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Abstract. We introduce the notion of a k-mode weakly stationary quantum process % based
on the canonical Schrödinger pairs of position and momentum observables in copies of L2(Rk),
indexed by an additive abelian group D of countable cardinality. Such observables admit an

autocovariance map K̃ from D into the space of real 2k × 2k matrices. The map K̃ on the
discrete group D admits a spectral representation as the Fourier transform of a 2k×2k complex

Hermitain matrix-valued totally finite measure Φ on the compact character group D̂, called
the Kolmogorov-Wiener-Masani (KWM) spectrum of the process %. Necessary and sufficient

conditions on a 2k × 2k complex Hermitian matrix-valued measure Φ on D̂ to be the KWM
spectrum of a process % are obtained. This enables the construction of examples. Our theorem
reveals the dramatic influence of the uncertainty relations among the position and momentum
observables on the KWM spectrum of the process %. In particular, KWM spectrum cannot

admit a gap of positive Haar measure in D̂.
The relationship between the number of photons in a particular mode at any site of the

process and its KWM spectrum needs further investigation.
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1. Introduction

In his celebrated little book “Osnovnye ponyatiya teorii veroyatnostei” [Kol74], A. N. Kol-
mogorov introduced the notion of a stochastic process as a consistent family of finite dimensional
probability distributions in Rn, n = 1, 2, · · · . In the same spirit a quantum process can be de-
scribed as a consistent family of density operators or, equivalently, states in tensor products
H1⊗ · · · ⊗Hn of Hilbert spaces with n = 1, 2, · · · . One can replace the ‘time set’ {1, 2, · · · } by
an abstract countable set D with the discrete topology and a family {Ha : a ∈ D} of Hilbert
spaces. Then a quantum process yields a density operator ρa1,a2,··· ,an in Ha1 ⊗ · · · ⊗ Han for
every finite sequence (a1, · · · , an) with distinct elements from D. All these density operators
will obey natural consistency conditions. For example, the relative trace of ρa1,a2,··· ,an over Han

is ρa1,a2,··· ,an−1 . If (b1, · · · , bn) is a permutation of a1, · · · , an then ρb1,··· ,bn = Uρa1,··· ,anU
−1 where

U is the corresponding Hilbert space isomorphism from Ha1 ⊗ · · · ⊗ Han onto Hb1 ⊗ · · · ⊗ Hbn

induced by the permutation. We denote the quantum process over D by

(1.1) % = {(Ha1,··· ,an , ρa1,··· ,an) : (a1, · · · , an) ∈ SD}
where SD denotes the set of all finite length sequences of distinct elements from the countable
set D.

RS acknowledges financial support from the National Board for Higher Mathematics, Govt. of India.
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In this paper we are interested in the special case where Ha = L2(Rk) for all a in D, k being a
fixed positive integer, called the number of modes of the process. Each Ha admits Schrödinger
canonical pairs qar, par, r = 1, 2, · · · , k of position and momentum observables obeying the
Heisenberg canonical commutation relations (CCR). We can look upon qar, par, r = 1, 2, · · · , k
as observables in Ha1 ⊗ · · · ⊗Han whenever the sequence (a1, a2, · · · , an) from SD contains the
element a and denote such ampliated observables by the same respective symbols. With such
a convention one obtains the algebra of all polynomials of all qar, par, r = 1, 2, · · · , k, a ∈ D .
Using the finite-partite states ρa1,··· ,an , (a1, · · · , an) ∈ SD one can compute the expectations of
the polynomials whenever they exist. Write(

Xa 1, Xa 2, · · · , Xa (2k−1), Xa 2k

)
= (qa 1, pa 1, · · · , qa k, pa k)

and define the covariances

(1.2) κr s(a, b) =

〈
1

2
(Xa rXb s +Xb sXa r)

〉
− 〈Xa r〉 〈Xb s〉

where 〈,〉 denotes expectation. To compute these quantities we need a knowledge of only the
‘bipartite’ states ρa,b, (a, b) ∈ SD. Thus we obtain a 2k × 2k real matrix-valued covariance
kernel K = [[K(a, b)]] defined by

(1.3) K(a, b) = [[κr s(a, b)]], r, s,∈ {1, 2, · · · , 2k},
for a, b ∈ D.

