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Abstract. Motivated by the notions of k-extendability and complete extendability of the
state of a finite level quantum system as described by Doherty et al (Phys. Rev. A, 69:022308),
we introduce parallel definitions in the context of Gaussian states and derive necessary and
sufficient conditions for their extendability. It is shown that every separable Gaussian state is
completely extendable but the converse is still a conjecture. However, the converse is proved
for two mode Gaussian states.
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1. Introduction

One of the most important problems in quantum mechanics as well as quantum information
theory is to determine whether a given bipartite state is separable or entangled [NC10]. There
are several methods in tackling this problem leading to a long list of important publications. A
detailed discussion on this topic is available in the survey articles by Horodecki et al [HHHH09],
and Gühne and Tóth [GT09]. One such condition which is both necessary and sufficient for
separability in finite dimensional product spaces is complete extendability [DPS04].

Definition 1.1. Let k ∈ N. A state ρ ∈ B(HA ⊗ HB) is said to be k-extendable with respect
to system B if there is a state ρ̃ ∈ B(HA ⊗H⊗kB ) which is invariant under any permutation in
H⊗kB and ρ = TrH⊗(k−1)

B
ρ̃, k ≥ 2.

A state ρ ∈ B(HA⊗HB) is said to be completely extendable if it is k-extendable for all k ∈ N.

The following theorem of Doherty, Parrilo, and Spedalieri [DPS04] emphasizes the importance
of the notion of complete extendability.

Theorem A. [DPS04] A bipartite state ρ ∈ B(HA ⊗ HB) is separable if and only if it is
completely extendable with respect to one of its subsystems.

It is fairly simple to see that separability implies complete extendability. However, the proof
of the converse depends upon an application of quantum de Finetti theorem [HM76]. The link
between separability and extendability has found applications in quantum information theory
[BCY11, BH13]. Here we study the same link in the context of quantum Gaussian states.

The importance of finite mode Gaussian states and their covariance matrices in general quan-
tum theory as well as quantum information has been highlighted extensively in the literature.
A comprehensive survey of Gaussian states and their properties can be found in the book of
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Holevo [Hol11]. For their applications to quantum information theory the reader is referred to
the survey article by Weedbrook et al [WPGP+12] as well as Holevo’s book [Hol12]. For our
reference we use [ADMS95, Par10, Par13] for Gaussian states and for notations in the following
sections we use [PS15b] and [PS15a].

If ρ is a state of a quantum system and Xi, i = 1, 2 are two real-valued observables, or
equivalently, self-adjoint operators with finite second moments in the state ρ then the covariance
between X1 and X2 in the state ρ is the scalar quantity

Tr

(
1

2
(X1X2 +X2X1)ρ

)
− (TrX1ρ) · (TrX2ρ) ,

which is denoted by Covρ(X1, X2). Suppose q1, p1; q2, p2; · · · ; qn, pn are the position - momen-
tum pairs of observables of a quantum system with n degrees of freedom obeying the canonical
commutation relations. Then we express

(X1, X2, · · · , X2n) = (q1,−p1, q2,−p2, · · · , qn,−pn).

If ρ is a state in which all the Xj’s have finite second moments we write

(1.1) Sρ = [[Covρ(Xi, Xj)]], i, j ∈ {1, 2, · · · , 2n}.

We call Sρ the covariance matrix of the position momentum observables. If we write

(1.2) J2n =



0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0


or equivalently

⊕n
1

[
0 1
−1 0

]
for the 2n × 2n block diagonal matrix, the complete Heisenberg

uncertainty relations for all the position and momentum observables assume the form of the
following matrix inequality

(1.3) Sρ +
ı

2
J2n ≥ 0.

Conversely, if S is any real 2n × 2n symmetric matrix obeying the inequality S + ı
2
J2n ≥

0, then there exists a state ρ such that S is the covariance matrix Sρ of the observables
q1,−p1; q2,−p2; · · · ; qn,−pn. In such a case ρ can be chosen to be a Gaussian state with
mean zero. Recall [Par10], a state ρ in Γ(H) with H = Cn is an n-mode Gaussian state if its
Fourier transform ρ̂ is given by

(1.4) ρ̂(x + ıy) = exp

[
−ı
√

2(lTx−mTy)−
(
x
y

)T
S

(
x
y

)]
.

for all x, y ∈ Rn where l, m are the momentum-position mean vectors and S their covariance
matrix.
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2. Gaussian extendability

Definition 2.1 (Gaussian extendability). Let k ∈ N. A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn)
is said to be Gaussian k-extendable with respect to the second system if there is a Gaussian
state ρ̃g in Γ(Cm) ⊗ Γ(Cn)⊗k which is invariant under any permutation in Γ(Cn)⊗k and ρg =
Tr Γ(Cn)⊗(k−1) ρ̃g, k ≥ 2.

