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ASYMPTOTIC BEHAVIOUR OF GAUSSIAN MINIMA

ARIJIT CHAKRABARTY AND GENNADY SAMORODNITSKY

ABSTRACT. We investigate what happens when an entire sample path
of a smooth Gaussian process on a compact interval lies above a high
level. Specifically, we determine the precise asymptotic probability of
such an event, the extent to which the high level is exceeded, the con-
ditional shape of the process above the high level, and the location of
the minimum of the process given that the sample path is above a high
level.

1. INTRODUCTION

Extremal behaviour of Gaussian processes has been the subject of nu-
merous studies. It is of interest from the point of view of the extreme value
theory, or large deviations theory and of the theory of sample path proper-
ties of stochastic processes. The asymptotic distribution of the supremum
of bounded Gaussian processes has been very thoroughly studied; highlights
include Dudley (1973), Berman and Koéno (1989) and Talagrand (1987),
and the books of Piterbarg (1996), Adler and Taylor (2007) and Azails and
Wschebor (2009). In this paper we are interested in another type of the
asymptotic behaviour of Gaussian processes: the situation when an entire
sample path of the process is above a high level. Such situations are im-
portant for understanding the structure of the high level excursion sets of
Gaussian random processes and fields.

Very loosely speaking, we are interested in the asymptotics of the Gauss-
ian minima when these minima are high. Dealing with high Gaussian min-
ima is not easy. A finite-dimensional situation (in the language of dependent
lognormal random variables) is considered in Guliashvili and Tankov (2016).
We, on the other hand, consider minima of zero mean sample continuous
Gaussian processes. The processes we consider are often stationary, but
some nonstationary processes fall within our framework as well.

We now describe the questions of interest to us more concretely. Let
X := (X : t € R) be a centered Gaussian process with continuous paths,
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defined on some probability space (€2, F, P). Let [a, b] be a compact interval,
and let u > 0 be a high level. We study a number of problems related to the
situation described above, i.e. the situation when the entire sample path
(X : t € [a,b]) lies above the level u. Specifically, we are interested in the
following questions.

Question 1. What is the precise asymptotic behaviour of the probability

P | min X; > u
a<t<b
as u — 0o !

Question 2. Given the event

(1.1) B, = { min X; > u} ,
a<t<b
how does the conditional distribution of (X; : t € [a,b]) behave as u — oo ?
Question 3. Conditionally on B,, what can be said about the asymp-
totics of the overshoot

min X; —u,
a<t<b

as u — 0o ?
Question 4. Consider the location of the minimum of the process,
arg 1ol Xt
taken to be the leftmost location of the minimum in case there are ties (it
is elementary that this location is a well defined random variable). What
is the asymptotic distribution of the location of the minimum given B,, as
u— 00 7?

Some information on Questions 1 and 2 is contained in Adler et al. (2014) .
Regarding Question 1, the latter paper describes the probabilities of the
type P (ming<¢<p X; > u) on the logarithmic level, while in the present pa-
per we are interested in precise asymptotics of that probability. Regarding
Question 2, the latter paper studies the asymptotic behaviour of the ratio

1
—Xt,agtgb
u

given B, as u — 0o, while in the present paper we would like to know the
deviations of the sample path from this linear in v behaviour. Furthermore,
the paper of Adler et al. (2014) provides no information on Question 3 and
Question 4 above.

For stationary (not necessarily Gaussian) processes a general theory of
the location of the supremum (or infimum) of the process is developed in
Samorodnitsky and Shen (2013). However, the limiting behaviour of the
minimum location in Question 4 even in the stationary case is outside of
that theory.

We obtain fairly precise answers to the above questions. However, in order
to achieve this level of precision, we will impose much stricter smoothness
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assumptions on the process X then those imposed in Adler et al. (2014).
We describe the precise assumptions on the process in Section 2. Section
3 contains preliminary results, while the main results of the paper with
answers to Questions 1-4 are stated in Section 4. These results are proved
in Section 5. Finally, Section 6 presents two examples illustrating the main
results of the paper.

2. ASSUMPTIONS ON THE PROCESS X

In this section we will state and discuss the assumptions on the Gaussian
process X we will use in the rest of the paper. Among others, these assump-
tions will guarantee that our process is very smooth. Our main interest lies
in stationary Gaussian processes, and for these processes the assumptions
are easy to state. However, our main results in the subsequent sections do
not depend on the stationarity of the process. Rather, they depend on cer-
tain properties of the process which follow, in the stationary case, from a
small number of basic assumptions. These properties are discussed in the
remainder of this section.

We use the notation

R(s,t) == E(X:Xy),s,t€R

for the covariance function of the process X. If the process is stationary,
then its covariance function is related to the spectral measure of the process
by writing (with the usual abuse of notation related to the dual use of R to
denote both a function of one variable and a function of two variables)

R(s,t) =R(t—s) = / et Py (dx) s, t € R,

—0o0

where ¢ := v/—1. Recall that the spectral measure Fx of the process X is a
finite symmetric Borel measure on R.

When the process X is stationary, we will impose the following conditions
on the spectral measure Fx.

S1. For all t € R,

(2.1) /OO e Fx(dz) < 0.

—00
S2. The support of Fx has at least one accumulation point.

The canonical example of such a Gaussian process is the process with the
Gaussian spectral density

1 2
2.2 F(dz) = ——e " /?dz, z € R.

(22 (dr) = ——

This process was considered in detail in Adler et al. (2014), and we will use

it in this paper to illustrate our results.
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The following proposition establishes certain consequences of the condi-
tions S1 and S2 in the case of a stationary process. It is these consequences,
rather than stationarity itself, that will be used in much of the paper.

Proposition 2.1. Let X be a stationary Gaussian process whose spectral
measure satisfies S1 and S2. Then the process X has the following properties.

Property 1. The function R(-,-) has a power expansion

o oo
R(s,t) = Z Zrmnsmt”,s,t eR,

m=0n=0
for some (rypn : myn >0) C R.

Property 2. For any compact interval [a,b], the family (X; : t € [a,b]) is
non-negatively non-degenerate. That is, for any probability measure v on

[a, b],
Var </abth/(dt)> _ /ab /abR(s,t)u(ds)z/(dt) 0.

Property 3. The sample paths of X are infinitely differentiable, and the
covariance matrix of any finite sub-collection of the family (Xt(n) teR, n=
0,1,...) is non-singular. Here and elsewhere, for any function f andn > 0,
) denotes its n-th derivative whenever it exists, with f(0) = f.

Proof. The integral

R(z) := / e** Fx(dx),z € C,
R
defines, clearly, an analytic function, and then R(s,t) = R(t—s) for s,t € R
has Property 1.
To check Property 2, suppose for the sake of contradiction, that there
exists a probability measure v on [a, b] such that

/ab /;R(s,t)u(ds)v(dt) =0.

