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PERFECT POWERS IN ARITHMETIC PROGRESSION

SHANTA LAISHRAM AND T. N. SHOREY

Abstract. The conjecture of Masser-Oesterlé, popularly known as abc-conjecture
have many consequences. We use an explicit version due to Baker to solve the
equation

n(n+ d) · · · (n+ (k − 1)d) = byl

in positive integer variables n, d, k, b, y, l such that b square free with the largest
prime divisor of b at most k, k ≥ 2, l ≥ 2 and gcd(n, d) = 1.

1. Introduction

Let n, d, k, b, y be positive integers such that b is square free with P (b) ≤ k, k ≥
2, l ≥ 2 and gcd(n, d) = 1. Here P (m) denotes the largest prime divisor of m with
the convention P (1) = 1. We consider the equation

(1) n(n+ d) · · · (n+ (k − 1)d) = byl

in variables n, d, k, b, y, l. If k = 2, we observe that (4) has infinitely many solu-
tions. Therefore we always suppose that k ≥ 3. It has been conjectured (see [Tij88],
[SaSh05]) that

Conjecture 1.1. Equation (1) implies that (k, `) ∈ {(3, 3), (4, 2), (3, 2)}.

It is known that (1) has infinitely many solutions when (k, `) ∈ {(3, 2), (3, 3)(4, 2)}.
A weaker version of Conjecture 1.1 is the following conjecture due to Erdős.

Conjecture 1.2. Equation (1) implies that k is bounded by an absolute constant.

For an account of results on (1), we refer to Shorey [Sho02b] and [Sho06].

The well known conjecture of Masser-Oesterle states that

Conjecture 1.3. Oesterlé and Masser’s abc-conjecture: For any given ε > 0
there exists a computable constant cε depending only on ε such that if

a+ b = c(2)

where a, b and c are coprime positive integers, then

c ≤ cε

∏
p|abc

p

1+ε

.
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It is known as abc-conjecture; the name derives from the usage of letters a, b, c in
(2). For any positive integer i > 1, let N = N(i) =

∏
p|i p be the radical of i, P (i)

be the greatest prime factor of i and ω(i) be the number of distinct prime factors of
i and we put N(1) = 1, P (1) = 1 and ω(1) = 0.

It has been shown in Elkies [Elk91] and Granville and Tucker [GrTu02, (13)] that
abc-conjecture is equivalent to the following:

Conjecture 1.4. Let F (x, y) ∈ Z[x, y] be a homogenous polynomial. Assume that F
has pairwise non-proportional linear factors in its factorisation over C. Given ε > 0,
there exists a computable constant κε depending only on F and ε such that if m and
n are coprime integers, then∏

p|F (m,n)

p ≥ κε (max{|m|, |n|})deg(F )−2−ε .

Shorey [Sho99] showed that abc-conjecture implies Conjecture 1.2 for ` ≥ 4 using
d ≥ kc1 log log k. Granville (unpublished) gave a proof of the preceding result without
using the inequality d ≥ kc1 log log k. Furthermore his proof is also valid for ` = 2, 3.

Theorem 1. The abc−conjecture implies Conjecture (1.2).

The proof was first published in the Master’s Thesis of first author [Lai04]. We
include the proof in this paper to have a published literature. This is given in Section
6. We would like to thank Professor A. Granville for allowing us to publish his proof.

An explicit version of Conjecture 2 due to Baker [Bak94] is the following:

Conjecture 1.5. Explicit abc-conjecture: Let a, b and c be pairwise coprime
positive integers satisfying (2). Then

c <
6

5
N

(logN)ω

ω!

where N = N(abc) and ω = ω(N).

We observe that N = N(abc) ≥ 2 whenever a, b, c satisfy (2). We shall refer to
Conjecture 1.3 as abc−conjecture and Conjecture 1.5 as explicit abc−conjecture. Con-
jecture 1.5 implies the following explicit version of Conjecture 1.3 proved in [LaSh12].

Theorem 2. Assume Conjecture 1.5. Let a, b and c be pairwise coprime positive
integers satisfying (2) and N = N(abc). Then we have

c < N1+ 3
4 .(3)

Further for 0 < ε ≤ 3
4
, there exists an integer ωε depending only ε such that when

N = N(abc) ≥ Nε =
∏

p≤pωε
p, we have

c < κεN
1+ε
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where

κε =
6

5
√

2πmax(ω, ωε)
≤ 6

5
√

2πωε

with ω = ω(N). Here are some values of ε, ωε and Nε.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6460
Nε e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

Thus c < N2 which was conjectured in Granville and Tucker [GrTu02].

