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Summary

We present a method of construction of orthogonal Latin hypercube de-
signs with n = 4s + 3 rows where s is a positive integer. All the designs
constructed in this paper are believed to be new.
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1. Introduction

Latin hypercube designs are widely used for computer experiments. A
Latin hypercube design, LH(n,m), is an n × m matrix whose columns are
permutations of the column vector (1, 2, ..., n)′. In the context of computer
experiments, the columns of a Latin hypercube design represent the input
factors and the rows, the experimental runs. It is some times convenient to
visualize a Latin hypercube design in its centred form. For a positive integer
n, let gn be an n × 1 vector with its ith element equal to (i − (n + 1)/2),
1 ≤ i ≤ n, and Gn be the set of all permutations of gn. A centred Latin
hypercube design is an n×m matrix with columns from Gn. Henceforth, we
consider Latin hypercube designs in the centred form only. A (centred) Latin
hypercube design L is called orthogonal if the columns of L are mutually
orthogonal.

We shall denote an orthogonal Latin hypercube design with n rows and
m columns as OLH1(n,m). A subclass of OLH1(n,m) designs consists of
those that satisfy the following two conditions:
(a) the entry-wise square of each column is orthogonal to all columns in the
design;
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(b) the entry-wise product of any two distinct columns is orthogonal to all
columns in the design.

An orthogonal Latin hypercube design with n rows and m columns satis-
fying the conditions (a) and (b) will be denoted by OLH2(n,m). Whereas an
OLH1(n,m) design ensures that the estimates of linear effects are mutually
uncorrelated, an OLH2(n,m) design ensures that not only the estimates of
linear effects are mutually uncorrelated but they are also are uncorrelated
with the estimates of quadratic and interaction effects in a second order
model.

A variety of methods of construction of OLH1(n,m) and OLH2(n,m)
designs have been proposed in the literature. Methods of construction of
OLH1(n,m) designs were reported for example, by Steinberg & Lin (2006),
Lin et al. (2009) and Lin et al. (2010), Georgiou (2009) and Dey & Sarkar
(2016). The following families of OLH2(n,m) designs are also known; in the
following, u ≥ 1 is an integer:

(i) n = 2u+1, m = 2u and n = 2u+1 + 1, m = 2u; Ye (1998).
(ii) n = 2u+1, m = u + 1 +

(
u
2

)
and n = 2u+1 + 1, m = u + 1 +

(
u
2

)
, u ≤ 11;

Cioppa & Lucas (2007).
(iii) n = 2u+1, m = 2u and n = 2u+1 + 1, m = 2u; Sun et al. (2009).
(iv) n = r2u+1, m = 2u and n = r2u+1 + 1, m = 2u, r ≥ 1 being an integer;
Sun et al. (2010), Yang & Liu (2012).

Georgiou (2009) also constructed some OLH2(n,m) designs using general-
ized orthogonal designs. Dey & Sarkar (2016) reported three new OLH2(n,m)
designs, obtained via computer search. Recently, Parui et al. (2016) pro-
duced some OLH2(n,m) designs with only m = 3 columns, following a
method similar to that of Yang & Liu (2012).

Despite the availability of several families of OLH2(n,m) designs, there
exist values of n for which such designs are not known, especially with more
than three columns. The families of OLH2(n,m) designs given in (i)–(iv)
above cover the cases n ≡ 0, 1 (mod 4). Also, as shown by Lin et al. (2010),
no OLH1(n,m) (and hence, OLH2(n,m)) design can exist if n ≡ 2 (mod 4).
When n ≡ 3 (mod 4). Parui et al. (2016) constructed OLH2(n,m) designs
with m = 3. In this paper, we give a method of construction of OLH2(n,m)
designs with n ≡ 3 (mod 4) rows and m = 4 or 5 columns. The method uses
an orthogonal design in conjunction with an existing OLH2(n,m) design.
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2. The method of construction

For an integer s, let as = (−xs,−xs−1, . . . ,−x2,−x1, x1, x2, . . . , xs−1, xs)
′ be

a 2s × 1 vector, where the xi’s are real numbers. For our purpose, we as-
sume that no xi equals zero. Let A be a 2s × m matrix whose columns
are permutations of as. The matrix A is called an orthogonal design if the
columns of A are mutually orthogonal. Such orthogonal designs are useful in
constructing orthogonal Latin hypercube designs. Four orthogonal designs
with s = 1, 2, 4, 8 are displayed in Lin et al. (2010). Since we shall be using
orthogonal designs with s = 4, 8 in our construction, we display these in
Table 1.

An OLH2(15, 4) design was reported by Dey & Sarkar (2016). We have
now found an OLH2(19, 5) design via a computer search. Both these designs
are new and cannot be constructed using the existing methods. As we shall
use these two designs in our construction, these are displayed in Table 2.

Remark. Note that in both the designs in Table 1, the last s rows are
negatives of the first s rows. Similarly, for both the designs in Table 2, if
we exclude the row of all zeros, then the last (n− 1)/2 rows are negatives of
the first (n− 1)/2 rows. These facts are useful in the construction described
below.

We first have the following result.

Lemma. Let A1 be an a × b matrix and A = [A′1, −A′1]
′. Then, (i) the

entry-wise square of each column of A is orthogonal to all columns of A and
(ii) the entry-wise product of any two distinct columns of A is orthogonal to
all columns of A.

Proof. We provide a proof of (i), the proof of (ii) is similar. Let the columns
of A1 be u1, . . . ub. Define vi = ui ∗ ui, 1 ≤ i ≤ b, where * denotes the
entry-wise (or, Hadamard) product and let B = [v1v2, . . . , vb]. Then, the
Hadamard product of the columns of A can be written as [B′, B′]′. The
assertion (i) is now immediate.