Clearly, the left hand side is the same as

/0; /ab ey (dt)

Therefore, it follows that
b
/ e y(dt) =0,
a

for every z in the support of Fx. The left hand side is an analytic function
of the complex variable x. Since the equality holds on the support of Fly,
which has an accumulation point, by the assumption S2, the equality holds
for all x € Cincluding x = 0. This contradicts the fact that v is a probability
measure and thus verifies Property 2.

2
FX(dIL’) .
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For Property 3 notice that the integral
(2.3) Y(z):= / e**Z(dx),z € C,
R

where Z is a complex-valued Gaussian random measure with control measure
Fx, defines a random analytic function whose restriction to z € R coincides
distributionally with X. Therefore, the sample paths of X are infinitely
differentiable.

Suppose that for some array (am; : m =0,1,...,n, j =1,...,k) of real
numbers and some —o00 < §1 < ... < 8§ < 00,

n
2

k
m=0 j=

aijs(;”) =0.
1

Letting Y be as in (2.3), and using the fact that the restriction of ¥ to R
has the same distribution as X, it follows that

o) n k
/ Zamj(m)mebij Z(dx) =0 as. .

% \m=0j=1
Then
n k
(2.4) Z Z amj(tx)™e™ =0 for all  in the support of Fx.
m=0 j=1

Note that the left hand side of (2.4), viewed as a function of z € C, is an
analytic function. This function vanishes on the support of Fx, which was
assumed to have an accumulation point. Therefore, the analytic function
vanishes everywhere, in particular for = € R.

We claim that this is possible only if ay,; = 0 for all m = 0,...,n, j =
1,..., k. If n =0, then the claim follows from the uniqueness of the Fourier
transform of finite signed measures, so assume that n > 1. We start with
proving that a,; = 0 for all j = 1,..., k. Consider the function

k
h(z) = Zanj(w:)e”sf, reR.

j=1
Observe that the the sum in the left hand side of (2.4) can be written as
()"~ h(z) + g(x), = €R,

where |g(z)| < C|z|*~! for some 0 < C < oco. Therefore, the function h
must be bounded on R, and this implies that

k
D anie ™| =: i(x)| = O(1/|z]) as |x| = oco.
j=1
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Unless a,; = 0 for all j = 1,...,k this is impossible since the implication
would be that the function |1|? was integrable over R, which contradicts the
fact that this function is the Fourier transform of a discrete signed measure.

Since we have shown that a,; = 0 for all j = 1,...,k, we have succeeded
in reducing n by 1, so we can proceed in an inductive manner.
This completes the proof of the proposition. O

3. PRELIMINARY RESULTS

We fix an interval [a,b], once and for all, where —0co < a < b < o0,
and proceed with a number of preliminary results that are important for
the main results in the subsequent sections. Most of these results address
several issues related to the optimization problem

b b
3.1 min R(s,t)v(ds)v(dt),
(31) i [ [ Res wtasywan
where the minimum is taken over all Borel probability measures on |a, b].
The importance of this problem to the questions studied in this paper was
shows in Adler et al. (2014).

Proposition 3.1. (a) Let X be a Gaussian process with Property 1, Prop-
erty 2 and Property 3. Assume, additionally, that for every fized s € |a,b],
(3.2) limsup R(s,t) <0.

t—o00
Then the minimization problem (3.1) has a unique minimizer v,. Further-
more, the support of vy has a finite cardinality and the minimum value in
(3.1) is strictly positive.

(b) If X is a stationary Gaussian process whose spectral measure satisfies
S1 and S2, then the conclusion in part (a) holds.

Proof. We start with part (a). The fact that the minimum is achieved follows
from continuity of the functional being optimized in the topology of weak
convergence on Mj[a,b] and compactness of that space. The claim that the
minimum value is positive follows from Property 2. Let v, be a minimizer
in the optimization problem (3.1), and define

b
(3.3) Y = / Xsvi(ds) .
Let
it) =E(X]Y =1),teR,
and observe that

b
(3.4) fi(t) = Cc:,,éj((;;/ )L R\(Zrt();;(dS)

,teR.
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By Theorem 5.1 in Adler et al. (2014), i > 1 on [a,b], and i = 1 on the
support of v,. Since [ is real analytic on R by Property 1, there are two
possibilities. Either

(3.5) pa(t)=1forallt e R,
or the set
(3.6) S:={tela,b]:at) =1}

has no accumulation points and, hence, is a set of finite cardinality. In the
latter case, the support of v, is also a finite set. We will show that (3.5) is
impossible and, hence, the latter option is the only possible one.

Indeed, suppose that (3.5) holds. Then the function

b
o) ;:/ R(s,t)va(ds) .t € R

is a positive constant. However, by (3.2) and Fatou’s lemma, it follows that

limsupg(t) <0,
t—o00
leading to a contradiction. We conclude that S is a finite set and so is the
support of v,.

In order to prove the uniqueness of an optimal measure, suppose that vy
and vy are two different optimal measures. By Property 3, the finitely many
random variables X; for ¢ in the union of the supports of the two measures
are linearly independent and, hence, the function

o = Var (/ab X, (avi(ds) + (1 — a)w(ds))>

is strictly convex on [0,1]. Such a function cannot take the same minimal
value at the two endpoints 0 and 1, and the uniqueness follows.

We now prove part (b) of the proposition. By Proposition 2.1 the assump-
tions S1 and S2 on the spectral measure of a stationary Gaussian process X
imply Property 1, Property 2 and Property 3, so the only ingredient missing
in an attempt to apply the statement of part (a) to part (b) is that, in part
(b), we have not assumed (3.2). Since the only place in the proof of part (a)
where (3.2) is used, is in ruling out (3.5), we only need to show that (3.5)
can be ruled out under the assumptions of part (b) as well.

Indeed, suppose that (3.5) holds. The assumption S1 implies that R can
be extended to an analytic function on C x C by

R(s,t) = / =) Py (dx), s,t € C.