As a consequence of Theorem 2, we prove

Theorem 3. Assume Conjecture 1.5. Then the equation

n(n+ d) · · · (n+ (k − 1)d) = by`(4)

in integers n ≥ 1, d > 1, k ≥ 4, b ≥ 1, y ≥ 1, ` > 1 with gcd(n, d) = 1 and P (b) ≤ k
implies ` ≤ 7. Further k < e13006.2 when ` = 7.

We observe that e13006.2 < ee
9.52

. Theorem 3 is a considerable improvement of
Saradha [Sar12] where it is shown that (4) with k ≥ 8 implies that ` ≤ 29 and

further k ≤ 8, 32, 102, 107 and ee
280

according as ` = 29, ` ∈ {23, 19}, ` = 17, 13 and
` ∈ {11, 7}, respectively.

2. Notation and Preliminaries

For an integer i > 0, let pi denote the i−th prime. We always write p for a prime
number. For a real x > 0 and d ∈ Z, d ≥ 1, let

πd(x) =
∑

p≤x,p-d

1, π(x) = π1(x) =
∑
p≤x

1, Θ(x) =
∏
p≤x

p and θ(x) = log(Θ(x)).

We write log2 i for log(log i). Here we understand that log2 1 = −∞.

Lemma 2.1. We have

(i) π(x) ≤ x

log x

(
1 +

1.2762

log x

)
for x > 1.

(ii) pi ≥ i(log i+ log2 i− 1) for i ≥ 1
(iii) θ(pi) ≥ i(log i+ log2 i− 1.076869) for i ≥ 1
(iv) θ(x) < 1.000081x for x > 0

(v)
√

2πk(k
e
)ke

1
12k+1 ≤ k! ≤

√
2πk(k

e
)ke

1
12k .

The estimates (i) and (ii) are due to Dusart, see [Dus99b] and [Dus99a], respec-
tively. The estimate (iii) is [Rob83, Theorem 6]. For estimate (iv), see [Dus99b].
The estimate (v) is [Rob55, Theorem 6].
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3. Proof of Theorem 3

Let n, d, k, b, y be positive integers with n ≥ 1, d > 1, k ≥ 4, b ≥ 1, y ≥ 1,
gcd(n, d) = 1 and P (b) ≤ k. We consider the Diophantine equation

n(n+ d) · · · (n+ (k − 1)d) = by`.(5)

Observe that P (n(n+ d) · · · (n+ (k − 1)d)) > k by a result of Shorey and Tijdeman
[ShTi90] and hence P (y) > k and n + (k − 1)d ≥ (k + 1)`. For every 0 ≤ i < k, we
write

n+ id = AiX
`
i with P (Ai) ≤ k and (Xi,

∏
p≤k

p) = 1.

Without loss of generality, we may assume that k = 4 or k ≥ 5 is a prime which we
assume throughout in this section. We observe that (Ai, d) = 1 for 0 ≤ i < k and
(Xi, Xj) = 1. Let

S0 = {A0, A1, . . . , Ak−1}.

For every prime p ≤ k and p - d, let ip be such that ordp(Ai) =ordp(n+ id) ≤ordp(n+
ipd) for 0 ≤ i < k. For a S ⊂ S0, let

S ′ = S − {Aip : p ≤ k, p - d}.

Then |S ′| ≥ |S| − πd(k). By Sylvester-Erdős inequality(see [ErSe75, Lemma 2] for
example), we obtain ∏

Ai∈S′
Ai|(k − 1)!

∏
p|d

p−ordp((k−1)!).(6)

As a consequence, we have

Lemma 3.1. Let α, β ∈ R with α ≥ 1, β < 1 and eβ < α. Let

S1 := S1(α) := {Ai ∈ S0 : Ai ≤ αk}.

For

k ≥ max{
log( eα√

β
) + k log(αk)

log k

(
1 + 1.2762

log k

)
− log(αk)

log(eα) + β log
(
β
eα

) , exp(
1 + 1.2762

log k

1− β
)}(7)

we have |S1| > βk.

