hp(k+1—m(4k)) — >, | p_ulj) it ptd

(k= 1)) i pld
with h, > 0 such that [2%] <k-+1-—m(4k+3) < [ZL]. Also

3

(9) n < ((k— 1)!2_V2<(k_1);))m |
Taking [ = 3 in (8), we find that n < 1.1 - 107 when k < 400. Thus k > 400.
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Since n > 1.1 - 107, we further have n > 138 - 4k by Lemma 2.5. Write n = v - 4k
with v > vy := 138. Now we continue as in the last paragraph of [LaSh09, pp. 433]
to obtain

41 -4k 1.2762
log(vg - 8-¢e) < 08 (v - 4k) <1 76 )

log(4k + 3) N log(4k + 3)

The right hand side of the above inequality is a decreasing function of k and the
inequality does not hold at £ = 401. This is a contradiction. 0

5. PROOF OF G, 1o (2%) NOT HAVING A FACTOR OF DEGREE > 4

Let d =3, a € {1,2} and u € {0, —1}. Tt suffices to show Gy a (2°) does not have
a factor of degree in {3k,3k — 1,3k — 2} for 2 < k < §. By Corollary 3.4, we may
assume that P(T]52) (o4 3(u+n — 1)) < 3(u+ k4 1). Since n > 2k, by Lemma 2.1,
we have u = 0 and 3k < P(HJ “o(a+3(n—3))) < 3(k +1) except when k = 2 and
a+3u+n—k+1) =125

Let k = 2 and a+3(u+n—k+1) = 125. Then a = 2 and (u,n) € {(—1,43), (0,42)}.
As shown in the last part of Section 7.2, the breaks of Newton polygon of G, +%(563)
with respect top =2 are 0 < 32-3<40-3 <433 = 3n when u = —1,n = 43 and
0<32-3<40-3<42-3=3n when u = 0,n =42. Further the minimum slope(slope
of the left most edge) is (1 + 55) and the maximum slope (slope of the right most
edge) is % and 3 when (u,n) = (—1,43),(0,42), respectively. Hence by Lemma 3.1
with r = L%J, t € {4,5,6}, the polynomials G_H%(x?’) does not have factor of degree
t € {4,6}. Hence G_H%(x?’) may have a factor of degree 5 when n = 43 and G%(:L'3)
may have factor of degree t € {4,5,6} when n = 42.

Therefore we now suppose that o+ 3(u+n —k+1) # 125 when k£ = 2. By Lemma

3.3, we may restrict to those k such that P(Hf;ol(oz +3(n—17))) = a+ 3k. Thus
a=1if kiseven and a =2 if k is odd. Let
k

R(k)=A{p: p| H(a + 3i), p prime}

i=1
where a@ = 1 if k is even and o = 2 if k£ is odd. Again by Lemma 3.3, we may suppose
that p| [T;Z5 (e + 3(n — )) imply p € R(k). Thus w([[i=5(c +3(n — j))) < |R(k)|.
Now
R(E)| = m(3k +1) + m (L) — 1 if k is even
| me(Bk+2) + m(3E2) — 1 if ks odd

where m(z) = [{p <z : p=l(mod 3)}| for [ € {1,2}.

Let k = 2. Then p|(1 + 3n)(1 + 3n — 3) imply p € {2,7}. Hence 7% — 2° = +3. If
b > 3, we get a contradiction modulo 8. Hence b < 2 and we have the only solution
7—4=3. Hence 1 +3n="7,14+3n — 3 =4 giving n = 2. This is not possible since
n > 2k.
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Thus k£ > 3. By Lemma 2.6, for £ > 20, we get P(Hf:_()l(m+3i)) > m if m < 6450.
Further for 3 < k < 20, we check that P(Hi:ol(m + 3i)) > min(m,3(k + 1)) for
3k < m < 6450,3 t m except when k = 3, m = 22. Thus for £ > 3, we may assume
by Corollary 3.4 that either a+3(n —k+1) > 6450 or k =3, +3(n—k+1) = 22.
Since o« = 2 when k is odd, we obtain o + 3(n — k + 1) > 6450. Let 3 < k < 8.
After deleting terms divisible by p € R(k),p > 7, we are left with at least 2 indices
0 <y < iy < 7such that p|(a+3(n—1i1))(a+3(n—1iz)) imply p € {2,5}. By putting
X = a+3(n—iy), we obtain from Lemma 2.4 that X < 625. But X = a+3(n—is) >
a4+ 3(n — k4 1) > 6450 which is a contradiction.