—0o0

Then the analytic function

b
o) :/ Ris,t) v(ds), t € C
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must be a real constant. Note that

g(t) = /OO e h(z) Fx (dz),

—0o0

where

Write
h(z) = hi(x) + tha(z), z € R,

where hq is a real even function and hs is a real odd function. Then, since
g is a real constant, we have

oo

[e.@]
g(t) = / costzx hi(x) Fx(dx) — / sintx ho(x) Fx(dx), t € R.
— 50 —o0

Since ¢ is an even function (a constant one), the second term in the right
hand side vanishes, so that

oo
g(t) = / costx hy(z) Fx(dx), t € R.
—00
By the uniqueness of the Fourier transform, the only finite signed measures
to have constant transforms are point masses at the origin, so we must
have hy = 0 Fx-a.e. on {z # 0}. Since the function h; is real analytic,
and the support of F'x has an accumulation point, we conclude that hy = 0
everywhere. This is not possible since hy is the characteristic function of the
probability measure obtained by making v a symmetric probability measure
on [a,b] U [—b, —a]. This rules out (3.5). O

Remark 1. The property (3.2) will not be used again in the sequel. It is
clear that, in the stationary case, (3.2) is not implied by the assumptions
S1 and S2 (but (3.2) is not needed in the stationary case for the statement
of Proposition 3.1 to be true). Interestingly, in the non-stationary case the
statement of Proposition 3.1 might be false if (3.2) is not assumed. To see
this, consider the following example. Let Y be a standard normal random
variable and (Z; : t € R) be a stationary mean zero Gaussian process,
independent of Y, with covariance

E(Z,Z) = e 570/2 st eR.
Define
1
Xt:Y—FZt—/stS,tGR.
0

Clearly, the process (X; : t € R) has Property 1, Property 2 and Property
3. However, if [a,b] = [0, 1], then the minimizer in (3.1) is the Lebesgue
measure on [0, 1], and it does not have a support of a finite cardinality.
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We denote by S the support of the unique minimizer v, in the mini-
mization problem (3.1). Two objects related to this set will be of crucial
importance in the sequel. First of all, we let

(3.7) u(t) :=E(Xy|Xs=1forall s€ S) ,teR.

The importance of the function p stems from the following claim: condi-
tionally on the event B, in (1.1), as u — oo,

(3.8) (u_lX(t), a<t<b)— (ut),a<t<b)

in probability, in C|a,b]. Indeed, it was shown in Adler et al. (2014) that
(3.8) holds with the function p replaced by the function fi defined in the
proof of Proposition 3.1. Therefore, we only need to show that u = f.

Enumerate the elements of S as {t1,...,t} and write
k
B(Xi|Xy,,.... Xy,) =) a;(t) Xy, t €R.
j=1

Then, with Y defined in (3.3),

Aty = B(X,|Y) = E(E(Xt]th, LX) \Y)

E

aj (t)th

k
=1

J

k
Zaj(t)Y

since [1 is equal to one at all points of the support of the measure v. That
is,

k
Y| =ity
j=1

k
at) = a;(t) = pu(t),
j=1

as required.
We record for future use several useful facts about the function p.

Lemma 3.1. The function u is a restriction to R of an analytic function
on C and for each j =0,1,2,... and t € R,

(3.9) E(Xt(j)|Xs:1f0r allsES) =u9(t), teR.

Further, for each s € SN (a,b) there exists an even positive integer n such
that

pD(s) == D (s) = 0 < ulM(s).

In particular, there is € > 0 such that p®(t) > 0 for each t € (s —e,s) U
(s,s+¢).
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Similarly, if a € S, then p™M(a) > 0. If equality holds, then there is e > 0
such that
@ (t) > 0, for each t € (a,a+¢).
Ifbe S, then p(MV(b) < 0. If equality holds, then there is € > 0 such that
1P (t) > 0, for each t € (b—e,b).

Proof. We already know that p is a restriction to R of an analytic function,
and (3.9) is obvious. The final property of p follows from the fact that it is
analytic. ([

If we define the “essential” set by
(3.10) E:={tea,b]:pu(t)=1},

then we have proved above that E = S, defined in (3.6). In particular, we
showed in the proof of Proposition 3.1 that under the assumptions of the
proposition, the essential set ¥ O S is a finite set as well.

It turns out that in many cases the support S of the optimal measure
for the optimization problem (3.1) contains the endpoint of the interval.
This holds, in particular, under certain monotonicity assumption in the
covariance function of the process. Specific sufficient conditions are given in
the following proposition.

Proposition 3.2. (a) Suppose that the following two conditions hold: for
all a < 51 <59 <53 <D,

(3.11) R(s1,s3) < min{R(s1,s2), R(s2,53)},
and for all s,t € [a,b],
(3.12) R(s,t) < min{R(s,s), R(t,t)} whenever s #t.

Then any finite support optimal measure for the optimization problem (3.1)
puts positive masses at the endpoints a and b of the interval.

(b) Suppose that X is a stationary Gaussian process whose covariance
function R is nonincreasing on [0,b — a|. If the spectral measure Fx is not
a point mass at the origin, then the conclusion of part (a) holds.

Proof. We start with part (a). Assume, to the contrary, that v puts no mass
at the point a. Enumerate the elements of the support of v (which we still
denote by S) as {ti1,...,tx}, with the smallest of these elements, t; > a. If
v({ti}) =a; >0,i=1,...,k, then

b k kK
Var </ XS V(dS)) = Z Z aiajR(ti, tj) .
a i=1 j=1
Define a probability measure
k

Ve := €04 + (a1 — €)0y, + Zai&i 0<e<o.
i=2
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Notice that vy = v, and

%Var ( / "X, Ve(ds)>

The inequality follows from the observation that a < t; < t; for all ¢ and
hence by (3.11) the summands are non-positive, and the term with i = 1 is
strictly negative by (3.12). This contradicts the fact that v is an optimal
measure. Thus, a € S. A similar argument shows that b € S.

For part (b), we only need to check that the assumptions of part (a) hold.
The assumption (3.11) follows from monotonicity of the covariance function
of the stationary process. The only additional argument needed for (3.12)
is the observation that, unless the spectral measure is concentrated at the
origin, the covariance function cannot be constant in an neighborhood of
the origin. O

k
= 220@ [R(a,ti) - R(thti)]
e=0 i=1

< 0.

We will use in the sequel several facts about the finite-dimensional cen-
tered Gaussian vector (X;,t € S). These facts are collected in the propo-
sition below. We will use the common notation f(u) ~ cg(u) as u — oo
(where ¢ is a nonvanishing function) to mean that

fw)

3.13 lim —= =c¢
( ) U—00 g(u)

Note that the possibility ¢ = 0 is allowed.

Proposition 3.3. Under the assumptions of either part (a) or part (b) of
Proposition 3.1, let S := {t1,...,tx} be the finite cardinality support of the
unique minimizer in (3.1), and let ¥ be the covariance matriz of the vector

(Xt Xe,).
(i) Denote
(3.14) 6:=%'1,

where 1 is the column vector of length k with entries equal to 1 (in the sequel,
vectors are column vectors unless mentioned otherwise). Then,

(3.15) 0; >0 foralll <j<k.
(i) Conditionally on the event {minicg Xy > u}, we have
(u(Xy, —u), ..., u(Xy, —u)) = (E1,..., Ep)

as u — oo (here and in similar statements in the sequel, the law of the
random vector in the left hand side is computed, for every u > 0, as the
conditional law given mingeg X; > u). Here (Ey,...,Ey) are independent
exponential random variables with parameters 01, ...,0, respectively.