Proof. Let S = S0, s1 = |S1| and s2 = |S ′ − S1|. Then s2 ≥ k − π(k) − s1. We get
from (6) that

s1!

k−π(k)−s1∏
i=1

([αk + i]) ≤
∏
Ai∈S′

Ai ≤ (k − 1)!(8)

since elements of S ′ − S1 are distinct and the product on the left side is taken to be
1 if k − π(k) ≤ s1.
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Suppose s1 ≤ βk. If k−π(k) ≤ s1, then using Lemma 2.1 (i), we get (1−β) log k <
1 + 1.2762

log k
which is not possible by (7). Hence k − π(k) > s1. By using Lemma 2.1

(v), we obtain

(αk)k−π(k) <
(k − 1)!

s1!
(αk)s1 <


√

2π(k − 1)
(
k−1
e

)k−1
e

1
12(k−1) if s1 = 0√

k−1
s1

(
αke
s1

)s1 (
k−1
e

)k−1
if s1 > 0.

We check that the expression for s1 = 0 is less than that of s1 = 1 since α ≥ 1.
Observe that √

k − 1

s1

(
αke

s1

)s1

is an increasing function of s1 since s1 ≤ βk and eβ < α. This can be verified by
taking log of the above expression and differentiating it with respect to s1. Therefore

(αk)k−π(k) <

√
k − 1

βk

(
eα

β

)βk (
k − 1

e

)k−1

<

√
1

β

(
eα

β

)βk (
k

e

)k−1

implying

(eα)k
(
β

eα

)βk
<

eα√
β

(αk)π(k)−1.

Using Lemma 2.1 (i), we obtain

log(eα) + β log

(
β

eα

)
<

1

k
log(

eα√
β

) +
log(αk)

log k

(
1 +

1.2762

log k

)
− log(αk)

k
.

The right hand side of the above inequality is a decreasing function of k for k given
by (7). This can be verified by observing that logαk

log k
= 1 + logα

log k
and differentiating

1.2762+logα
log k

− log(αk)
k

with respect to k. This is a contradiction for k given by (7). �

Corollary 3.2. For k > 113, there exist 0 ≤ f < g < h < k with h− f ≤ 8 such that
max(Af , Ag, Ah) ≤ 4k.

Proof. By dividing [0, k − 1] into subintervals of the form [9i, 9(i + 1)), it suffices to
show S1(4) > 2([k

9
] + 1) where S1 is as defined in Lemma 3.1. Taking α = 4, β = 1

4
,

we obtain from Lemma 3.1 that for k ≥ 700, |S1(4)| > k
4
> 2([k

9
] + 1). Thus we may

suppose k < 700 and |S1(4)| ≤ 2([k
9
] + 1). For each prime k with 113 < k < 700,

taking α = 4 and βk = 2([k
9
] + 1) in Lemma 3.1, we get a contradiction from (8).

Therefore |S1(4)| > 2([k
9
] + 1) and the assertion follows. �

Given 0 ≤ f < g < h ≤ k − 1, we have

(h− f)AgX
`
g = (h− g)AfX

`
f + (g − f)AhX

`
h.(9)

Let λ =gcd(h − f, h − g, g − f) and write h − f = λw, h − g = λu, g − f = λv.
Rewriting h− f = h− g + g − f as

w = u+ v with gcd(u, v) = 1,
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(9) can be written as

wAgX
`
g = uAfX

`
f + vAhX

`
h.(10)

Let G = gcd(wAg, uAf , vAh),

r =
uAf
G

, s =
vAh
G

, t =
wAg
G

(11)

and we rewrite (10) as

tX`
g = rX`

f + sX`
h.(12)

Note that gcd(rX`
f , sX

`
h) = 1.

From now on, we assume explicit abc−conjecture. Given ε > 0, letN(rstXfXgXh) ≥
Nε which we assume from now on till the expression (18). By Theorem 2, we obtain

tX`
g < κεN(rstXfXgXh)

1+ε(13)

i.e.,

X`
g < κε

N(rst)1+ε(XfXgXh)
1+ε

t
.(14)

Here Nε = κε = 1 if ε > 3
4
. For ε = 3/4, by abuse of notation, we will be taking

either Nε = 1, κε = 1 or Nε = e37.1101, κε ≤ 6
5
√

28π
if N(rstXfXgXh) ≥ N 3

4
. We will be

taking ε = 3
4

for ` > 7 and ε ∈ { 5
12
, 1

3
} for ` = 7. We have from (13) that

rst(XfXgXh)
` < κ3

εN(rst)3(1+ε)(XfXgXh)
3(1+ε).