Suppose D is a countable discrete additive abelian group with addition operation + and null
element 0. Let the covariance kernel K of a k-mode quantum process over D be translation
invariant in the sense that

(1.4) K(a+ x, b+ x) = K(a, b) ∀a, b, x ∈ D.
Then we say that the quantum process is second order weakly stationary, or, simply, weakly

stationary. For such a process there exists a map K̃ from D into the space of 2k × 2k real
matrices such that

(1.5) K(a, b) = K̃(b− a), a, b ∈ D.

The map K̃ is called the autocovariance map of the weakly stationary quantum process.
Owing to the matrix-positivity properties enjoyed by covariances between observables the

autocovariance map K̃ satisfies the matrix inequalities

(1.6)
∑
i, j

αiαjK̃(aj − ai) ≥ 0

for any a1, a2, · · · , an ∈ D and real scalars α1, α2, · · · , αn, n = 1, 2, · · · . Thanks to Bochner’s
theorem for locally compact abelian groups there exists a complex-Hermitian and positive

2k × 2k matrix-valued measure Φ on the compact dual character group D̂ of D such that

(1.7) K̃(a) =

∫
D̂

χ(a) Φ(dχ), for all a in D.

The matrix-valued measure Φ satisfies the conjugate symmetry property

(1.8) Φ(S−1) = Φ(S)
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for any Borel set S ⊂ D̂. Furthermore, the Heisenberg uncertainty relations prevailing among
the various position and momentum observables of the quantum process reveal their dramatic
influence on the measure Φ through the matrix inequalities

(1.9) Φ(S) +
ı

2
λ(S)J2k ≥ 0

for all Borel sets S ⊂ D̂, where λ is the normalised Haar measure of the compact group D̂ and
J2k is the fundamental symplectic matrix given by

(1.10) J2k =
⊕

k-copies

[
0 1
−1 0

]
which is a diagonal block matrix with each diagonal block equal to J2. The inequality (1.9)
implies, in particular, that whenever Φ(S) = 0, λ(S) is also zero.

Borrowing from the extensive theory of linear least square prediction of real valued weakly
stationary processes pioneered by A. N. Kolmogorov [Kol41a, Kol41b] and N. Wiener [Wie49],
and multivariate weakly stationary processes by N. Wiener and P. Masani [WM57, WM58] we

call (1.7) the spectral representation of K̃ in D̂ and the matrix-valued positive measure Φ the

Kolmogorov - Wiener - Masani spectrum (or KWM spectrum) of the autocovariance map K̃ of
the underlying quantum process.

Inequality (1.9) implies that whenever Φ(S) = 0 for some Borel set S ⊂ D̂, then λ(S) = 0.
In other words, the KWM spectrum does not admit a ‘Haar gap’.

Conversely, given a complex Hermitian positive 2k × 2k matrix-valued measure Φ on the

Borel σ-algebra of D̂ satisfying the conjugate symmetry condition (1.8), the spectral uncertainty

relations (1.9), and the condition Φ(D̂) = M , there exists a weakly stationary k-mode quantum
process over D with KWM spectrum Φ. Indeed, such a process can be realized as a mean zero
quantum Gaussian process in the sense that all its finite-partite states ρa1,··· ,an , (a1, · · · , an) ∈
SD are mean zero Gaussian states.

The spectral representation of the autocovariance function and its converse enable us to
construct interesting examples of weakly stationary quantum processes.