12 ARIJIT CHAKRABARTY AND GENNADY SAMORODNITSKY

(iii) The distributional tail of the minimal component of the Gaussian
vector (th, - ,th) satisfies

. c Lo
(3.16) P(];rélg}Xt > u) ~ 0 o exp {—2u 01 +... —|—«9k)}
as u — oo, where
(3.17) ¢ = (2m)7F/2(det 2)71/2,

Proof. We start with part (i). Recall that by Property 3, the inverse matrix
¥yl = (ai;l) is well defined and, hence, so is the vector . Suppose, for
instance, that, to the contrary,

k
(3.18) > oyl <o0.
j=1

Define a k x 1 vector A by
MO = w(ft}), 1< 5 <k,

where v is the unique minimizer in (3.1). In other words, A(%) is the mini-
mizer in the problem

(3.19) min MEN.
AERE:SF L Ni=1

Clearly, )\2(0) >0 foralle=1,...,k. For small € > 0 consider vectors of the
form

where e) = (1,0,...,0). Then it follows from (3.18) that

n

(3.20) S >

i=1
Note that
A)TEAE) = (AN TENO) — 9270 1 22(e())T5- 1)
Since )\50) > 0, for small € > 0, this expression is strictly smaller than
(AOYTN0

Additionally, for small € > 0 the vector A has positive components. Re-
calling (3.20), this contradicts the optimality of A(?) in (3.19). This contra-
diction shows that ¢; > 0. Similarly, 6; > 0 for all 1 < j < k. Hence, (3.15)
holds.
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For parts (ii) and (iii) we start by noticing that we can write, with ¢ > 0
given by (3.17), for any h; > 0,i=1,...,k, for u > 0,

P(Xti>u+hi/u, izl,...,kﬁ)

=c exp —iy Xy e dyr ... dyg
uthi/u uthg/u

% s LN
e [ [ ey St 4wt dun - d
hi/u hi/u i=1 j=1
LN i,
=cexp —quZZai_jl /
2 i=1 j=1 hi/u

ko k k k
oo 1 _ _
../h/ exp —3 g E yiyjaijl exp{ —u E Yi g aijl dyy - .. dyg
K/ i=1 j=1

i=1 j=1

1
=cexp {—2u2(91 +...+ Qk)}

k
/ / exp —fZZyzyg o;; eXp{—UZQiyi} dy: ... dyy
hl/U hi/u

=1 j=1 =1
:—cexp{ U u? (61 + .. +9k)}f( ).

For ¢ > 0 we write

o oo
/ 1(max(y1,...,yx) >¢€) -
hl/u hi/u

/hl/u /hk/u =1 (u) + Le2(u).

cl.1(u) < exp{—cu min H}PXt>u i=1,...,k).

1=1,.

_l’_

Note that

On the other hand,

I 2(u) / e / exp {—u Hz-yz} dyy ... dyk.)
: ( hi/u hi/u ;

€ | exp —75222‘ , 1

=1 j=1
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oo o k:
.. expl —u O;y; ¢ dyi...dyk
/}11/u /hk/u { Z }

i=1

k
=(01...0) exp{~ Y Oihi}
=1

we conclude that

Since

k
lim I(u) = (61...00) exp{— Y Oih;}
=1

U—00
and, hence,
(3.21) P(Xy, > u+hifu, i=1,...,k)

c i 1

. . _ 2
~ Mexp{—;@hz}exp{ 2u (601 +...+0k)}

as u — oo. Putting h; = ... = hy = 0 we obtain (3.16), which together
with (3.21) proves the claim of part (ii). O

4. THE MAIN RESULTS

In this section we will answer Questions 1-4 mentioned in the introduction.
These questions are all centered around the overall infimum ming¢, 5 X¢ of
the process X and the behaviour of the process when the overall infimum
is large. It turns out that, when the overall infimum is large, its behaviour
is similar, but not identical, to the behaviour of a simpler object - the
minimal value in a finite-dimensional Gaussian vector, formed by several
key observations of the process. Understanding what happens when the
latter minimum is large is an important ingredient in our analysis in this
section.

Recall (by Proposition 3.1) that under the assumptions we are impos-
ing in this paper, the optimization problem (3.1) has a unique minimizer,
a probability measure with a support of a finite cardinality, which we de-
note by S. Then the minimal value in a finite-dimensional Gaussian vector
mentioned above is simply minscg X;.

We start with Question 1 of the introduction. We will need additional
notation, which we introduce now. Let, once again, S be the support of a
finite cardinality of the unique minimizer in (3.1). Denote

(4.1) Y, == B(X/|X,,s€8),
(4.2) Zi = Xi—Yi,
t € R. Then (Y; : t € R) and (Z; : t € R) are two centered Gaussian

processes. Moreover, the process (Z; : t € R) is independent of (X, s € S).
In particular, the process (Z; : t € R) is independent of the random variable



ASYMPTOTIC BEHAVIOUR OF GAUSSIAN MINIMA 15

mingecg X;. Recall that under the assumptions of Proposition 3.1 (which we
will always assume), the sample paths of the processes Y and Z are in C*°.

Recall the definition of the essential set E in (3.10), which is a (not
necessarily strict) superset of S. It is a finite set, and we will enumerate its
points as E = {t1,...,t;}, in such a way that the first k£ points form the
support of the unique minimizer in (3.1), i.e. S = {t1,...,tx}, k <[, and
a<ty <...<tp<b.

Let 6 be the k-dimensional vector with positive coordinates defined in
(3.14), and let u be the function defined in (3.7). We define several random
variables. Let

1 9 (1) 2
W(a,b) = exp _5 Z (Q)J(t.) (th ) )
=l kitye(ab) 1N

following the usual convention that a positive number divided by zero is
plus infinity, and e™>° = 0. That is, the right hand side of the above is to
be interpreted as zero if u()(t;) = 0 for some j such that ¢; € (a,b). Let,
further,

_1(7W 01 (1)2 (1)
W, =1(Z,’ >0) —G—exp{—w)(tl)(Ztl ) } 1(Z;, <0)
if both t; = a and p(¢;) = 0, and let W, = 1 otherwise. Similarly, we let
61 (1)\2 (1)
o (2) } 1(z) > 0)
if both ¢, = b and u(l)(tk) =0, and let W;, = 1 otherwise. Finally, we let

l
(4.3) W =WeyWaWs [[ 1(2, >0).
j=k+1

Wy =1(2) < 0) + exp{

For the rest of this section we will use the notation ¥ for the covariance
matrix of the Gaussian vector (th, e ,th) and V, for the optimal value
in the optimization problem (3.1).

It follows from Adler et al. (2014) that

log P ( min X; > u) ~ log P (minXt > u) , U —> 00,
te(a,b) tes

in the sense of (3.13). The following theorem both explains how the two

tail probabilities are related once the logarithms are removed, and answers

Question 1.

Theorem 4.1. Suppose either that a Gaussian process X has Property 1,
Property 2 and Property 8 and (3.2) holds, or that X is a stationary Gauss-
ian process whose spectral measure satisfies S1 and S2. Then, as u — oo,

(4.4) P ( min X; > u) ~ E(W)P <minXt > u> ,
te(a,b] tesS
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and hence

. E(W) k u?
45) P Xp>u) ~ _ ‘
(45) (éﬁ% ! “> 2m)F2(0; ... ) (det )2 P ( 2V,
Furthermore, E(W) > 0 if and only if
(4.6) 1P (t) >0 for all t € SN (a,b).