Putting X3 = XfXgXh, we obtain

X`−3(1+ε) < κεN(rst)
2
3

+ε = κεN(
uvwAfAgAh

G3
)
2
3

+ε.(15)

Again from (12), we have

rs(XfXh)
` ≤

(
rX`

f + sX`
h

2

)2

=
t2X2`

g

4

implying

XfXhXg ≤
(
t2

4rs

) 1
`

X3
g =

(
w2A2

g

4uvAfAh

) 1
`

X3
g .

Therefore we have from (14) that

X`
g < κε

N(rst)1+εX3+3ε
g

t

(
t2

4rs

) 1+ε
`

= κε
N(rst)1+εX3+3ε

g

(4rst)
1+ε
` t1−

3(1+ε)
`

(16)

i.e.,

X`−3(1+ε)
g < κε

N(rst)(1+ε)(1− 1
`
)

4
1+ε
` t1−

3(1+ε)
`

≤ N(rs)(1+ε)(1− 1
`
)N(t)ε+

2(1+ε)
`

4
1+ε
`

.(17)



PERFECT POWERS IN ARITHMETIC PROGRESSION 7

We also have from (17) that

X`−3(1+ε)
g < κε

N(
uvAfAh
G2 )(1+ε)(1− 1

`
)N(wAg

G
)ε+

2(1+ε)
`

4
1+ε
`

.(18)

Lemma 3.3. Let ` ≥ 11. Let S0 = {A0, A1, . . . , Ak−1} = {B0, B1, . . . , Bk−1} with
B0 ≤ B1 ≤ . . . ≤ Bk−1. Then

B0 ≤ B1 < B2 . . . < Bk−1.

In particular |S0| ≥ k − 1.

Proof. Suppose there exists 0 ≤ f < g < h < k with {f, g, h} = {i1, i2, i3} and

Ai1 = Ai2 = A and Ai3 ≤ A.

By (10) and (11), we see that max(Af , Ag, Ah) ≤ G and therefore r ≤ u < k, s ≤
v < k and t ≤ w < k. Since Xg > k, we get from the first inequality of (17) with
ε = 3

4
, Nε = κε = 1 that

k`−3(1+ε) < (rs)(1+ε)(1− 1
`
)tε+

2(1+ε)
` < k2+3ε

implying ` < 5 + 6ε = 5 + 9
2
. This is a contradiction since ` ≥ 11. Therefore either

Ai’s are distinct or if Ai = Aj = A, then Am > A for m /∈ {i, j} implying the
assertion. �

As a consequence, we have

Corollary 3.4. Let d be even and ` ≥ 11. Then k ≤ 14.

Proof. Let d be even and ` ≥ 11. Then we get from (6) with S = S0 that∏
Ai∈S′

Ai ≤ (k − 1)!2−ord2((k−1)!) =
∏

2i+1≤k−1

(2i+ 1).

Observe that the right hand side of the above inequality is the product of all positive
odd numbers less than k. On the other hand, since gcd(n, d) = 1, we see that all Ai’s
are odd and |S ′| ≥ |S0| − π(k) ≥ k − 1− π(k) by Lemma 3.3. Hence

∏
Ai∈S′

Ai ≥
k−1−π(k)∏

i=1

(2i− 1).

Observe here again that the right hand side of the above inequality is the product of
first positive k−1−π(k) odd numbers. Hence we get a contradiction if 2(k−1−π(k))−
1 > k − 1. Assume k ≤ 2 + 2π(k). By Lemma 2.1 (i), we get 1 ≤ 2

k
+ 2

log k
(1 + 1.2762

log k
)

which is not possible for k ≥ 30. By using exact values of π(k), we check that
k ≤ 2 + 2π(k) is not possible for 15 ≤ k < 30. Hence the assertion. �

Lemma 3.5. Let ` ≥ 11. Then k < 400.



8 SHANTA LAISHRAM AND T. N. SHOREY

Proof. Assume that k ≥ 400. By Corollary 3.4, we may suppose that d is odd. Further
by Corollary 3.2, there exists f < g < h with h − f ≤ 8 and max(Af , Ag, Ah) ≤ 4k.
Since n + (k − 1)d > k`, we observe that Xf > k,Xg > k,Xh > k implying X > k.
First assume that N = N(rstXfXgXh) < e37.12. Then taking ε = 3

4
, Nε = 1 in (13),

we get 40011 ≤ k11 ≤ tX`
g < N1+ 3

4 ≤ e37.12(1+ 3
4

) which is a contradiction. Hence we

may suppose that N ≥ e37.12 ≥ N 3
4
.