Thus we may suppose that & > 9 and o + 3(n — k + 1) > 6450. Further we
may also assume that o + 3(n — k + 1) > 10.6 - 3k by Lemma 2.5. By taking
m=a+3(n—k+1),t=|R(k)| in [LaSh09, (4)], we obtain from [LaSh09, (6)] that
a+3(n—k+1) <4480 for 9 < k < 180. Thus we may suppose that & > 180. We
proved in the last para of [LaSh12, Section 3(A), pp. 62] that w([]*-) (m + 3i)) >
7(3k) for k > 180 when m > 3k and 3 { m. Therefore w(Hf;é(a +3(n—yj))) >
m(3k). But w(3k) = m1(3k) + m2(3k) + 1 > |R(k)| since m(3k + 1) — 1 < m(3k) and
mo(3k 4+ 2) — 1 < my(3k). This is a contradiction. O

6. PROOF OF G, a(z*) NOT HAVING A FACTOR OF DEGREE > 5

Let d = 4,u € {0,—1} and a € {1,3}. Tt suffices to show that Gy, e (z*) does
not have a factor of degree in {4k,4k — 1,4k — 2,4k — 3} for 2 < k < . Suppose
not. By Corollary 3.4, we may assume that P([]) (o + 4(u +n — 1)) < 4(k + 1).
Then by Theorem 4, we obtain k = 2, + 4(u+n — k + 1) € {11,21,45,77,121}
and k = 3, +4(u+n —k+ 1) = 117. For the values of n,u,a given by these
values, we obtain from Lemma 3.3 that Gu+%(x4) do not have a factor of degree in

{4k, 4k — 1,4k — 2, 4k — 3}. O

7. PROOF OF THEOREMS 2 AND 3

We observe that if G(2?) has no factor of degree > I, I < %, then G(z) has no
factor of degree > é. Recall that by a factor, we meant the factor of degree less than
or equal to half of total degree and its co factor is the one whose degree is more than
half of the total degree. If G(x9) has a factor of degree d only, then G(z) may have
a linear factor but no other factor of degree > 2. Further if G'a (2”) has a quadratic
factor only or a factor of degree 5 only, then G%(x) will be irreducible. Hence if the

assertion of Theorems 2 and 3 are proved for G(z¢), then the assertion of Theorems
2 and 3 follow.

Therefore we prove the assertions of Theorems 2 and 3 for G(2?). From Sections

5 and 6, we may assume that G(z?) has a factor of degree in {1,...,d} except when

q= —%, n = 43 where G,(2*) may have a factor of degree 5 and ¢ = %, n = 42 where



G,(2%) may have a factor of degree in {4,5,6}. Then by Lemma 3.3, we may suppose

that prime divisors of a + d(u + n) are given by
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d| v |a|pla+dlut+n)|d| v |a|pla+du+n)
31—-1]1 2 41 —-1|1 3
3|1 —-112 2 41-113 3
310 |1 2 410 |1 3,5
310 (2 2,5 410 |3 3,7

7.1. Proof of Theorem 3: Let d = 4. We take p to be the smallest prime dividing
a+4(u+n). Thus p = 3 unless a +4(u+n) = 1+ 4n = 5° for some positive integer
b where we take p = 5 and a + 4(u +n) = 3 + 4n = 7°¢ for some positive integer ¢
where we take p = 7. We use Corollary 3.2. Taking m = 4n, k € {1,2,3,4},l =k—1,
we observe that the conditions of Corollary 3.2 are satisfied. We follow the notations
as in the proof of Lemma 3.3. Let

Aj=(a+(ut+1)d) - (a+ (u+7)d).