We now proceed to address the rest of the questions in the introduction.
From now on we assume (4.6) to hold. The following result answers Question
2.

Theorem 4.2. Under assumptions of Theorem 4.1, assume also that (4.6)
holds. Then, as u — 00,

P((Xt—uu(t):agtgb)e-

min X; > u) = Qw(:)
tela,b]

weakly on Cla,b], where Qw is a probability measure on Cla,b] defined by

Qw%B)Z:E%;

with W given by (4.3).

E [1 ((Zt ra<t< b) S B) W], B C Cla,b], Borel,

The next result is an answer to Question 3.

Theorem 4.3. Under assumptions of Theorem 4.1, assume also that (4.6)
holds. Then, as u — 0o, the conditional distribution of U(minte[a,b} X — u)
gwen minge(q ) X¢ > u converges weakly to an exponential distribution with
mean V.

Finally, we answer Question 4.
Theorem 4.4. Under assumptions of Theorem 4.1, assume also that (4.6)

holds. Let

T, := arg min Xg,
s€a,b]

where we choose the leftmost location of the minimum in case there are ties.
Then, as u — 00,

k

0;
PT* . 1 XS = S 5‘,,
(6 selod) >u> ;91+...+0k“()

where §; is the Dirac point mass at t € [a,b].

5. PROOFS

We start with several preliminary results. First, an elementary conver-
gence statement.
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Lemma 5.1. Suppose that three families of random variables U := (U;n :
1<i<ml<N<x),Vi=(>WVy:1<i<nl<N<ox) and
W= (W; : 1 <i < mn) live on the same probability space, and that U and W
are independent. Suppose that, as N — oo,

(UlNa"'aUmN) = (UloOa--'aUmoo)a

P .
Vin — W;,1<i1<n.

Then
(UIN;---aUmNa‘/le--vVnN):> (Ulooa-~~7Umo<>7 W17-~-7Wn>

as as N — oo, where the random vectors (Uioo, - - ., Umoo) and (Wi, ..., W)
in the right hand side are independent.

Proof. It is, clearly, enough to check that for any Borel sets A C R™ and B C
R™ such that A is a continuity set with respect to the law of (Ujeso, - - -, Umoo)
and B s a continuity set with respect to the law of (W1,..., W,,) we have

(5.1) P((Uin, ... Unn) € A, (Vin, ... Van) € B)
—P((UIN,...,UmN) A, (Wi,...,Wy) € B) =0

as N — oo. However,
1((V1N,...,VnN) c B) N 1((W1,...,Wn) e B)

in probability as N — oo, and, hence, (5.1) follows. O

The next lemma is the first step in the proof of Theorem 4.1.

Lemma 5.2. Under the assumptions of Theorem 4.1, for all € > 0 and
n > 0 we have

U—00 U«Stﬁb SES

(5.2) lim P < sup ‘Xt(") —up™(t) — Zt(n) >e

min X, > u) =0.

Proof. Notice that we can write

k
v =3 ;0%
j=1

t € R, for some continuous functions aq, ..., a, from R to R. Therefore,

k
W) =3 ay(t),t € R,
j=1
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and probability in the left hand side of (5.2) equals

P | sup ‘Yt(n) —u,u(")(t)‘ > ¢|min X5 > u
a<t<b seS
k

= P| sup a;(t)( Xy, —u)| > e|min Xg > u
a<t<b ; 5O Xy — ) ses " °
i €

< P X —ul > min Xg > u
;' y max,<i<p1<j<k | (t)] | ses

— 0,

as u — oo because, conditionally on {minscs X5 > u}, Xy, —u L5 0 for
each j =1,...,k by part (ii) of Proposition 3.3. O

The next theorem is the crucial step towards proving Theorem 4.1. Its
statement uses Lemma 3.1.

Theorem 5.1. Suppose that the assumptions of Theorem 4.1 are satisfied,
and let t € S.

(i) Suppose that t € (a,b). Let € > 0 be such that [t —e,t+¢| C [a,b] and
(5.3) 1P (s) >0 for all0 < |s —t| <e.

Then, as u — 0o, conditionally on the event {mingeg X5 > u},

i p, 1 )
4 X; — X, 7 7
(54 B ( ! se[tn—lgi—i-e] > 241(2) (t) ( t )

and, as before, we interpret the right hand side as +oo if p? (t) =0.

(ii) Suppose that t = a. Then either M (a) > 0 or pM(a) = 0 and
M(Q)(a) > 0. Then for all e > 0 small enough, as u — oo, conditionally on
the event {mingcg X5 > u},

u(Xa— min XS>
s€la,a+e]

0, pM(a) >0,
2
£, el (Z(gn) 1 (Z,S” < 0) (@) =0, 1@ (a) >0,
w1 (2 <0). p(a) =0, p(a) =0

Here and below, we follow the convention that oo -0 =0-00 = 0.
(iii) Suppose that t = b. Then either p(M(b) < 0 or pM(b) = 0 and
,u(Q)(b) > 0. Then for all € > 0 small enough, as u — 0o, conditionally on
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the event {mingeg X5 > u},

u(Xb— min XS>
s€[b—e,b]

0, pM(b) <0,

P 1 M\?1 (V) gy — (2

Ly e (27) 1(2>0) 0 1) =0, 1@ @) >0,
o1 (zg” > o) : 1) =0, 1@ () =0.

Proof. The claims of parts (ii) and (iii) are similar, so we will only prove the
claims of parts (i) and (ii). We start with part (i). Define

ty :=arg min X,
t—e<s<t+e

taken to be the closest to ¢ location of the minimum in case there are ties.
We first check that

seS

(5.5) lim P (Xt(j) = 0| min S, > u> =1.

To see this, note that by Lemma 5.2,

P (th) —0

: (1) ) ‘ :

>

rsréngS > u> > P (Xt+s >0, X,. <0 rsréngs > u>
- 1,

as u — 0o. Here we have used the fact that by (5.3),

pt—e) <0< puM(t+e).

Keeping the definition of ¢, unchanged, but replacing € by arbitrarily small
0 < € < ¢ in the above argument, shows that, as u — oo, conditionally on
the event {mingegs X5 > u},

(5.6) te 5t
By Lemma 3.1 there exists an even positive integer n such that
(5.7) pV@)y = = pu V@) =0 < p™M(t).

Consider the series expansion

n—1 i1 n—1l
1) _ () () (t —t)? (n) (t — 1)
O8NS L T A

for some & in between t and ¢.. By Lemma 5.2 and (5.7) we know that, as
u — 00, conditionally on the event {mingcg X5 > u},

i=2

(5.9) xD 70 1<j<n—1.