Note that we have u + v = w ≤ h − f ≤ 8. We observe that uvw is even. If
AfAgAh is odd, then h − f, g − f, h − g are all even implying 1 ≤ u, v, w ≤ 4 or
N(uvw) ≤ 6 giving N(uvwAfAgAh) ≤ 6AfAgAh. Again if AfAgAh is even, then
N(uvwAfAgAh) ≤ N((uvw)′)AfAgAh ≤ 35AfAgAh where (uvw)′ is the odd part
of uvw and N((uvw)′) ≤ 35. Observe that N((uvw)′) is obtained when w = 7, u =
2, v = 5 or w = 7, u = 5, v = 2. Thus we always have N(uvwAfAgAh) ≤ 35AfAgAh ≤
35 ·(4k)3 since max(Af , Ag, Ah) ≤ 4k. Therefore taking ε = 3

4
in (15), we obtain using

` ≥ 11 and X > k that

k11−3(1+ 3
4

) <
6

5
√

28π
35

2
3

+ 3
4 (4k)3( 2

3
+ 3

4
).

This is a contradiction since k ≥ 400. Hence the assertion. �

4. Proof of Theorem 3 for 4 ≤ k < 400

We assume that ` ≥ 11. It follows from the result of Saradha and Shorey [SaSh05,
Theorem 1] that d > 1015. Hence we may suppose that d > 1015 in this section.

Lemma 4.1. Let rk = [k + 1− π(k)−
∑
i≤k log i

15 log 10
] and

I(k) = {i ∈ [1, k] : P (n+ id) > k}.

Then |I(k)| ≥ rk.

Proof. Suppose not. Then |I(k)| ≤ rk − 1. Let

I ′(k) = {i ∈ [1, k] : P (n+ id) ≤ k} = {i ∈ [1, k] : n+ id = Ai}.

We have Ai = n + id ≥ (n + d) for i ∈ I ′(k). Let S = {Ai : i ∈ I ′(k)}. Then
|S| ≥ k + 1− rk. From (6), we get

(k − 1)! ≥
∏
Ai∈S′

Ai ≥ (n+ d)|S
′| > dk+1−rk−π(k).

Since d > 1015, we get

k + 1− π(k)−
∑

i≤k log i

15 log 10
< rk = [k + 1− π(k)−

∑
i≤k log i

15 log 10
].

This is a contradiction. �

Here are some values of (k, rk).
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k 7 11 13 17 18 28 30 36
rk 3 6 7 10 10 18 18 23

We give the strategy here. Let Ik = [0, k−1]∩Z and a0, b0, z0 be given. Let obtain
a subset I0 ⊆ Ik with the following properties:

(1) |I0| ≥ z0 ≥ 3.
(2) P (Ai) ≤ a0 for i ∈ I0.
(3) I0 ⊆ [j0, j0 + b0 − 1] for some j0.
(4) X0 = maxi∈I0{Xi} > k and let i0 ∈ I0 be such that X0 = Xi0 .

For any i, j ∈ I0, taking {f, g, h} = {i, j, i0}, let N = N(rstXfXgXh). Observe that
X0 ≥ pπ(k)+1 and further for any f, g, h ∈ I0, we have N(uvw) ≤

∏
p≤b0−1 p and

N(AfAgAh) ≤
∏

p≤a0 p. We will always take ε = 3
4
, Nε = 1 so that κε = 1 in (13) to

(18).

Case I: Suppose there exists i, j ∈ I0 such that Xi = Xj = 1. Taking {f, g, h} =
{i, j, i0} and ε = 3

4
, we obtain from (14) and ` ≥ 11 that

p
37
7

π(k)+1 ≤ X
`

1+3
4

−1

0 < N(uvwAfAgAh) ≤
∏

p≤max{a0,b0−1}

p.(19)

Case II: There is at most one i ∈ I0 such that Xi = 1. Then |{i ∈ I0 : Xi > k}| ≥
z0 − 1. We take a1, b1, z1 and find a subset U0 ⊂ I0 with the following properties:

(1) |U0| ≥ z1 ≥ 3, z0
2
≤ z1 ≤ z0.

(2) P (Ai) ≤ a1 for i ∈ U0.
(3) U0 ⊆ [i, i+ b1 − 1] for some i.