A Gaussian state ρg in Γ(Cm) ⊗ Γ(Cn) is said to be Gaussian completely extendable if it is
Gaussian k-extendable for every k ∈ N.

Remark 2.1. Since we confine our attention to Gaussian states only, throughout this paper,
we use the terms k-extendability and complete extendability to mean Gaussian k-extendability
and Gaussian complete extendability respectively, unless stated otherwise.

We shall use the following result.

Theorem B. Let

X =

[
A B
B† C

]
be a Hermitian block matrix with real or complex entries, A and C being strictly positive matrices
of order m×m and n× n respectively. Then X ≥ 0 if and only if

A ≥ BC−1B†.

Proof. For a proof, see Theorem 1.3.3 in the book of Bhatia [Bha07]. �

Entanglement property of a Gaussian state depends only on its covariance matrix. Hence
without loss of generality, we can confine our attention to the Gaussian states with mean zero.
Thus an (m+ n)-mode mean zero Gaussian state in Γ(Cm)⊗ Γ(Cn) is uniquely determined by
a 2(m+ n)× 2(m+ n) covariance matrix

S =

[
A B
BT C

]
.

Here A and C are covariance matrices of the m and n-mode marginal states respectively.
If ρ(0,0;S), written in short as ρ(S) in Γ(Cm) ⊗ Γ(Cn) is k-extendable with respect to the

second system, then there exists a real matrix θ of order 2n×2n such that the extended matrix

(2.1) Sk =


A B B · · · B
BT C θ · · · θ
BT θT C · · · θ
...

...
...

. . .
...

BT θT θT · · · C


is the covariance matrix of a Gaussian state in Γ(Cm) ⊗ Γ(Cn)⊗k. Then it satisfies inequality
(1.3) in the form

(2.2) Sk +
ı

2
J2(m+kn) ≥ 0.

Hence by Definition 1.1, ρ(S) is completely extendable if the inequality (2.2) holds for every
k = 1, 2, · · · .
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Let us denote the marginal covariance matrix corresponding to Γ(Cn)⊗k by

Σk(C, θ) =


C θ · · · θ
θT C · · · θ
...

...
. . .

...
θT θT · · · C

 .
If ρ is completely extendable, Sk is a covariance matrix for each k, and hence Σk(C, θ) is a
covariance matrix for each k as well. Using Theorem 1 of [PS15a] (see also [KW09]), such a
pair (C, θ) defines a covariance matrix Σk(C, θ) for each k = 1, 2, 3, · · · if and only if

(i) θ is a real symmetric positive semidefinite matrix, and
(ii) C − θ + ı

2
J2n ≥ 0.

In particular, Sk is of the form

(2.3) Sk =


A B B · · · B
BT C θ · · · θ
BT θ C · · · θ
...

...
...

. . .
...

BT θ θ · · · C

 ,
where θ is a real positive semidefinite matrix.

Our first theorem gives a necessary and sufficient condition for complete extendability of
Gaussian states.

Lemma 2.1. Let ρ be a bipartite Gaussian state in Γ(Cm) ⊗ Γ(Cn) with covariance matrix

S =

[
A B
BT C

]
, where A and C are marginal covariance matrices of the first and second system

respectively. Further, let no pure state be a marginal of the state ρ. Then ρ is completely
extendable with respect to the second system if and only if there exists a real positive matrix θ
such that

(2.4) C +
ı

2
J2n ≥ θ ≥ BT

(
A+

ı

2
J2m

)−1

B.

Proof. Without loss of generality, we may assume that A and C are written in their Williamson
normal forms. Since no pure state is a marginal of ρ, 1

2
I2 is not a sub-matrix of ether A or C.

This implies
(
A+ ı

2
J2m

)
and

(
C + ı

2
J2n

)
are invertible, and hence we can apply Theorem B,

when A and C are replaced respectively by
(
A+ ı

2
J2m

)
and

(
C + ı

2
J2n

)
. Thus,

C +
ı

2
J2n ≥ BT

(
A+

ı

2
J2m

)−1

B.