We show that

(10) ;= 22
J

<1 for1<j3j<n

and

(11)

This with Corollary 3.2 with p = 5 and p = 7 according as (u,a) = (0,1) and
(u, ) = (0, 3) respectively and p = 3 if u = —1 will imply Theorem 3.

¢; <1 for 1 <j<n whenp=3,(ua«a)e{(-1,1),(0,3)}.

We follow as in the proof of Lemma 3.3. We have j, [y given by

u |a|pljollo] w [a|p|jo]l
1133 |3]|—-1[3[|3|1]1
0 [113]2(3] 01[3[3]3]5
O [1|5]1 |1} 0 |3|7|]1]|1

We find that (10) and (11) are valid for 1 < j < 3. Let j > 3 and we now show that
¢; < 1for j > 3. We can restrict to j such that p|(aw+4(u+ j)) and such j are given
by j = jo + ps with s > 0. As in the proof of Lemma 3.3, it suffices to show

I/p<Aj) =s+1+ l/p(lo(lo + 4) s (lg + 48)) < j(] + ps.

This is true for 1 < s < 3. For s > 4, we find that the left hand side of the above
inequality is at most s + 1 + 1,((lp + 4s)!) — 1 since there is at least one multiple
of p dividing (lp + 4s)! but not dividing ly(lp + 4) - - - (lp + 4s). This together with
vp(r!) < 7, p =3 and o < jo imply

lo+4 lo+4 l
0+ 8§s—|— 0+ S=—0+3$<j0+ps.
p—1 2 2

Vp(Aj) < s+
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7.2. Proof of Theorem 2: Let d = 3. First assume that u = 0, « = 2 and 5|(2+3n).
We consider the polynomial G 2 (x3). We use Corollary 3.2 with p = 5 to show that
G%(m?’) does not have a factor with degree in {1,2}. As in the proof of Lemma 3.3,
it suffices to show
2
vs(5- 8-+ (24 35)) < 3‘7

We obtain by USiIlg Lemma 2.2 that
J < ]

5

Hence G%(x?’) does not have a factor with degree in {1,2} in this case.

vs(5-8--(2+35)) <ws((2+35)!) <

From now on, we may suppose that 51 (2 + 3n) when v = 0, = 2. Therefore
for each u € {0,—1} and for each a € {1,2}, we have a + 3(u + n) = 2% for some
integer a > 1. We take p = 2 and v = 1, from now onwards in this section. We may
assume by section 5 that G(x?) has a factor of degree in {1,2,3}. Let n =0if a =1
and 1 if a = 2. From o + 3(u +n) = 2% we have a = 2s + 7 for some s > 0 and
n=—u+2"1+2%4 .- +2267Y) Put ng = 0,n, = n and

(12) ng = 2722670 42267 4 92267y for 1 < <5 — 1.
Then for 1 <i < s—1, we have
2(s—4)+n—1

n;—1= 271(22(5*1) 4 22(5*2) et 22(3*i+1)) 4 Z 9J
§=0
and hence by Lemma 2.2, we have
(13) v((ni— 1)) =n—1—-(—-1+2(s—1)+n) =n,—a+1i.
Also
n—=s ifu=0a=1

14 v(iln —1)!) = ’
(14) (( ) {n —s—1 otherwise.
Let 1 < j < 2" for some h > 0. Write j — 1 = jo +2j; + - - -+ 2""1j,_; in base 2 with
0 <j,<1for0<u<h. Note that ZZ;(I) Ju < h—1. Hence by Lemma 2.2, we have

(15) G- 1)) =j—1-S Ju2j—1—(h—1)=j—h

For1 <i<n-—1,ifa+3(u+1i)=2"t with 21 ¢, then from 3(n—1i) = 2"(2*7" —1t),
we obtain v(a+ 3(u + 1)) = r = v(n — 7). Therefore
Z/(H(a—l—B(u—i—i)) =a+v((n—0)forl1<l<n-—1.
i=l
We now consider G(2%) with a; = 1. Recall that G' = Gy e with (u,a) € {(=1,1),
(—1,2),(0,1),(0,2)}. Then the Newton Polygon NP,(G) of G(2?) is given by the
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lower edges along the convex hull of the following points
{(0,0),(3,a),(3-2,a), -, BlLa+v((l—1), - ,Bn,a+v((n—1)!))}