Let X1 = maxi∈U0{Xi} ≥ pπ(k)+z1−1 and i1 be such that Xi1 = X1. Taking {f, g, h} =
{i, j, i1} for some i, j ∈ U0 and ε = 3

4
, we obtain from (17) and ` ≥ 11 that

p
23
7

π(k)+z1−1 ≤ X
`

1+3
4

−3

0 < N(uvwAfAgAh) ≤
∏

p≤max{a1,b1−1}

p(20)

since ` ≥ 11. One choice is (U0, a1, b1, z1) = (I0, a0, b0, z0). We state the other choice.

Let b′ = max(a0, b0− 1). For each b0
2
− 1 < p ≤ b′− 1, we remove those i ∈ I0 such

that p|(n+ id). There are at most 2(π(b′− 1)− π( b0
2
− 1)) such i. Let I ′0 be obtained

from I0 after deleting those i’s. Then |I ′0| ≥ z0 − 2(π(b′ − 1)− π( b0
2
− 1)). Let

U1 = I ′0 ∩ [j0, j0 +
b0

2
− 1] and U1 = I ′0 ∩ [j0 +

b0

2
, j0 + b0 − 1].

Let U0 ∈ {U1, U2} for which |U0| = max(|U1|, |U2|) and choose one of them if |U1| =
|U2|. Then |U0| ≥ d z02 e− π(b′− 1) + π( b0

2
− 1) = z1. Further P (Ai) ≤ b0

2
− 1 = a1 and

b1 = b0
2

. Further X1 = maxi∈U0{Xi} ≥ pπ(k)+z1−1. Our choice of z0, a0, b0 will imply
that z1 ≥ 3.
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4.1. k ∈ {4, 5, 7, 11}

We take I0 = U0 = Ik, ai = bi = zi = k for i ∈ {0, 1} and hence N(uvwAfAgAh) ≤∏
p≤k p. And the assertion follows since both (19) and (20) are contradicted.

4.2. k ∈ {13, 17, 19, 23}

We take I0 = {i ∈ [1, 11] : p - (n+id) for 13 ≤ p ≤ 23}. Then by r11 = 6 and Lemma
4.1 with k = 11, we see that |I0| ≥ z0 = 11− 4 > 11− r11 ≥ 11− |I(11)|. Therefore
there exist an i ∈ I0 ∩ I11 and hence Xi > 23. We take U0 = I0, ai = bi = 11, z1 = z0

for i ∈ {0, 1} and hence N(uvwAfAgAh) ≤
∏

p≤11 p. And the assertion follows since

both (19) and (20) are contradicted.

4.3. 29 ≤ k ≤ 47

We take I0 = {i ∈ [1, 17] : p - (n + id) for 17 ≤ p ≤ k}. Then by r17 = 10
and Lemma 4.1 with k = 17, we have |I0| ≥ z0 = 17 − (π(k) − π(13)) = 23 −
π(k) ≥ 23 − π(47) = 8 > 17 − r17 ≥ 17 − |I(17)| implying that there exists i ∈ I0

with Xi > k. We take ai = 13, bi = 17, zi = 23 − π(k) for i ∈ {0, 1} and hence
N(uvwAfAgAh) ≤

∏
p≤13 p. And the assertion follows since both (19) and (20) are

contradicted.

4.4. k ≥ 53

Given m and q such that mq < k, we consider the q intervals

Ij = [(j − 1)m+ 1, jm] ∩ Z for 1 ≤ j ≤ q

and let I ′ = ∪qj=1Ij and I” = {i ∈ I ′ : m ≤ P (Ai) ≤ k}. There is at most one i ∈ I ′
such that mq − 1 < P (Ai) ≤ k and for each 2 ≤ j ≤ q, there are at most j number
of i ∈ I ′ such that mq−1

j
< P (Ai) ≤ mq−1

j−1
. Therefore

|I”| ≤ π(k)− π(mq − 1) +

q∑
j=2

j

(
π(
mq − 1

j − 1
)− π(

mq − 1

j
)

)

= π(k) +

q−1∑
j=1

π(
mq − 1

j
)− qπ(m− 1) =: T (k,m, q).

Hence there is at least one j such that |Ij∩I”| ≤ [T (k,m,q)
q

]. We will choose q such that

[T (k,m,q)
q

] < rm. Let I0 = Ij \I” and let j0 be such that I0 ⊆ [(j0−1)m+1, j0m]. Then

p|(n + id) imply p < m or p > k whenever i ∈ I0. Further |I0| ≥ z0 = m − [T (k,m,q
q

].

Since [T (k,m,q)
q

] < rm, we get from Lemma 4.1 with k = m and n = (j0 − 1)m that

there is an i ∈ I0 with Xi > k. Further P (Ai) < m for all i ∈ I0. Here are the choices
of m and q.
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k 53 ≤ k < 89 89 ≤ k < 179 179 ≤ k < 239 239 ≤ k < 367 367 ≤ k < 433
(m, q) (17, 3) (28, 3) (36, 5) (36, 6) (36, 10)

We have a0 = m − 1, b0 = m and z0 = m − [T (k,m,q)
q

] and we check that z0 ≥ 3.

The Subsection 4.3(29 ≤ k ≤ 47) is in fact obtained by considering m = 17, q = 1.
Now we consider Cases I and II and try to get contradiction in both (19) and (20).
For these choices of (m, q), we find that the Cases I are contradicted. Further taking
U0 = I0, a1 = a0 = m − 1, b1 = b0 = m, z1 = z0, we find that Case II is also
contradicted for 53 ≤ k < 89. Thus the assertion follows in the case 53 ≤ k < 89. So,
we consider k ≥ 89 and try to contradict Cases II. Recall that we have Xi > k for all
but at most one i ∈ I0. Write I0 = U1∪U2 where U1 = I0∩[(j0−1)m+1, (j0−1)m+m

2
]

and U2 = I0∩ [(j0−1)m+ m
2

+1, j0m]. Let U ′0 = U1 or U ′0 = U2 according as |U1| ≥ z0
2

or |U2| ≥ z0
2

, respectively. Let U0 = {i ∈ U ′0 : p - Ai for m
2
≤ p < m}. Then

|U0| ≥ z1 := z0
2
− (π(m − 1) − π(m

2
)) =

m−[
T (k,m,q)

q
]

2
− (π(m − 1) − π(m

2
)) ≥ 3.

Further p|(n + id) with i ∈ U0 imply p < m
2

or p > k. Now we have Case II with
a1 = m

2
− 1, b1 = m

2
and find that (20) is contradicted. Hence the assertion.

5. ` = 7

Let ` = 7. Assume that k ≥ exp(13006.2). Taking α = 3, β = 1
15

+ 2
9

in Lemma
3.1, we get

|S1(3)| = {i ∈ [0, k − 1] : Ai ≤ 3k}| > k(
1

15
+

2

9
).

For i’s such that Ai ∈ S1(3), we have Xi > k and we arrange these Xi’s in increasing
order as Xi1 < Xi2 < . . . <. Then Xij ≥ pπ(k)+j. Consider the set J0 = {i : Xi ≥
pπ(k)+[ k

15
]−2}. We have

|J0| > k(
1

15
+

2

9
)− k

15
+ 2 ≥ 2

(
[
k − 1

9
] + 1

)
.

Hence there are f, g, h ∈ J0, f < g < h such that h − f ≤ 8. Also Ai ≤ 3k and
X = (XfXgXh)

1
3 ≥ pπ(k)+[ k

15
]−2.

First assume that N = N(rstXfXgXg) ≥ exp(63727) ≥ N 1
3
. Observe that uvw ≤

70 since 2 ≤ u + v = w ≤ 8, obtained at 2 + 5 = 7. Taking ε = 1
3
, we obtain from

(15) and max(Af , Ag, Ah) ≤ 3k that

p3
π(k)+[ k

15
]−2

<
5

6
√

2π · 6458
N(uvwAfAgAh) ≤

5 · 70 · (3k)3

6
√

12920π
.

Since π(k) > 2 we have π(k) + [ k
15

] − 2 > k
15

and hence pπ(k)+[ k
15

]−2 >
k
15

log k
15

by

Lemma 2.1 (ii). Therefore(
log

k

15

)3

<
350 · (3 · 15)3

6
√

12920π
or k < 15 · exp

(
45 ·

(
350

6
√

12920π

) 1
3

)
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which is a contradiction since k ≥ exp(13006.2).

Therefore we have N = N(rstXfXgXh) < exp(63727). We may also assume that

N > exp(3895) otherwise taking ε = 3
4

in (13), we get k7 < X7
g < N1+ 3

4 ≤ exp(3895· 7
4
)

or k < exp(3895
4

) which is a contradiction. Now we take ε = 5
12

in (13) to get

k7 < X7
g < N1+ 5

12 ≤ exp(64266 · 17
12

) or k < exp(13006.2). Hence the assertion.

6. abc-conjecture implies Erdős conjecture: Proof of Theorem 1

Assume (5). We show that k is bounded by a computable absolute constant. Let
k ≥ k0 where k0 is a sufficiently large computable absolute constant. Let ε > 0. Let
c1, c2, · · · be positive computable constants depending only on ε. Let I = {ip|p ≤
k and p - d} where ip be as defined in beginning of Section 3. Let S = {Ai : [k

2
] ≤ i <

k or i ∈ I} and

Φ =
∏
i≥[ k

2
]

i/∈I

Ai.

By Sylvester-Erdős inequality(see [ErSe75, Lemma 2] for example), we get

ordp(Φ) ≤ ordp

∏
i≥[ k

2
]

i/∈I

(i− ip)

 ≤
{

ordp
(
(k − [k

2
]− 1− (ip − [k

2
]))!(ip − [k

2
])!
)

if ip ≥ [k
2
],

ordp

((k−1−ip
k−[ k

2
]

)
(k − [k

2
])!
)

otherwise.

Since ordp(r!s!) ≤ordp((r + s)!) and k − [k
2
] = [k+1

2
], we see that

pordp(Φ) ≤ p
ordp((

k−1−ip
[ k+1

2 ]
))
pordp([ k+1

2
]!).

Using the fact that pordp((xk)) ≤ x for any x ≥ k, we get

Φ ≤ (k − 1)πd(k)([
k + 1

2
])! ≤ k

k
2 ec1k

by using Lemma 2.1 (i), (v).

Let D be a fixed positive integer and let

J =

{
k − 1

2D
≤ j ≤ k − 1

D
− 1|{Dj + 1, Dj + 2, · · · , Dj +D} ∩ I = φ

}
.

We shall choose D = 20. Let j, j′ ∈ J be such that j 6= j′. Then Dj + i 6= Dj′ + i′

for 1 ≤ i, i′ ≤ D otherwise D(j − j′) = (i− i′) and |i′ − i| < D. Further we also see
that [k

2
] ≤ Dj+ i ≤ k− 1 for 1 ≤ i ≤ D and consequently |J | ≥ k−1

2D
− π(k). For each

j ∈ J , let Φj =
D∏
i=1

ADj+i. Then
∏

j∈J Φj divides Φ implying

∏
j∈J

Φj ≤ Φ ≤ k
k
2 ec1k.
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Thus there exists j0 ∈ J such that

Φj0 ≤
(
k
k
2 ec1k)

) 1
|J| ≤

(
k
k
2 ec1k

) 1
k−1
2D
−π(k) ≤ cD2 k

D.

Let

H :=
D∏
i=1

(n+ (Dj0 + i)d).

Since ADj0+iX
`
Dj0+i ≤ n+ (k − 1)d, we have XDj0+i ≤ (n+(k−1)d

ADj0+i
)
1
` . Thus

∏
p|H
p>k

p =
D∏
i=1

XDj0+i ≤ (n+ (k − 1)d)
D
` (Φj0)

− 1
`

Therefore

∏
p|H

p =

∏
p|H
p≤k

p


∏
p|H
p>k

p

 ≤ Φj0(n+ (k − 1)d)
D
` (Φj0)

− 1
` ≤ c

D(1− 1
`
)

2 kD(1− 1
`
)(n+ (k − 1)d)

D
` .

On the other hand, we have H = F (n+Dj0d, d) where

F (x, y) =
D∏
i=1

(x+ iy)

is a binary form in x and y of degree D such that F has distinct linear factors. From
Conjecture 1.4, we have ∏

p|H

p ≥ c3(n+Dj0d)D−2−ε.

Comparing the lower and upper bounds of
∏
p|H

p and using n + Dj0d >
n+(k−1)d

2
, we

get

k > c4(n+ (k − 1)d)
1− 2+ε

D(1− 1
`
) .

We now use n+ (k − 1)d > k` to derive that

c5 > k
`(1− 2+ε

D(1− 1
`
)
)−1
.

Taking ε = 1
2

and putting D = 20, we get

c6 > k`−1− `2

8(`−1) ≥ k
1
2

since ` ≥ 2. This is a contradiction since k ≥ k0 and k0 is sufficiently large. �
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