The necessity of the left part of inequality 2.4 is already contained in the discussion above
(2.3). Hence, all we need to prove is the right part the same inequality starting from (2.2).

Setting |ψk〉 = 1√
k
[1, 1, · · · , 1]T ∈ Ck and

√
kBk = B⊗〈ψk|, the left hand side of (2.2) can be

expressed as A+ ı
2
J2m

√
kBk

√
kBTk Σk + ı

2
J2nk

 .
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By Theorem B this matrix is positive if and only if

Σk +
ı

2
J2nk ≥ kBTk

(
A+

ı

2
J2m

)−1

Bk.

By elementary algebra, this is equivalent to(
C − θ +

ı

2
J2n

)
⊗ (Ik − |ψk〉〈ψk|) +

(
C + k − 1θ +

ı

2
J2n

)
⊗ |ψk〉〈ψk|

≥ kBT
(
A+

ı

2
J2m

)−1

B ⊗ |ψk〉〈ψk| .

Since |ψk〉〈ψk| and Ik−|ψk〉〈ψk| are mutually orthogonal projections, it follows that the inequal-
ity above is equivalent to (

C + k − 1θ +
ı

2
J2n

)
≥ kBT

(
A+

ı

2
J2m

)−1

B,

which can be rewritten as

(2.5)
1

k

(
C − θ +

ı

2
J2n

)
+ θ ≥ BT

(
A+

ı

2
J2m

)−1

B, for every k ∈ N.

Since
(
C − θ + ı

2
J2n

)
is positive and the left hand side decreases monotonically to θ as k →∞,

it follows that (2.5) is equivalent to

θ ≥ BT
(
A+

ı

2
J2m

)−1

B.

�

We now consider the case when the Gaussian state ρg admits a pure marginal state.

Proposition 2.1. If X =

[
A B
BT 1

2
I2s

]
is a Gaussian covariance matrix, then B = 0.

Proof. Without loss of generality, we may assume that A is written in its Williamson normal
form A = ⊕nj=1κjI2, where κj ≥ 1

2
for each j. Then X can be written as
⊕n

j=1 κjI2

B11 · · · B1s
...

. . .
...

Bn1 · · · Bns

BT
11 · · · BT

n1
...

. . .
...

BT
1s · · · BT

ns

⊕
s-copies

1
2
I2


;

where each Bjl is a 2× 2 block real matrix. Thus, to prove the above proposition it is sufficient

to show that corresponding to each j, 1 ≤ j ≤ s, and each l, 1 ≤ l ≤ s, if

[
κjI2 Bjl

BT
jl

1
2
I2

]
is a

Gaussian covariance matrix, then Bjl = 0.
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By local transformations, this last 2× 2 block matrix can be brought to the form κjI2
ejl 0
0 fjl

ejl 0
0 fjl

1
2
I2

 .
The Gaussian property described by inequality (1.3) implies that

(2.6)


κj

ı
2

ejl 0
− ı

2
κj 0 fjl

ejl 0 1
2

ı
2

0 fjl − ı
2

1
2

 ≥ 0.

Observe that

det

κj 0 fjl
0 1

2
ı
2

fjl − ı
2

1
2

 = −
f 2
jl

2
≤ 0,

which contradicts (2.6) unless fjl = 0. Similarly ejl = 0. Hence the block matrix Bjl = 0 for
each j, l. �

Theorem 2.1. Let ρ be a bipartite Gaussian state in Γ(Cm) ⊗ Γ(Cn) with covariance matrix

S =

[
A B
BT C

]
, where A and C are marginal covariance matrices of the first and second system

respectively. Then ρ is completely extendable with respect to the second system if and only if
there exists a real positive matrix θ such that

(2.7) C +
ı

2
J2n ≥ θ ≥ BT

(
A+

ı

2
J2m

)−
B,

where
(
A+ ı

2
J2m

)−
is the Moore-Penrose inverse of A+ ı

2
J2m.

Proof. Since the case where both A+ ı
2
J2m and C + ı

2
J2n are invertible has already been dealt

with in Lemma 2.1, we only need to prove in the case when ρ admits pure marginal states.
Without loss of generality let us assume that A and C are written in their Williamson normal

forms. Let A =
(
⊕k1κjI2

)⊕(
⊕mk+1

1
2
I2

)
= A′

⊕
1
2
I2(m−k) and C = (⊕s1µlI2)

⊕(
⊕ns+1

1
2
I2

)
=

C ′
⊕

1
2
I2(n−s), where κj, µl >

1
2

for every j, l. By Proposition 2.1, B has the form

B =

[
B′

]
,

where B′ is a real matrix of order 2k×2s and rest of the entries are zero matrices of appropriate
order.