The above along with (5.5), (5.6) and (5.8) imply that, as u — oo, con-
ditionally on the event {minseg X5 > u},

_ +\n—1
xl =0 P, 0
1o (n—1)!
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Furthermore, by Lemma 5.2, we also have

(5.10) u X )
Therefore,

_ -1 P (1) (n — 1)'
(5.11) u(te —t) — —Z; 1)

Next, we use the series expansion

(5.12) ~ X = ZXU —|—X(”)7( )

n! ’

for some &> in between t and ty«. Since (5.10) also holds with & replacing
&1, we conclude by (5.9) with j =1 and (5.11) that

w0 (X, - Xy)

n/(n—1) _f\n
/(1 (1) —1y(m)) U (tx — 1)
= /0D, — )X, +<u X&) o

n—1 ;

n— j (t* - t)j

+ul/mD Xt(J)i]'
Jj=2

P

(5.13) -~z —1

1 n
- (n—1V-DHI =
(e (= DI
When n = 2, this reduces to (5.4). If n > 2, i.e. if u®(t) = 0, the above

limit says that

U(Xt* — Xt) i) —00,

which is, again, (5.4). This completes the proof of part (i).

We now prove part (ii) of the theorem. The claim will be proved separately
for the three cases listed in the statement. We start with the case u(!)(a) > 0.
For all € > 0 small enough, such that a +¢ < b and minggg 4] p(s) >0,
we have by Lemma 5.2,

P(Xa: min X
s€la,a+te]

min X > u)
ses

ses

> P( min X()>O

s€la,a+te]

min X, > u>

- 1,

as u — 00, which proves the claim of part (ii) in the case u(l)(a) > 0.
Suppose now that u(l)(a) = 0. By Lemma 3.1, we can choose € > 0 such
that

(5.14) pP(s)>0foralla<s<a+e.

Consider the event

B = {X(1)>0> min X(l)}

s€la,a+e]
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Our first claim is that

U—00

(5.15) lim P <B

min X >u> =0.

sesS
Indeed, on the event B, the derivative Xgl) crosses 0 in the interval [a, a+¢].
If we define a random variable

5. :=inf{s € [a,a +¢] : XY =0},

S

then

(5.16) xWi1p=0.
Furthermore, the definition of s, tells us that
(5.17) (Xs. —Xa)1p 2 0.

Note that by (5.14) the second derivative 4 is bounded away from 0 on
any interval [a + d,a + €] for 0 < 6 < e. It follows from Lemma 5.2 that

P( min ~ X\? < 0| min X, > u> —0
at+o<t<a-+te seS

as u — o0o. Therefore, conditionally on the event {minscg X5 > u}, as
U — 00,

(S* - CL) ].B i} 0.
Using twice the Taylor expansion and imitating the steps leading to (5.11)
and (5.13), in conjunction with (5.16), shows that
lim P <X s < Xg >
U—00

This would contradict (5.17) if (5.15) were false. Thus (5.15) follows.
Write

u

X, — min X>

s€la,a+e]

I
S

s€la,a+e]

+ u

(
<Xa— min X> 1(x(M < 0)
(

X,— min X > 1{XV > 01\ B)

s€la,a+e]

+ u (Xa — min XS) 1{xM >0} nB).
s€la,a+te]
By the definition of the event B, the middle term in the right hand side
is equal to zero, while by (5.15), the last term in the right hand side goes
to zero in probability. It remains, therefore, to consider the first term in
the right hand side. By the assumption p(!(a) = 0 and Lemma 5.2 we
know that 1(X(§1) <0) — 1(26(11) < 0) in probability. For the rest of the
that term the same analysis as the one used in the proof of part (i) applies.
Specifically, we use the two Taylor expansions (5.8) and (5.12). The only
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difference between the two scenarios is that now the integer n does not need
to be an even number, but it plays no role in the argument.
This completes the proof of the theorem in all cases. O

We have now all the ingredients needed to prove Theorem 4.1.

Proof of Theorem /.1. A restatement of (4.4) is

(5.18) lim P <min X; > u) min X; > u) — EW,
U—00 t€la,b] tesS

which we proceed to show first. For u > 0 let (fft(u) : t € R) be a process

with continuous sample paths whose law is the law of the process Y in

(4.1) conditioned on the event {minscg X5 > u}, and let this process be

independent of the process Z in (4.2). Define

Xt(u) = )N/;(u) +Zy, teR.

Let € > 0 be small enough such that the convergence in probability in
Theorem 5.1 holds. Continuing using the notation S = {¢1,...,¢;} and
E\S = {tkt1,...,tk+1}, we define for 1 < j <k

Vi i—u (;z;@ ~ min ;zgu)) |
7 s€ltj—e,tj+e]N[a,b]
and
— i () _
Vies1,u o= Inf, [Xs uu(s)} :
where
(5.19) G:={sea,b]:|s—t;| <eforsomek+1<j<I},

with the convention that infimum over the empty set is defined as —oo.
For j = 1,...,k we denote by W; (not to be confused with W,, W, or
Wiap)) the limit in probability of

T, = X — i X
- u( Y7 ety —ety telnlad )

as u — oo, conditionally on the event {mingcg X > u}, given in Theorem
5.1. Recall that W; may take the value +o0o0. We define also

Uju ::u(f(t(;“t) —u),l <j<k.
Clearly, the conditional law of
(u(th —u),. . u( Xy, —u), Ty - oy Thous Isrélél [Xs — up,(s)])
given {mingcg X > u} coincides with the law of
(Ulu, e Uy Vies - . ,Vkﬂ,u) .
By Theorem 5.1 we know that for fixed 1 < j <k,
(5.20) Viu - W;
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as u — oo, where we regard W; as a function of the process Z in the
definition of (V},). Furthermore, by Proposition 3.3,

(521) (Ulua---aUku) = (El,...,Ek)

as u — oo, where F1, ..., E} are independent exponential random variables
with parameters given by (3.14). Finally, Lemma 5.2 implies that as u — oo,

(5.22) Vit u — min Z .
’ seG

We apply now Lemma 5.1 to conclude that, as u — oo,
(Ulu, ceey Ukm Vlu; ey VkJrLu) = (El, . ,Ek, Wl, ey Wk,rsréiélzs) s

with (E1,..., Ex) being independent of the rest of the random variables in
the right hand side, which implies that, as © — oo,

(u(th —u) — Tiyy ..o (X, —u) — Thy, min [ X5 — uu(s)}’ min X > u)
seG s€S

(5.23) - (E1 —Wh,...,E — W, min ZS) ,
seG

weakly on RFt! with the obvious interpretation if some of the W; take the
value 4+oo. If we denote

(5.24) H:={sela,b]:|s—tj] <eforsomel<j<k},

then it follows by the continuous mapping theorem that, as u — oo,

se€

min {u <m1;11XS - u> , min [Xs — uu(s)]}
(525) = min{El—Wl,...,Ek—Wk, mlélZS} .
s€

Note that (5.25) continues to hold if we use € = 0 in the definition of G (but
not in the definition of H).

Since the function y is bounded away from 1 on [a,b] \ (G U H), Lemma
5.2 implies that

lim P ( min Xs>u
seS

min X4 > u> =1.
u—00 s€la,b]\(GUH)
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Together with the fact that u(s) > 1 for all s, this implies that

lim inf P < min X; > u

U—+00 tela,b]

min Xg > u
seS

U—00 seGUH

:hmian< min X, > u
seS

min X > u)

> lim P <min{u (minXs — u> , miél [Xs — u,u(s)]} >0
se

U—»00 seH

min X4 > u)
seS

ZP(El—Wl>0,...,Ek—Wk>0, HéiélZs>0>

k
=E |exp —ZQjo 1 (rsléiélzs > O>
j=1

=E |:W(a b)WaWb 1 (min Zg > 0>:| .
’ seG

We let now ¢ | 0 and use the monotone convergence theorem to conclude
that

lim inf P <min X > u‘miélXt > u) >EW.
te

U—00 te(a,b)]

On the other hand,

P <min X > u’minXt > u)
tela,b] tesS

< P< min Xg>u minXs>u>
sEHU(E\S) ses

= P i in Xy — , min | Xy — > 0| min X, >
<m1n{u (gél}_r[l s u) 52}51{15[ s uy(s)]} min X, u>

— EW,

the limit in the last line following from (5.25) with ¢ = 0 in the definition of G
and the fact that by Property 3 the Gaussian random variables Zs, s € E\ S
are nondegenerate. Thus, (5.18) follows.

In view of (4.4) and part (iii) of Proposition 3.3, all that needs to be
shown for (4.5) is that

(5.26) > 0= 1

where V, is the optimal value in (3.1) which is strictly positive by Property
2. However, Theorem 5.1 of Adler et al. (2014) implies that
Ty—1 1

min yETYy=—,
yERF:ming <;<p ¥ >1 Vi
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and the unique minimizer is 1. This in conjunction with (3.14) establishes
(5.26). This completes the proof.

For the final claim, recall from the definition that W, = 0 a.s. if (4.6)
fails. It immediately follows that EW > 0 implies (4.6). For the converse,
that is, the ‘if’ part, suppose that (4.6) holds. Then, W > 0 as. .

Property 3 implies that the collection (Z; : t € R\ S) U (Zt(l) :t € R)is

linearly independent. The random vector (Z,gl)7 Zlgl),ZtkH, ..., Zy) has a
multivariate normal law. The linear independence implies that

P (ZgU >0,z <0, min_Z, > 0) >0.
E+1<5<l

It is trivial to check from (4.3) that on this event, W = W, ;). Thus, the

‘if” part follows, which completes the proof. ([

Proof of Theorem 4.2. Fix a Borel subset B of C|[a, b] such that
P((Z:a<t<b)€dB)=0,

where OB denotes the boundary of B in the supremum norm topology, and
write

P((Xtu,u(t):agtgb)EB

min X; > u
t€la,b

P ((Xy —up(t) s a <t <b) € B, mingepy 5 Xy > u|mingeg Xy > u)
P (minte[a’b] X > u|mingeg X; > u) '

The denominator converges to EW by Theorem 4.1, as u — oo, and it is
positive since (4.6) is assumed. Furthermore, the same argument as the one
used in the proof of Theorem 4.1 gives us

lim P ((Xt —up(t):a<t<b)€ B, mn X; > u|min X; > u>
U—00 tela,b] tes
= E[1((Z;:a<t<b)eB)W],
and the statement of the theorem follows. O

Theorems 4.3 and 4.4 are both based on the following result that we prove
first.

Theorem 5.2. Under assumptions of Theorem 4.1, assume also that (4.6)
holds. For € > 0 define

M. = min X, 1<5<k.
Se[tj—é,tj-i-e’;‘]ﬂ[a,b]

Then

(5.27) limlimian< min Mj. = min X,
20 u—oo  \1<j<k tefa]

min X; > u> =1.
tela,b]
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Furthermore, for e > 0 small enough so that the convergence in all parts of
Theorem 5.1 holds, as u — oo, conditionally on the event {minte[a’b] X >

u},

(528) (u(Mlg —u),...,u(MkE—u)) = (El,...,Ek),
where Eq, ..., E. are independent exponential random variables with respec-
tive parameters 01, ..., 0.

Proof. With the notation E \ S = {tx41,...,tk11} as above and the set G
defined in (5.19), we first prove that

5.29 limliminf P | min M. < min X
( j
el0 u—oo 1<5<k se@

min X; > u> =1
tela,b]

(note that the definition of G depends on € > 0).

Let € > 0 be small enough so that the convergence in all parts of Theorem
5.1 holds. As in the proof of Theorem 4.1, we denote by W; the limit in
probability of

u | X — min X5,
/ s€tj—e,t;+€]N[a,b]

as u — 00, conditionally on the event {mintes Xy > u} Arguing, once
again, as in the proof of Theorem 4.1, we obtain

min X; > u}
te(a,b]

P (o (i 35— ). g - )

1<j<k

1 . .
(5.30) = EI/VP{<1I§HJ'1£1€(EJ - Wj), min Z5> €.

Ei—W;>0,....,E; — W >0, min th>0:|
G=kA 1.0

weakly in R?. We conclude both that, conditionally given {minte[a’b] X >
u}, as u — 0o,

minycj<x Mje —u p
. )
mingeq[Xs — up(s)]

(5.31)
and that

P <1§éi£[Xs —up(s)] <0

min X; > u) — 0.
te€(a,b]



ASYMPTOTIC BEHAVIOUR OF GAUSSIAN MINIMA 27

Since p(s) > 1 for all s € [a, b], it follows that

P | min Mj. < min X,
1<j<k seq

min X; > u>
te(a,b]

S . L . _ .

> P <121jl£k M. —u< Islélg[Xs up(s)] tgi%] X > u>

> P ( H'11111§j§k je— U < 1| min X; > u)
mingeg[Xs — up(s)] t€[a,b]

-P (rsréi(r;l[Xs —up(s)] <0

min X; > u) — 1.
t€la,b]
Therefore, (5.29) follows. The fact that p(s) > 1 for all s € [a,b] \ F with
an appeal to Theorem 4.2 implies (5.27).