in the extended plane. Let a = 2s+n < 5. Thena =1, (u,n) € {(-1,2),(—1,6),(0,5)}
ora =2,(u,n) € {(-1,3),(0,2),(—1,11),(0,10)}. For these values of (a,u,n), we
check that assertion of the Theorem 2 holds by using Lemma 3.1. For example,
when (a,u,n) = (2,—1,11), we find that the breaks of NP (G(z?)) are given by
0 < 3-8 < 3-11 and the minimum slope is % and the maximum slope is 2. For

9

t € {1,2,3}, taking r = \_%J in Lemma 3.1, we obtain that G%z(x?’) does not have
a factor of degree t and hence irreducible. Similarly we use Lemma 3.1 to get the

assertion of Theorem 2 in the remaining cases.

Hence from now on, we assume that a > 6. If (0,0) and (3n,a + v((n — 1)!)) are
the only lattice points on the Newton Polygon N P»(G), then from (14), the unique
slope is

a+y((n—1)!)<28—|—n—|—n—3_1 25+2n 1 a+n

~1y <2
3n 3n 3 2-3n 3 2:3n "~ 4-3
since n > % > 2(a+1) > 2(a+n) for a > 6. Also the unique slope is > % Then
by using Lemma 3.1 for ¢ € {1,2,3} with r = |£]|, we obtain G(z%) is irreducible.
Hence we may suppose that there is a lattice point of N P,(G) with x co-ordinate
lying in (0,3n). We prove that the breaks of NP,(G) are given by 0 = 3ny < 3n; <
3ng < -+ < 3ng_o < 3ng =3nif (u,a) = (=1,1)) and 0 = 3np < 3ny < 3ny < -+ <
3ns_1 < 3ns = 3n otherwise.

First we show that (3n1,a + v((ny — 1)!)) is a lattice point on N P»(G). It suffices
to show

(i) D b= for ] <4 <y

7 1

(ZZ) a+v((n—1)!) = a+v((n1—1)!) for 2 <1 < s.

ny ni

(i77) AG=DY o adl(n=DY g ) < < myyq, 1< 1< s

[ ni

(i) : Let 1 <4 < mny =22 Then from (15) and (13),

ni{a+v((i—1)N} —i{a+v((n, — 1)}
>n{a+i—a+2}—i{a+n —a+1}=2n —i>0.

(#7) : For 2 <[ < s, we have from (15)

at+v(m -1 a+v((m—=1) m+l ni+1 I 1>0
n; ny ooy noom om

since ny = 27(22071 4 220572) ... 4 22(-0) < 22— = I,

(iii) : Let 1 <1 < s. Writed = n;+j with 1 < j < nypy—ny = 247272, Since v(u) =
v(ng4u) for any 1 < u < ngyq—ng, we get v((i—1)!) = v((n— 1)) +v(n) +v((G—1)1).
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This with (12), (13) and (15) imply

atv((@—1) a+v((n—1) >nl+l+j+2_n1+1

1 ny - n;+J nq

1 ‘ 1
= +j)((l +2)ny —ny —j5)) > m{(z + 2 — ) > 0

since ny g = 27(22671 4. 4 220670 4 92(s=1=1)y < (] 4 1)225+772 < (] 4 2)n,. Hence
the minimum slope is 3 (1 + ;).