Consider the marginal Gaussian state, whose covariance matrix is

(2.8)

[
A′ B′

B′T C ′

]
.

Since A′ and C ′ do not have any principal sub-matrix of the form 1
2
I2, by Lemma 2.1, the

marginal Gaussian state with covariance matrix given by (2.8) is completely extendable if and
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only if there is a real 2s× 2s matrix θ′ such that

C ′ +
ı

2
J2s ≥ θ′ ≥ B′T

(
A′ +

ı

2
J2k

)−1

B′.

Observe that

BT
(
A+

ı

2
J2n

)−
B =

[
B′T

](A′ + ı

2
J2k

)−1⊕ ⊕
(m−k)-copies

[
1
2

ı
2

− ı
2

1
2

][ B′ ]

=

[
B′T

(
A′ + ı

2
J2k

)−1
B′ 02s×2(n−s)

02(n−s)×2s 02(n−s)×2(n−s)

]
,

0 with indices denoting zero matrices. Set θ = θ′
⊕

02(n−s)×2(n−s). It is easy to see that such a
real matrix θ satisfies the conditions of inequality (2.7). Hence the theorem is proved. �

Theorem 2.2. Any separable Gaussian state in a bipartite system is completely extendable.

Proof. Let ρ be an (m+ n) mode Gaussian state with covariance matrix

[
A BT

B C

]
with A and

C being the m and n-mode marginal covariance matrices. By a theorem of Werner and Wolf
[WW01], ρ is separable if and only if there exist m-mode and n-mode Gaussian states with
covariance matrices X and Y respectively such that[

A BT

B C

]
≥
[
X

Y

]
.

Set E = A−X, G = C − Y , and F = B. Then the above inequality can be expressed as[
E F T

F G

]
≥ 0.

By the previous discussions and Theorem 2.1, we need to construct a real, symmetric, n × n
matrix ϕ such that for every k-extension, the matrix

E F T F T F T · · · F T

F G ϕ ϕ · · · ϕ
F ϕ G ϕ · · · ϕ
F ϕ ϕ G · · · ϕ
...

...
...

...
. . .

...
F ϕ ϕ ϕ · · · G

 ≥ 0.

Calculations similar to those in Theorem 2.1, show that this is possible if and only if

(2.9) G ≥ ϕ ≥ FE−F T .

We choose

(2.10) ϕ = tG+ (1− t)FE−F T , t ∈ [0, 1].
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Notice that for every k = 1, 2, · · · ,


X

Y
. . .

Y

+



E F T F T F T · · · F T

F G ϕ ϕ · · · ϕ
F ϕ G ϕ · · · ϕ
F ϕ ϕ G · · · ϕ
...

...
...

...
. . .

...
F ϕ ϕ ϕ · · · G

 =



A BT BT BT · · · BT

B C ϕ ϕ · · · ϕ
B ϕ C ϕ · · · ϕ
B ϕ ϕ C · · · ϕ
...

...
...

...
. . .

...
B ϕ ϕ ϕ · · · C

 ,

where the first term in the left hand side, X⊕ (⊕kY ), is a Gaussian covariance matrix, and the
second one is a positive matrix thanks to the construction above. Thus the right hand side is
also a Gaussian covariance matrix. Hence the theorem is proved with the extension matrix ϕ
satisfying equation (2.10). �

We conjecture that the converse is also true, i.e. any completely extendable Gaussian state is
separable. This is same as saying that separability is equivalent to the existence of a real matrix

in the convex matrix interval
[
BT
(
A+ ı

2
J2m

)−
B,C + ı

2
J2n

]
whose end points are complex

matrices.
Though we do not have a proof of this statement in general, we prove it for states in two

mode systems.

Theorem 2.3. Any two-mode quantum Gaussian state ρ is completely extendable if and only
if it is separable.

Proof. Since entanglement of a state is invariant under local unitary transformations, we may
assume the covariance matrix Sρ has the following form

(2.11) Sρ =

 λI2
α 0
0 −β

α 0
0 −β µI2

 , where λ, µ ≥ 1

2
, α, β ≥ 0.

Furthermore, we may assume both λ, µ > 1
2
, because, otherwise the off-diagonal blocks would

be zero and the state would be both separable and completely extendable. Using inequality
(1.3) and Theorem B, we conclude that Sρ is a Gaussian covariance matrix if and only if(

µI2 +
ı

2
J2

)
≥

[
α 0
0 −β

](
λI2 +

ı

2
J2

)−1
[
α 0
0 −β

]
=

1

λ2 − 1
4

[
λα2 ı

2
αβ

− ı
2
αβ λβ2

]
=

[
α2δ ı

2
αβδ
λ

− ı
2
αβδ
λ

β2δ

]
where δ =

δ

λ2 − 1
4

⇔
[

µ− α2δ ı
2

(
1− αβδ

λ

)
− ı

2

(
1− αβδ

λ

)
µ− β2δ

]
≥ 0.
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Simplifying we get conditions for Gaussianity as:

(2.12)


µ ≥ α2δ and µ ≥ β2δ,

(µ− α2δ)(µ− β2δ) ≥ 1
4

(
1− αβδ

λ

)2
.

By Simon’s theorem [Sim00], a two mode Gaussian state is entangled if and only if it is not
positive under partial transpose. Sρ is entangled if and only if

λ ı
2

α 0
− ı

2
λ 0 −β

α 0 µ − ı
2

0 −β ı
2

µ

 6≥ 0.

Using Ando’s theorem and calculations similar to Gaussianity, the above matrix condition holds
if and only if [

µ− α2δ − ı
2

(
1 + αβδ

λ

)
ı
2

(
1 + αβδ

λ

)
µ− β2δ

]
6≥ 0.

The condition for entanglement becomes

(2.13) (µ− α2δ)(µ− β2δ) <
1

4

(
1 +

αβδ

λ

)2

.

Combining (2.12) and (2.13) together, a two-mode Gaussian state as in (2.11) is entangled if
and only if

(2.14)


µ ≥ α2δ and µ ≥ β2δ,

1
4

(
1− αβδ

λ

)2 ≤ (µ− α2δ)(µ− β2δ) < 1
4

(
1 + αβδ

λ

)2
.

If in addition, the entangled state is also completely extendable, then by conditions (i) and

(ii) of theorem 2.1, there exists a real symmetric positive matrix θ =

[
p r
r q

]
such that[

µ ı
2

− ı
2

µ

]
≥
[
p r
r q

]
≥
[
α2δ ı

2
αβδ
λ

− ı
2
αβδ
λ

β2δ

]
.

Taking real parts entry wise in this inequality we may assume that p and q are of the form;

p = (1− x)µ+ xα2δ, 0 ≤ x ≤ 1,

q = (1− y)µ+ yβ2δ, 0 ≤ y ≤ 1.

Using the determinant conditions for positivity in the left and left and right parts of the matrix
inequalities, we get:

(2.15) xy(µ− α2δ)(µ− β2δ) ≥ 1

4
+ r2,

(2.16) (1− x)(1− y)(µ− α2δ)(µ− β2δ) ≥ 1

4

α2β2δ2

λ2
+ r2.
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Set D2 = 4(µ− α2δ)(µ− β2δ). By inequalities (2.14) – (2.16) we get the following:(
1− αβδ

λ

)2

≤ D2 <

(
1 +

αβδ

λ

)2

(2.17)

xyD2 ≥ 1 + 4r2(2.18)

(1− x)(1− y)D2 ≥ α2β2δ2

λ2
+ 4r2.(2.19)

From (2.17) we get

(2.20) D < 1 +
αβδ

λ
.

From (2.18) and (2.19) we get

(2.21)
(√

xy +
√

(1− x)(1− y)
)
D ≥

√
1 + 4r2 +

√
α2β2δ2

λ2
+ 4r2 ≥ 1 +

αβδ

λ
> D.

a contradiction, because the coefficient of D on the left hand side of (2.21) is in [0, 1].
Hence a two mode quantum Gaussian state is completely entangled if and only if it is sepa-

rable. �

3. Conclusion

Motivated by the notions of extendability and complete extendability of finite level states
as described by Doherty et al [DPS04] we introduce similar definitions for Gaussian states.
A necessary and sufficient condition is obtained for the complete extendability of a bipartite
Gaussian state in terms of its covariance matrix. A bipartite separable Gaussian state turns
out to be completely extendable. If a 2-mode Gaussian state is completely extendable then it
is separable.

It is conjectured that the complete extendability of a bipartite Gaussian state with arbitrary
modes is separable.
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