In order to prove (5.28), fix x1,...,2x > 0. The same argument as in
(5.30) gives us

lim P (u(Mla —u) > 21, ..., u(Mye —u) > a:k‘ min X; > u>

U—00 t€(a,b]

1 . .
= WP(Ej—Wj>a;j,1§]§k,j ﬁln thj>0>

= P(Ej>u2;,1<j<k),

.....

the last equality following by first conditioning on (Z; : ¢ € R) and then
using the memoryless property of Ey, ..., Ex. Thus (5.28) follows. O

Proof of Theorem 4.3. By (5.28), (5.31), and the fact that pu(s) > 1 for all
s € [a,b] \ E we conclude that for x > 0,

P <u( min X; — u) > x!) min X; > u) o~ O+ A0)z
t€(a,b] tela,b]

By (5.26), the claim of the theorem follows. O
Proof of Theorem 4.4. By (5.27), for each j =1,...,k,

uli_)rgloP <T* =t SIGH;LH Xs > u)
— P(Ej =min(Ey, ..., Ey)) = % ,
014+ ...+ 6y
hence the claim of the theorem. O

6. EXAMPLES

In order to illustrate the general results in Section 4 we will, in this section,
look at specific examples of Gaussian processes satisfying the assumptions
of the general results. We start with a quintessential example of a stationary
process.
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Example 6.1. Gaussian covariance function
Consider the zero mean stationary Gaussian process (X; : ¢t € R) with
covariance function

R(t) == E(X;X4t) = exp (—12/2) , t > 0.

This process has a spectral density that coincides with the standard Gauss-
ian density, as in (2.2), hence the process has properties S1 and S2 of Section
2. Therefore, the results in Section 4 apply. Recall that some of the results
require the assumption (4.6). We will presently see both that this assump-
tion may fail and that this assumptions fails only rarely.

Let

(6.1) 0=a<b<c :=min {y >0:2e V81— V2 = 0} ~ 2.2079.

It has been shown in Proposition 5.3 and Example 6.1 of Adler et al. (2014)
that for such an interval,

E=S8 = {a,b},
e—t2/2 +e—(b—t)2/2

(6.2) p) = ey telad),
14—6*172/2
Voom= —5—

Assumption (4.6) holds automatically, and Theorem 4.1 implies that
1
. -2 9
P (Jgngt > u> Ciu™* exp < o eyl )

for C7 > 0 as u — oco. In fact, one can check that

1 (1= —b2\3/2
(6.3) SRl b iy
27 (1 — e~ 0%/2)2
By Theorem 4.3, conditionally on the event {minte[a,b} X > u}, the scaled
overshoot u(minte[a’b] Xt—u) converges weakly, as u — 00, to an exponential
random variable with the mean (1 + e%*/2)/2.
Next we consider the situation when a = 0 and b = ¢, defined by in

(6.1). Then p and Vi are still as in (6.2), but we now have S = {a, b} and
E ={a,b/2,b}. Theorem 4.1 still applies, and it gives

: | 1 2
60 P (i X )~ jon e (< )

as u — 0o, where C] is as defined in (6.3). The asymptotic conditional
distribution of the scaled overshoot u(minte[a,b} X — u) is same as in the
case b < cy.

We proceed to the case a = 0 and

(6.5) ¢ <b<cy:=min {y > e (1—e(y)) (3/2 - 1) VB = E(y)} ,
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with
14 e V?/2 _9e—v?/8
W)= s PR e
The value of ¢o ~ 3.9283. Proposition 5.5 of Adler et al. (2014) shows that
in this case

E=S={a,b/2,b},

() :Vi [1 —QE(b) (efﬁ/z n ef(bft)2/2> n g(b)e(tb/2)2/2:| teR,

1 —e(b)

(6.6) V. =Var ( (X + X) +c(b) X, /2> .

In this case
(6.7) 12 (b/2) >0,
so that (4.6) holds. Theorem 4.1 implies that for some Cy > 0,
. _ 1
P <a12tlngt > u> ~ Caou 3exp (— 5V u2> ,

as u — oo. The b-dependent constant C5 can be explicitly calculated if
desired. The asymptotic conditional distribution of the scaled overshoot
u(minte[a’b] X — u) is exponential with mean V.

When a = 0 and b = ¢ defined in (6.5), then (6.6) still holds, but (6.7)
fails, so the assumption (4.6) no longer holds. In this situation, all Theorem
4.1 implies is that

1
P min X = -3 — 2)) .
<a<t12b t>u> o<u exp( 5 *u >)
as u — 0.

The plots on Figure 1 illustrate the different behaviour of the function p
when ¢; < b < ¢z, and when b = co.

If a stationary Gaussian process satisfies S1 and S2, then the unique
optimizer v, of the minimization problem (3.1) must be symmetric around
the midpoint of the interval [a,b]; indeed, for any probability measure v
supported by [a, b], the measure 7 obtained by reflection around the midpoint
leads to the same value in the integral and hence, by convexity, v, = (vx +
74)/2 is symmetric. Since the optimal measure cannot be concentrated at
the midpoint of the interval, we conclude that the cardinality of the set S
in this case is at least 2. However, for a non-stationary process, S may be a
singleton. The next example illustrates this fact.

Example 6.2. A non-stationary process

We start with a stationary centered Gaussian process Z = (Z; : t € R)
with a spectral measure F'x satisfying S1 and S2. Let Y be a standard
normal random variable independent of Z. Define

X =Y(Q+t*—tY+ 2, — Zp, t €R.
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b=3 b=3.9283
<
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FI1GURE 1. Function p for b = 3 and b = 3.9283 in Example 6.1

Let —1 < a < 0 < b < 1. Note that the process X := (X; : t € R) has
Property 1 by construction. It is elementary that the covariance function R
of the process X satisfies (3.2).
Clearly, for any probability measure v on [a, b],
2

(6.8) /ab /abR(s,t) u(ds) v(dt) > (/:(14—752 —t4)1/(d,t)> >1.

Therefore, the process X has Property 2. In order to check that it also has

Property 3, suppose that for distinct reals numbers %, . . ., tx and coefficients
g, ...,o Bo, ..., Br, we have
k
Z (Oéthj + ,B]Xt(Jl)> =0 a.s..
j=0

Without loss of generality, we assume ¢y = 0. Using the independence of Y
and Z we see that

k k k
—70 Z Q; + Z Oéthj + Z ﬂ]Zt(Jl) =0 a.s..
=1 j=1 =0
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Proposition 2.1 implies that oy = ... = ap = fg = ... = B = 0. Thus, also
ag = 0, and so process X has Property 3.

Note that the choice v = o) is, by (6.8), the optimal measure v,. Thus,
S = E = {0}. That is, the support S is a singleton which contains none
of the endpoints of the interval. That is, the conclusion of Proposition 3.2
indeed fails without appropriate assumptions on the covariance function of
the process.

Here

pt) =E(Xi|Xo=1)=EX Y =1) =1+ —t' t e R.

Therefore, (%) (0) = 2 > 0. By Theorem 4.1,

1
P < min X; > u> ~ u7167“2/2,
a<t<b 27(1+ X2/2)

as u — oo, where X9 is the second spectral moment of Z. By Theorem
4.3, conditionally on the event {minte[a’b] X > u}, the scaled overshoot
u(minte[a’b] Xt—u) converges weakly, as u — 00, to the standard exponential
random variable.
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