Let 1 <1 < s—2. Next we show that if (3n;,a + v((n; — 1)!)) is a lattice point on
NPy (G), then (3ny41,a 4+ v((ns1 — 1)!)) is a lattice point on NP (G). Assume that
(3n;,a+v((n; —1)!)) is a point on N Po(G). If (3n,a+v((n—1)!)) is the next lattice
point, then from (12)-(14), we see that slope of the rightmost edge is

v((n—1"1—=v((n,— 1)) LN (ng—a+1)

s+n—1 5
<
3(n —mny) - 3(n —ny) +

1
3 " 3n—n) " 4-3

<

since1§l<s—2andn—n122”2z<s;’$24(77—1—5—1) for s — 1 > 3. Observe

that ny; > 3 and the slope of the leftmost edge is %(1 + nil) We now apply Lemma

3.1 for k € {1,2,3} with » = |%]| to obtain G(2*) is irreducible. Thus we may
suppose that (3n,a + v((n — 1)!)) is not the next lattice point on NP5(G). To show
(3ny11,a + v((ni41 — 1)!)) is the next lattice point on N P(G), it suffices to show

(iv) v((nu =Y —v((m=1) o v((up=DY=v((u=1 ¢ 14 1 <o <s.

Ny —Ny n41—mn
(v) V((l_l)!)i:lrllf(nl_l)!) > V((”lelzll):zg(mfl)!) for ny < i < nupr,l <u<s.

The assertion (iv) follows from (13) and by observing (u—1)22s=!=1+1 > 21(22(s=1=1) ¢
-+« 4+ 2%57w)) The assertion (v) follows like (iii) above by observing that if i = n,, + j
with 1 < j < nyp1 — g = 27272 and (u — [ + 2)226= =0+ 5 on(26=1=) 4 ... 4
2267wy =y — iy >y 5§ —

Thus we need to check for lattice points after (3ns_o, a+v((ns—2—1)!)) on NP(G).
Recall that ny_o =n+u — 27— 22" and v(n — i) = v(a + 3(u+1)) for i > 1. For
(u,) = (—1,1), we find that n,_s = n — 6 and check using v(n —i) = v(a+3(u-+1))
for i > 1 that (3n,a+v((n—1)!))) is the lattice point after (3ns_o,a+v((ns,_o—1)!))
and hence the maximum slope is 7. For (u, ) = (—1,2), we find that n,_, =n —3
and (3(n — 3),a + v((n —3)!)) and (3n,a + v((n — 1)!))) are the lattice points after
(3n5-2,a + v((ns—s — 1)!)) and the maximum slope is 3. For (u,a) = (0,2), we find
that ng_y =n—2and (3(n—2),a+v((n—3)!)) and (3n,a+v((n—1)!))) are the lattice
points after (3ns_, a+v((ns_2—1)!)) and the maximum slope is 3. For (u, o) = (0, 1),
we find that ns_; =n —1 and (3(n —1),a+ v((n — 3)!)) and (3n,a + v((n — 1)!)))
are the lattice points after (3ns_s,a + v((ns_o — 1)!)) and the maximum slope is %
Recall that in all these cases, the slope of the leftmost edge is (1 + n%>
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We now use Lemma 3.1 for k € {1,2,3} with r = |£| to obtain that G—Tl(x:ﬂ)

and G -2 (z3) are irreducible. Further G 1 () does not have a factor of degree 1 and

G%(x?’) do not have a factor of degree 1 or 3. O

8. PROOF OF THEOREM 1

1 1
We first check that Lé“)(x) and L;4)(x4) are not irreducible and their factor-

izations are given in the statement of Theorem 1. Hence we assume from now
on that n # 2 when ¢ = %. We observe that the irreducibility of L%q)(xd) im-
plies the irreducibility of L' (x). Hence we show that LY (2) is irreducible. For
(g.n) € {(—3,2),(—3,43),(3,42)}, we check that L9 (23) are irreducible. Hence

from Theorems 2 and 3, we need to consider only the following cases:

1
:—1 3 :2(1
7= 3 +on
2 b
¢=13,2+3n=2""0a>0b>0
1
(16) q:—1,3+4(n—1):3a
1
=1 4n = 35" a > 0,b>0
3
¢=73+dn=T"

Further it suffices to show that n!LﬁfI)(:vd) does not have a factor of degree d and
moreover for ¢ € {3, 2}, n! L (23) do not have a quadratic or a cubic factor. In fact

we show that it does not have a factor of degree < d. First we prove

Lemma 8.1. Forn > 1 given by (16), there is a prime p|n such that
ptdla+ (u—1)d)(a+ ud)(a+ (u+1)d)
except when q = %,n € {2,6,10,16} and q = %L,n € {6,20}.