2. Quantum processes

A quantum system in its most elementary form is determined by a pair (H, ρ) where H is a
complex separable Hilbert space and ρ is a density operator in H, i.e., a positive operator with
unit trace. The operator ρ is called the state of the system. We shall deal with several quantum
systems and assume that all the Hilbert spaces in this paper are complex and separable. Scalar
products in Hilbert spaces will be expressed in the Dirac notation and adjoints of operators as
well as matrices will be indicated by the symbol †. By a positive operator X in a Hilbert space
H we mean that 〈u|X|u〉 ≥ 0 for all u ∈ H. By a positive n × n matrix we mean an n × n
Hermitian matrix which is positive semidefinite.

If H = H1⊗H2⊗· · ·⊗Hn is the tensor product of Hilbert spaces Hi, 1 ≤ i ≤ n, ρ is a state in
H and F ⊂ {1, 2, · · · , n} is the subset {i1 < i2 < · · · < ik} then we write HF = Hi1⊗· · ·⊗Hik .
One obtains a state ρF in HF by taking the relative trace of ρ successively in Hi, i /∈ F in some
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order. The resulting state ρF is independent of the order in which the traces are taken. The
system (HF , ρF ) is called the F -marginal of (H, ρ).

In the Hilbert space of any quantum system a bounded or unbounded self-adjoint operator
X is called an observable of the system. Suppose FR is the Borel σ-algebra of R and PX(·)
is the spectral measure of X on FR. Then the quantity Tr ρPX(E), E ∈ FR is interpreted as
the probability that the observable takes a value in E in the state ρ. Thus Tr ρPX(·) is the
distribution of X in the state ρ. Such an interpretation enables the computation of all moments
of X. Indeed, the n-th moment of X, if it exists, is denoted by 〈Xn〉 and is given by

〈Xn〉 = TrXnρ.

If X, Y are two observables such that XY + Y X is also an observable then the covariance
between X and Y in the state ρ is denoted by Cov(X, Y ) and is defined as

Cov(X, Y ) = 〈1
2

(XY + Y X)〉 − 〈X〉 〈Y 〉 .

The quantity Cov(X,X) is called the variance of X. If X1, X2, · · · , Xn are observables with
well-defined covariance between Xi and Xj for all i, j then the n× n positive matrix

Σn = Σn(X1, · · · , Xn) = [[Cov(Xi, Xj)]]

is called the covariance matrix of the observables (X1, X2, · · · , Xn) in the state ρ.
Consider a composite quantum system (H, ρ) where H = H1 ⊗ H2 ⊗ · · · ⊗ Hn. If the set
{1, 2, · · · , n} = E ∪ F with E ∩ F = ∅, E 6= ∅, F 6= ∅ then H can be viewed as the tensor
product

H = HE ⊗HF

and an observable in HE can be looked upon as the observable XE ⊗ IF in H with IF being
the identity operator in HF . We call XE ⊗ IF the ampliation of XE in H and denote it by the
same symbol XE. If ρE is the E-marginal of ρ in HE then

〈XE〉 = TrXEρE = TrXEρ = 〈XE ⊗ IF 〉 .

We now introduce the notion of a quantum process over a countable index set D. Let
{Ha : a ∈ D} be a family of Hilbert spaces. Denote by SD the set of all finite sequences of
distinct elements from D. Suppose ρa1,a2,··· ,an is a density operator in Ha1,a2,··· ,an as in (1.1) for
each (a1, a2, · · · , an) in SD satisfying the following properties:

(1) If {a1, a2 · · · , an} = {b1, b2, · · · , bn} as sets and π is a permutation of {1, 2, · · · , n} such
that aπ(j) = bj, ∀j and

Uπ : Ha1,a2,··· ,an → Hb1,b2,··· ,bn

is the natural Hilbert space isomorphism induced by π then

ρb1,b2,··· ,bn = Uπρa1,a2,··· ,anU
−1
π .

(2) The {an+1}-marginal of ρa1,a2,···an+1 is equal to ρa1,a2,··· ,an for all (a1, a2, · · · , an+1) ∈
SD, n = 1, 2, · · · .
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Then we say that {ρa1,a2,··· ,an , (a1, · · · , an) ∈ SD} is a consistent family of states. The family % =
{(Ha1,··· ,an , ρa1,··· ,an), (a1, · · · , an) ