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PERFECT POWERS IN ARITHMETIC PROGRESSION

SHANTA LAISHRAM AND T. N. SHOREY

ABSTRACT. The conjecture of Masser-Oesterlé, popularly known as abec-conjecture
have many consequences. We use an explicit version due to Baker to solve the
equation

n(n+d)--(n+ (k—1)d) = by
in positive integer variables n,d, k,b,y,l such that b square free with the largest
prime divisor of b at most k, k > 2,1 > 2 and ged(n,d) = 1.

1. INTRODUCTION

Let n,d, k,b,y be positive integers such that b is square free with P(b) < k, k >
2,1 > 2 and ged(n,d) = 1. Here P(m) denotes the largest prime divisor of m with
the convention P(1) = 1. We consider the equation

(1) nn+d)--(n+(k—1)d) = by

in variables n,d, k,b,y,l. If k = 2, we observe that (4) has infinitely many solu-
tions. Therefore we always suppose that & > 3. It has been conjectured (see [Tij88],
[SaSh05]) that

Conjecture 1.1. Equation (1) implies that (k,0) € {(3,3), (4,2),(3,2)}.
It is known that (1) has infinitely many solutions when (k, ¢) € {(3,2),(3,3)(4,2)}.
A weaker version of Conjecture 1.1 is the following conjecture due to Erdds.

Conjecture 1.2. Equation (1) implies that k is bounded by an absolute constant.

For an account of results on (1), we refer to Shorey [Sho02b] and [Sho06].

The well known conjecture of Masser-Oesterle states that

Conjecture 1.3. Oesterlé and Masser’s abc-conjecture: For any given € > 0
there exists a computable constant ¢, depending only on € such that if

(2) a+b=c
where a,b and ¢ are coprime positive integers, then
1+e€
c<e | ]
plabe
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It is known as abc-conjecture; the name derives from the usage of letters a, b, ¢ in
(2). For any positive integer i > 1, let N = N (i) = th.p be the radical of i, P(7)
be the greatest prime factor of i and w(i) be the number of distinct prime factors of
i and we put N(1) =1,P(1) =1 and w(1) = 0.

It has been shown in Elkies [Elk91] and Granville and Tucker [GrTu02, (13)] that
abc-conjecture is equivalent to the following:

Conjecture 1.4. Let F(x,y) € Z[x,y] be a homogenous polynomial. Assume that
has pairwise non-proportional linear factors in its factorisation over C. Given € > 0,
there exists a computable constant k. depending only on F and € such that if m and
n are coprime integers, then

T[] » = s (max{|m|, |n|})*=F =2
p|F(m,n)

Shorey [Sho99] showed that abe-conjecture implies Conjecture 1.2 for £ > 4 using
d > kerleslosk - Granville (unpublished) gave a proof of the preceding result without
using the inequality d > k°t!°81°¢¥  Furthermore his proof is also valid for ¢ = 2, 3.

Theorem 1. The abc—conjecture implies Conjecture (1.2).

The proof was first published in the Master’s Thesis of first author [Lai04]. We
include the proof in this paper to have a published literature. This is given in Section
6. We would like to thank Professor A. Granville for allowing us to publish his proof.

An explicit version of Conjecture 2 due to Baker [Bak94] is the following:

Conjecture 1.5. Explicit abc-conjecture: Let a,b and c be pairwise coprime
positive integers satisfying (2). Then
6  (log N)¥
_ 6 Uog N)

-N
5 w!

where N = N(abc) and w = w(N).

We observe that N = N(abc) > 2 whenever a,b, ¢ satisfy (2). We shall refer to
Conjecture 1.3 as abc—conjecture and Conjecture 1.5 as explicit abc— conjecture. Con-
jecture 1.5 implies the following explicit version of Conjecture 1.3 proved in [LaSh12].

Theorem 2. Assume Conjecture 1.5. Let a,b and ¢ be pairwise coprime positive
integers satisfying (2) and N = N(abc). Then we have

(3) ¢ < N'i,

there exists an integer w. depending only € such that when

Further for 0 < € < %
= H .. b, we have

N = N(abc) >

¢ < kN
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where
6 6

= <
5y/ 21 max(w,w,)  9V2mwe

with w = w(N). Here are some values of €, w. and Nk.

Ke

3 7 6 T 32 5 T

4 12 11 2 71 12 3
We 14 49 72 127 175 548 | 6460
N, | 3T I0T [ 20875 | 33571 |[" 679585 | T00A.763 | 38945 | 63727

Thus ¢ < N? which was conjectured in Granville and Tucker [GrTu02].

As a consequence of Theorem 2, we prove

Theorem 3. Assume Conjecture 1.5. Then the equation
(4) nn+d)--(n+(k—1)d) = by’

in integersm > 1,d > 1,k > 4,0 > 1,y > 1, > 1 with ged(n,d) =1 and P(b) < k
implies £ < 7. Further k < e'3%2 when ( = 7.

We observe that e!30062 < ¢*”  Theorem 3 is a considerable improvement of
Saradha [Sar12] where it is shown that (4) with & > 8 implies that ¢ < 29 and
further k < 8,32,102,107 and ¢ according as £ = 29, ¢ € {23,19},¢ = 17,13 and
¢ € {11, 7}, respectively.

2. NOTATION AND PRELIMINARIES

For an integer i > 0, let p; denote the i—th prime. We always write p for a prime
number. For areal x >0 and d € Z,d > 1, let

m(x)= Y 1, 7w(@)=mx)=) 1, O)=]]p and 0(z) =1log(O(z)).

pgl,pfd p<z p<lz
We write log, i for log(logi). Here we understand that log, 1 = —oc0.

Lemma 2.1. We have

1.2762
m(x) < T (14 70 for z > 1.
log log x

i > i(logi+logyi — 1) for i > 1

(p;) > i(logi + logyi — 1.076869) for i > 1
(x) < 1.000081z for >0

271']{?(%)’66#“ <kl < \/27Tk‘(§)keﬁ.

The estimates (i) and (ii) are due to Dusart, see [Dus99b] and [Dus99al, respec-
tively. The estimate (ii7) is [Rob83, Theorem 6]. For estimate (iv), see [Dus99b].
The estimate (v) is [Robb5, Theorem 6.
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3. PROOF OF THEOREM 3

Let n,d,k,b,y be positive integers with n > 1,d > 1.k > 4,b > 1,y > 1,
ged(n,d) =1 and P(b) < k. We consider the Diophantine equation
(5) n(n+d) - (n+(k—1)d) = by’

Observe that P(n(n+d)---(n+ (k —1)d)) > k by a result of Shorey and Tijdeman
[ShTi90] and hence P(y) > k and n + (k — 1)d > (k + 1)%. For every 0 < i < k, we
write

n+id = A;X{ with P(4;) <k and (X;, [[p) = 1.

p<k

Without loss of generality, we may assume that £ = 4 or k > 5 is a prime which we
assume throughout in this section. We observe that (A4;,d) = 1 for 0 < ¢ < k and

SO = {A07A17 s 7Ak71}-

For every prime p < k and p { d, let i, be such that ord,(A4;) =ord,(n+id) <ord,(n+
ipd) for 0 <i < k. For a S C Sy, let

S'=85—{A;, :p<knptd}

Then |S’| > |S| — ma(k). By Sylvester-Erdés inequality(see [ErSe75, Lemma 2| for
example), we obtain

o H Aj|(k—1)! Hp_ordp((k/‘—l)!).
A;es’ pld
As a consequence, we have

Lemma 3.1. Let o, € R witha > 1,6 <1 and ef < . Let
51 = Sl(a) = {Al S S() . Al S Oék‘}

For
log (%) + kl%g(,o;k) (1 + %) — log(ak) 1+ 11-§g722
(1) k> max i exp(— 1ok )
log(ea) + Blog (£) 1-p

we have |S1| > Pk.

Proof. Let S = Sy, s1 = |S1] and sg = |S" — Si|. Then sy > k — 7(k) — s1. We get
from (6) that

k—m(k)—s1
(8) sit I (ek+i) < J] A < (k- 1)
=1 A e8!

since elements of S’ — S; are distinct and the product on the left side is taken to be
Lif kb —m(k) < s1.
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Suppose s; < Sk. If k—m(k) < s1, then using Lemma 2.1 (i), we get (1 —3)logk <
1+ ==0= 12762 which is not possible by (7). Hence k — 7(k) > s;. By using Lemma 2.1

(v), We obtam

k-1 L .
G-y VR () et i o0
k)5t
(OC ) < k—1 <ake> (M)kil if s1 > 0.

S1 S1 e

k k—m(k) <
(k) -

We check that the expression for s; = 0 is less than that of s; = 1 since a > 1.

Observe that
'k—1 ake
S1
S1 ( S1 )

is an increasing function of s; since sy < Sk and e < «. This can be verified by
taking log of the above expression and differentiating it with respect to s;. Therefore

o (5) () <GE) ()
(ak) < B 5 . < 5\ .

implying

(ea)* (%)ﬁk < %(aw(k)—l.

Using Lemma 2.1 (i), we obtain
B e log(ak) 1.2762 log(ak)
1 1 — — 1 — .
oglea) + flog <ea 10803 T Togk log k k

The right hand side of the above inequality is a decreasing function of k for k£ given
by (7). This can be verified by observing that l?fgczk =1+ ﬁi + and differentiating
1'275502;,;0“ — logiak) with respect to k. This is a contradiction for k given by (7). O
Corollary 3.2. For k > 113, there exist 0 < f < g < h < k with h— f < 8 such that
maz(Ays, Ay, Ap) < 4k.

Proof. By dividing [0, & — 1] into subintervals of the form [9¢,9(i + 1)), it suffices to
show S1(4) > 2([£] 4 1) where Sy is as defined in Lemma 3.1. Taking o = 4,8 = 1
we obtain from Lemma 3.1 that for k& > 700, [S;(4)| > % > 2([£] 4+ 1). Thus we may
suppose k < 700 and |S;(4)] < 2([£] + 1). For each prime k with 113 < k < 700,
taking @ = 4 and Sk = 2([5] + 1) in Lemma 3.1, we get a contradiction from (8).
Therefore |S1(4)] > 2([5] + 1) and the assertion follows. O

Given 0 < f <g< h<k—1, we have
(9) (h— [)AgX, = (h— g)As X} + (9 — [)AnX,.

Let A =ged(h — f,h — g,9 — f) and write h — f = Aw,h — g = Au,g — f = .
Rewriting h — f=h—g+g— f as

w = u+ v with ged(u,v) =1,
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(9) can be written as

(10) wAX, = uApX; + vA, X

Let G = ged(wAy, uAys,vAp),

(11) r= 5 =
and we rewrite (10) as

(12) tXﬁz?"XfH—st;.
Note that ged(rX}, sXj;) = 1.

From now on, we assume explicit abc—conjecture. Given e > 0, let N (rstX;X,X;) >
N, which we assume from now on till the expression (18). By Theorem 2, we obtain

(13) X, < kN (rstX X, X))t
ie.,
N t1+e X X X 1+e

Here N, = ke = 1 if € > %. For € = 3/4, by abuse of notation, we will be taking

either N, = 1,k, = 1 or N, = 37101 (< 5\/(;87 if N(rstXX,Xp) > N%. We will be

taking e = 3 for £ > 7 and € € {5, 3} for £ = 7. We have from (13) that
rst(X X, Xp)" < k2N (rst)>1H9( X, X, X;,)30+).
Putting X* = X;X,X),, we obtain

uwowArAyAy,
et

(15) X304 < o N(rst)ite = k N( )ate,

Again from (12), we have

2
r X+ sX, X2
rs(X;Xp)" < (—f 5 h) = 49

implying
1 1
2\ w?A?2 N\ ¢
XXX, < |— ) X3=(——2-) X3
[ = (47’5) g (4uvAfAh> g
Therefore we have from (14) that

1+e

N(Tst)l—i-eXg-‘rSE < t2 ) 7 N(TSt)1+€X3+3E
— =K

t ‘ (47“515)#151’3(1;6)

1 X
(16) g < HKe s

ie.,

2(1+¢)
I

N (rst)1+90-¢ _ N(rs)t9C DN ()t

i+ 3(te) = Tte
=77 477

(17) X304 < g,
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We also have from (17) that

(18) X309 < g,

Lemma 3.3. Let ¢ Z 11. Let SU = {A07A17~--7Ak71} = {Bo,Bh...,Bk,1} with
BQ S Bl S S Bk—l- Then

By < Bi<Bsy...<Bj_;.

In particular |Sy| > k — 1.

Proof. Suppose there exists 0 < f < g < h < k with {f, g, h} = {i1,i2,i3} and
Ai1 = Aig = A and Aig S A.

By (10) and (11), we see that max(Ays, A;, An) < G and therefore r < u < k,s <
v <kandt S w < k. Since X, > k, we get from the first inequality of (17) with
e=3 N, =k, =1 that

1+5)

k€—3(1+e) < (T,S)(l—&-e)(l——) e+ k,2+3e

implying ¢ < 5+ 6e =5+ g. This is a contradiction since ¢ > 11. Therefore either
A;’s are distinct or if A; = A; = A, then A,, > A for m ¢ {4,j} implying the
assertion. 0

As a consequence, we have

Corollary 3.4. Let d be even and ¢ > 11. Then k < 14.

Proof. Let d be even and ¢ > 11. Then we get from (6) with S = S, that
IT 4 < (k= pr2or®@=0 =TT (2i+1).
A8 2i+1<k—1

Observe that the right hand side of the above inequality is the product of all positive
odd numbers less than k. On the other hand, since ged(n,d) = 1, we see that all A;’s
are odd and |S’| > |So| — 7(k) > k — 1 — 7(k) by Lemma 3.3. Hence

k—1—n(k)
IT 4> ] @-1
A;es’ =1

Observe here again that the right hand side of the above inequality is the product of
first positive k—1—m(k) odd numbers. Hence we get a contradiction if 2(k—1—7(k))—

1>k —1. Assume k < 2+ 2m(k). By Lemma 2.1 (i), we get 1 < 2 4 @(1 + ll‘fg?f)

which is not possible for & > 30. By using exact values of 7(k), we check that
k <24 2x(k) is not possible for 15 < k < 30. Hence the assertion. O

Lemma 3.5. Let £ > 11. Then k < 400.
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Proof. Assume that £ > 400. By Corollary 3.4, we may suppose that d is odd. Further
by Corollary 3.2, there exists f < g < h with h — f < 8 and max(Af, A;, Ay) < 4k.
Since n + (k — 1)d > k*, we observe that Xy >k, Xy >k, X, >k implying X > k.
First assume that N = N(rstX;X,X;) < ¢¥'2. Then taking ¢ = 2, N, = 1 in (13),
we get 4001 < E < th < N < 37120+ which is a contradiction. Hence we
may suppose that N > 3712 > Ns.

Note that we have u +v = w < h — f < 8 We observe that uvw is even. If
ArAy Ay is odd, then h — f,g — f,h — g are all even implying 1 < u,v,w < 4 or
N(uvw) < 6 giving N(uwwvwArA;AL) < 6ArA;A,. Again if AfA A, is even, then
N(uvwA;A AL) < N((uwvw))ArAzA, < 35A;A,A;, where (uwvw)’ is the odd part
of wvw and N((uvw)’) < 35. Observe that N((uvw)’) is obtained when w = 7,u =
2, v=>50rw="7,u=>5,v=2. Thus we always have N (uvwA;A;A;) < 35A;A;A; <
35-(4k)? since max(Ay, Ay, Ay) < 4k. Therefore taking e = 3 in (15), we obtain using
¢ > 11 and X > k that

6 2 3 2 3
p-304D) o 35311 (4k)3G D),
5V 281 (4%)
This is a contradiction since k£ > 400. Hence the assertion. O

4. PROOF OF THEOREM 3 FOR 4 < k < 400

We assume that ¢ > 11. It follows from the result of Saradha and Shorey [SaSh05,
Theorem 1] that d > 10'. Hence we may suppose that d > 10'° in this section.

Lemma 4.1. Letry =[k+1—m(k) — 21531(’:;(1%1] and

I(k) = {i € [1,k] : P(n +id) > k}.

Then |I(k)| > 7.

Proof. Suppose not. Then |I(k)| <7, — 1. Let
I'ky={i€[1,k]: P(n+id) <k} ={i € [1,k] : n+id = A;}.
We have A; = n+id > (n+d) for i € I'(k). Let S = {A4; : i € I'(k)}. Then
|S| > k+ 1 —rg. From (6), we get
(k=11 > J[ 4= ®n+d) > drtmre,

A;eS’
Since d > 10%, we get
> i<k l0gi D i<k logz’]
151og 10 15log 10 *

This is a contradiction. O

k+1—mn(k)— <rg=k+1—-n(k)—

Here are some values of (k,ry).
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E {71113 |17 |18 |28 |30 | 36
re 3] 6|7 ({10]10| 18|18 23

We give the strategy here. Let I, = [0,k — 1]NZ and ay, by, 2o be given. Let obtain
a subset [y C I with the following properties:

Io| = 20 = 3.

(A;) < aqg for i € I.

C [jo, Jo + bo — 1] for some jo.

Xo = max;er, {X;} > k and let ig € Iy be such that X, = X;,.

For any i, j € Iy, taking {f,g,h} = {3, j,i0}, let N = N(rstX;X,X}). Observe that
Xo > Prky+1 and further for any f,g,h € Iy, we have N(uvw) < Hpgb0—1p and
N(AfAgAR) < Tl<q, p- We will always take e = 2, N. = 1 so that . = 1 in (13) to
(18).

p<a

Case I: Suppose there exists 7,5 € Iy such that X; = X; = 1. Taking {f,¢,h} =
{i,j,i0} and € = 2, we obtain from (14) and ¢ > 11 that

37 o7l
(19) Pl < Xo t < N(uwwAsAgAL) < T =

p<max{ao,bo—1}

Case II: There is at most one i € [ such that X; = 1. Then |{i € Iy : X; > k}| >
zo — 1. We take aq, b1, z; and find a subset Uy C I, with the following properties:

(1) [Uo] > 21 >3, 3 <2 < 2.
(2) P(AZ) S aq for i € U[).
(3) Uy C [iyi+ by — 1] for some 3.

Let X1 = max;cy,{Xi} > Pr(k)421—1 and 4; be such that X;, = X;. Taking {f,g,h} =
{i,4,i1} for some i,j € Uy and € = 2, we obtain from (17) and ¢ > 11 that

[
23

o3
(20) p;(k)Jer,l < XOH% < N(uvwAsA,;A)) < H P

p<max{ai,b1—1}

since ¢ > 11. One choice is (Uy, a1, b1, 21) = (Lo, ag, bo, z0). We state the other choice.

Let ¥’ = max(ag, by — 1). For each %0 —1<p<V -1, weremove those i € Iy such
that p|(n +id). There are at most 2(m(b' — 1) — w(% — 1)) such i. Let I} be obtained
from Iy after deleting those i’s. Then |I}| > zy — 2(7(b' — 1) — m(% — 1)). Let

b b
Ulzl()ﬂ[jo,ngr?O—l] and Ulzjgm[jo+5°,jo+b0—1].

Let Uy € {Uy, Us} for which |Uy| = max(|U|, |Uz|) and choose one of them if |U;| =
|Us|. Then |Up| > [2] —7()) — 1) +7(% — 1) = 2. Further P(A4;) <% —1 =0 and
by = %1 Further X7 = max;cy,{Xi} > Dr(k)42-1. Our choice of 2z, ag, by will imply
that 21 Z 3.
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4.1. ke {4,5,7,11}

We take Iy = Uy = Iy, a; = b; = z; = k for ¢ € {0,1} and hence N(uvwArAzA;) <
[I,<xp- And the assertion follows since both (19) and (20) are contradicted.

4.2. k€ {13,17,19,23}

We take Iy = {i € [1,11] : pt (n+id) for 13 < p < 23}. Then by r1; = 6 and Lemma
4.1 with k = 11, we see that |Io| > 2z = 11 —4 > 11 —ryy > 11 — |I(11)|. Therefore
there exist an ¢ € Iy N I;; and hence X; > 23. We take Uy = Iy, a; = b; = 11,21 = 29
for i € {0,1} and hence N(uvwA;A;A5) < [],<;; p- And the assertion follows since
both (19) and (20) are contradicted. -

4.3. 29 <k <47

We take Iy = {i € [1,17] : p { (n +id) for 17 < p < k}. Then by r7; = 10
and Lemma 4.1 with £ = 17, we have |Ij| > zy = 17 — (n(k) — 7(13)) = 23 —
m(k) > 23 — w(47) = 8 > 17 — ry7 > 17 — |I(17)| implying that there exists ¢ € I,
with X; > k. We take a; = 13,b; = 17,2, = 23 — w(k) for ¢ € {0,1} and hence
N(uvwApAgAp) < [[,<i3p- And the assertion follows since both (19) and (20) are
contradicted.

4.4. k>33

Given m and ¢ such that mq < k, we consider the ¢ intervals
L=[j—1m+1,jmNZforl1<j<gq
and let I’ = UI_Ij and I = {i € I' : m < P(A;) < k}. There is at most one i € I’

such that mqg — 1 < P(A ) < k and for each 2 < j < g, there are at most j number
of i € I' such that == L<PA) < - . Therefore

1| < 7(k) = m(mq — 1) +Zj( P - w(Mh)

) —qr(m—1)=:T(k,m,q).

Hence there is at least one j such that |[[; NI | < [%] We will choose ¢ such that

[M] < Ty Let Iy = I;\ I and let jo be such that Iy C [(jo—1)m+1, jom]. Then

T(k,m,q
(=]

Since | < T, we get from Lemma 4.1 with £ = m and n = (jo — 1)m that
there is an i € Iy with X; > k. Further P(A;) < m for all i € Iy. Here are the choices
of m and ¢.

pl(n 4 id) imply p < m or p > k whenever i € I,. Further |Iy| > zg = m —
T(k7m7q)]
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k B <Ek<8 |8 <E<IT9|17T9< k<239 |239 <k <367|367<Fk<433

(m,q) | (17,3) (28,3) (36,5) (36,6) (36, 10)

We have ag = m — 1,bp = m and zg = m — [M] and we check that zg > 3.
The Subsection 4.3(29 < k < 47) is in fact obtained by considering m = 17,q = 1.
Now we consider Cases I and II and try to get contradiction in both (19) and (20).
For these choices of (m, q), we find that the Cases I are contradicted. Further taking
Uy = Ip,as = ag = m — 1,by = by = m, 2z, = 29, we find that Case II is also
contradicted for 53 < k < 89. Thus the assertion follows in the case 53 < k < 89. So,
we consider £ > 89 and try to contradict Cases I1. Recall that we have X; > k for all
but at most one i € Iy. Write Iy = U;UU; where Uy = IyN[(jo—1)m~+1, (jo—1)m+%]
and Uy = IyN[(jo—1)m+ %5 +1, jom]. Let Uy = U, or Uy = Us according as |U;| > %
or |Us| > 2, respectively. Let Uy = {i € Uj : pt A; for & < p < m}. Then

2 2
Z m m_[ﬂk’qm‘q)} m

Uol 2 21 =3 = (7(m = 1) —=7(3)) = —5+— —(r(m - 1) —n(3)) = 3.

Further p[(n + id) with i € Uy imply p < % or p > k. Now we have Case II with

ay =% —1,b; = % and find that (20) is contradicted. Hence the assertion.

5. =17

Let ¢ = 7. Assume that k > exp(13006.2). Taking o = 3,5 = % + % in Lemma
3.1, we get
2
9
For i’s such that A; € S1(3), we have X; > k and we arrange these X;’s in increasing
order as X;, < X;, < ... <. Then Xj, > pru)4+;. Consider the set Jy = {i : X; >

$13)| = {i € [0,k — 1] : A; < 3k}| > k% +

1 2 k E—1
ey T ao2>o(=—14+1).
yJ0\>k(15+9) +2> ([ 5 ]+)

Hence there are f,g,h € Jy, f < g < h such that h — f < 8. Also A; < 3k and

1
X = (XpXgXn)3 2 Drryyi k)2

First assume that N = N(rstX;X,X,) > exp(63727) > Ny1. Observe that uvw <
70 since 2 < u+v = w < 8, obtained at 2+ 5 = 7. Taking ¢ = %, we obtain from
(15) and max(Ay, Ay, Ap) < 3k that

5 5-70- (3k)?
3
< ————=N(wwA;AAL) < —F—.
Pro+tl-2 = 6./ - 6458 ( o) < 61/129207

Since m(k) > 2 we have m(k) + [£] —2 > £ and hence Pr(ky+k]—2 >

X
15

)

log % by
Lemma 2.1 (i7). Therefore

A% - (3-15)
(log—) <work<15-exp<45-( 350 >

W=

15 61129207 61129207
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which is a contradiction since k& > exp(13006.2).

Therefore we have N = N(rstX;X,X;,) < exp(63727). We may also assume that
N > exp(3895) otherwise taking e = 2 in (13), we get k" < X] < NH% < exp(3895-1)
or k < exp(®8) which is a contradiction. Now we take e = 2 in (13) to get
kK< X < N'"15 < exp(64266 - 1) or k < exp(13006.2). Hence the assertion.

6. abc-CONJECTURE IMPLIES ERDOS CONJECTURE: PROOF OF THEOREM 1

Assume (5). We show that k is bounded by a computable absolute constant. Let
k > ko where kq is a sufficiently large computable absolute constant. Let € > 0. Let
¢1,C2,- -+ be positive computable constants depending only on e. Let I = {i,|p <
k and p t d} where i, be as defined in beginning of Section 3. Let S = {4, : [4] <i <

k or i€ I} and
o= 4
i>[3]
g1
By Sylvester-Erdés inequality(see [ErSe75, Lemma 2| for example), we get

{ordp(( = (ip = [0, = [5)Y) if iy > [5],

d,(®) < ord ) —
ordy(®) < ord, H (i =) ord, ( (1 Z” %])') otherwise.
i>[5] ~l3 /)
i¢I
Since ord,(rls!) <ord,((r + s)!) and k — [§] = [£HL], we see that

k—1—1
porde(®) < pord”(( [’i}l]p))pordp([%p).

Using the fact that pordﬁ(( ) < z for any x > k, we get

k+1
@ < (b — 1) () < et
by using Lemma 2.1 (7), (v).
Let D be a fixed positive integer and let
J= il o <k ! I{Dj+1,Dj+2 Dj+Dinl=¢
— 2D —.] — _D j 9 .] 9 Y j - .

We shall choose D = 20. Let j,j" € J be such that j # j'. Then Dj +i # Dj' 44

for 1 < ,i" < D otherwise D(j — j') = (i — ¢') and |’ —i| < D. Further we also see

that [g] < Dj+i<k—1for1l<1i<D and consequently |J| > % — (k). For each
D

jeJ, let &; = HADjJri- Then HJGJ ®; divides ® implying
i=1

[T@; <@ <kze

jeJ
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Thus there exists jo € J such that

1

[ S
(I)jo < (kgeclk)) [J] < (k§€c1k> %—w(k) < Cé)kD.
Let
D
H =[] (n+ (Djo +i)d).

=1

Since Apjy+iXpjors < 1+ (k—1)d, we have Xpjj4; < (2 E=Ddy g Thyg

— N Abjoti
D
D 1
112 =11 Xvis+i < (n+ (k= 1)d) 7 (@)
p|H =1
p>k
Therefore
1 _1 1
[Tr=|TIr| | TIP| < ®utn+ (k=D (@) 7 <& R D+ (k— 1)) 7.
p|lH p\g p\g

On the other hand, we have H = F'(n + Djod, d) where

D

F(z,y) = [ [(=+iy)

=1

is a binary form in x and y of degree D such that F' has distinct linear factors. From
Conjecture 1.4, we have

Hp Z C3<n + Djod)D7276.
plH

n+(k—1)d
2

Comparing the lower and upper bounds of Hp and using n + Djod > , wWe
plH
get
_ 2+e€

k> ca(n+ (k—1)d) 20D,

We now use n + (k — 1)d > k* to derive that

1— 2+e )_
cs >k Da-7)

Taking € = % and putting D = 20, we get

—1— L2 1
ce > k 8-1) > k2

since ¢ > 2. This is a contradiction since k > ko and kq is sufficiently large. O
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