We now give a method of construction of OLH2(n,m) designs where n ≡
3 (mod 4).

Theorem 1. Let n = 4s + 3. Then there exists an OLH2(4s + 3, 4) design.

Proof. We distinguish two cases according as s is odd or even.

Case 1: s odd, s ≥ 3: When s = 3, we have an OLH2(15, 4) shown in Table
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2. Now, let s ≥ 5. For j = 1, 2, . . . , (s − 3)/2, let Dj be an 8 × 4 matrix
obtained by replacing the elements x1, x2, x3 and x4 by 8 + 4(j−1), 9 + 4(j−
1), 10 + 4(j− 1) and 11 + 4(j− 1), respectively, in the first orthogonal design
of Table 1. Also, let d15 be the OLH2(15, 4) design displayed in Table 2. Let

d(1) =


d15
D1

D2
...

D s−3
2

 .

Then, using the Lemma and the facts in the Remark, it is easily seen that
d(1) is an OLH2(4s + 3, 4) design, where s ≥ 5 is an odd integer.

Case 2: s ≥ 4 even: For s = 4, we have an OLH2(19, 4) obtained by deleting a
column of the OLH2(19, 5) displayed in Table 2. Call this design d19,4. Now,
let s ≥ 6. For j = 1, 2, . . . , (s− 4)/2, let Ej be an 8 × 4 matrix obtained by
replacing the elements x1, x2, x3 and x4 by 10 + 4(j − 1).11 + 4(j − 1), 12 +
4(j−1) and 13+4(j−1), respectively, in the first orthogonal design of Table
1. Let

d(2) =


d19,4
E1

E2
...

E s−4
2

 .

Then, it is easily seen that d(2) is an OLH2(4s + 3, 4) design, where s ≥ 6 is
an even integer.

In a special case, we can obtain an OLH2(n,m) design with m = 5
columns. Suppose n = 4s + 3 and s ≡ 0 (mod 4). This implies that
n ≡ 3 (mod 16). For s = 4, we have an OLH2(19, 5) design, displayed in
Table 2. We denote this design by d19,5. Let s ≡ 0 (mod 4), s ≥ 8. For
j = 1, 2, . . . , (s−4)/4, replace the elements x1, x2, . . . , x8 in any 5 columns of
the second orthogonal design in Table 1 by 10+4(j−1), 11+4(j−1), . . . , 17+
4(j−1), respectively, to obtain the 16×5 matrices Fj, j = 1, 2, . . . , s−4

4
. Let
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d(3) be the design

d(3) =


d19,5
F1

F2
...

F s−4
4

 .

Then d(3) is an OLH2(4s + 3, 5) design where s ≡ 0 (mod 4). We thus have
the following result.

Theorem 2. Let n = 4s + 3, where s ≡ 0 (mod 4). Then there exists an
OLH2(4s + 3, 5) design.

Table 1
Orthogonal designs for s = 4, 8

s = 4 s = 8

x1 −x2 x4 x3

x2 x1 x3 −x4

x3 −x4 −x2 −x1

x4 x3 −x1 x2

−x1 x2 −x4 −x3

−x2 −x1 −x3 x4

−x3 x4 x2 x1

−x4 −x3 x1 −x2

x1 −x2 −x4 −x3 −x8 x7 x5 x6

x2 x1 −x3 x4 −x7 −x8 −x6 x5

x3 −x4 x2 x1 −x6 −x5 x7 −x8

x4 x3 x1 −x2 −x5 x6 −x8 −x7

x5 −x6 −x8 x7 x4 x3 −x1 −x2

x6 x5 −x7 −x8 x3 −x4 x2 −x1

x7 −x8 x6 −x5 x2 −x1 −x3 x4

x8 x7 x5 x6 x1 x2 x4 x3

−x1 x2 x4 x3 x8 −x7 −x5 −x6

−x2 −x1 x3 −x4 x7 x8 x6 −x5

−x3 x4 −x2 −x1 x6 x5 −x7 x8

−x4 −x3 −x1 x2 x5 −x6 x8 x7

−x5 x6 x8 −x7 −x4 −x3 x1 x2

−x6 −x5 x7 x8 −x3 x4 −x2 x1

−x7 x8 −x6 x5 −x2 x1 x3 −x4

−x8 −x7 −x5 −x6 −x1 −x2 −x4 −x3
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Table 2
Orthogonal Latin hypercube designs OLH(15, 4) and OLH(19, 5)

OLH2(15, 4) OLH2(19, 5)

−7 −7 −1 −3
−6 6 −4 −4
−5 5 6 6
−4 −4 5 1
−3 3 −2 −2
−2 −2 −3 5
−1 −1 −7 7

0 0 0 0
7 7 1 3
6 −6 4 4
5 −5 −6 −6
4 4 −5 −1
3 −3 2 2
2 2 3 −5
1 1 7 −7

−9 8 1 1 8
−8 −3 7 6 −5
−7 4 −9 −8 −7
−6 −7 −4 7 −3
−5 1 5 −4 4
−4 −2 −6 3 2
−3 −6 3 −5 6
−2 −9 2 −9 −1
−1 5 8 −2 −9

0 0 0 0 0
9 −8 −1 −1 −8
8 3 −7 −6 5
7 −4 9 8 7
6 7 4 −7 3
5 −1 −5 4 −4
4 2 6 −3 −2
3 6 −3 5 −6
2 9 −2 9 1
1 −5 −8 2 9
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