Proof. Let n > 1 be given by (16). Suppose that p|n implies p|d(a + (u — 1)d)(a +
ud) (o + (u+ 1)d).

Let g = % Then p|n implies p € {2,3}. Writing n = 2"3%, we have 2* = 14 3n =
142735 implying r = 0, 22 —3'** = 1. By Lemma 2.3, we have 223 = 1 or 2¢ = 4
and 37 = 3 giving n = 1 which is not possible.

Let ¢ = 2. Then p|n implies p € {2,3,5}. Writing n = 273°5", we have 2°5" =
2+43n=2+2"31"55 Ifa =0, thenr =t =0 and 5° = 2+ 3. By Lemma 2.3, we
have 5 = 2 + 3 giving n = 1 which is not possible. Hence a # 0. If b = 0, then a > 1
giving r = 1, 2% = 24+2- 315! or 2971 = 1431755, By Lemma 2.3, we get solutions
22=1+3and 2 =1+ 3-5 giving n € {2,10}. Hence assume that ab # 0. Then
t=0and 295° =24+ 23! If a = 1, then 2- 5% = 2 + 273'F% or 5° = 1 4+ 2"—13!+s,
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By Lemma 2.3, the solution 5% = 1 + 23 .3 gives n = 16. Finally let a > 1. Then
u =1 and we get 295° = 24+ 2.3 or 29715 = 14 3. By Lemma 2.3, its solution
2.5=1+ 32 gives n = 6.

Let ¢ = —;. Then p|n implies p € {2,3,5}. Writing n = 273°5", we have 3" =
4n—1 = 2277355 — 1 implying v = 0 and 22*75' — 3% = 1. By Lemma 2.3, its solution
is 22 — 3! = 1 which gives n = 1. This is not possible.

Let ¢ = ;. Then p|n implies p € {2,3,5}. Writing n = 273°5", we have 375" =
1+4n =1+422t73%5!, Let a = 0. Then t = 0 and 5° = 1+ 22*73% and by Lemma 2.3,
its solutions 5 = 1 + 22 and 52 =1+ 2% -3 give n = 6 since n > 1. Let b = 0. Then
s =0,3% =14 2275 and by Lemma 2.3, its solutions 32 =14+ 2% and 3* =1+ 2*-5
give n = 20 since n # 2. Finally let ab # 0. Then s =t = 0,3%5" = 1 + 22%" and by
Lemma 2.3, there are no solutions.

Let ¢ = 2. Then pln implies p € {2,3,7}. Writing n = 273°7", we have 7% =
34+4n = 3+ 227357 implying s = t = 0 and 7% = 3 + 22", By Lemma 2.3, its
solution 7 = 3 + 22 imply n = 1 which is not possible. O

For n € {2,6,10,16} if ¢ = 2 and n € {6,20} if ¢ = 1, we check that L' (24
are irreducible. Hence we may suppose that n ¢ {2,6,10,16} if ¢ = % and n ¢
{2,6,20} if ¢ = 7. Then by Lemma 8.1, we find that there is a prime p|n such that
ptd(a+ (u—1)d)(a+ud)(a+ (u+1)d). Let p be largest with this property. Thus
we always have p > 5 > d. We use Corollary 3.2 with £ = d,l = 0. Since p[(’;) for
1 <j<pandp|l[[’(a+ (u+1i)d), the conditions of Corollary 3.2 are satisfied. It

suffices to show

AN,

Vp(H(a—l—(u—l—z‘)d)—up((ﬁ)) <%:j for 1 <j<n.

=0 J

Observe that p divides at most one of a+(u+i)d when 1 < i < p and a+(u+p—1)d <
pd < p*. By using p|(?) for 1 < j < p, we obtain that the left hand side of above
inequality is < 0 for 1 < 5 < p and hence the assertion follows for 1 < 5 < p. Let
j > p. Then there is at least one multiple of p dividing (a+ (u+j)d)! but not dividing

!_ola+ (u+1)d). Therefore by using Lemma 2.2, we obtain

by using Lemma 2.2 and since p > d > a. U
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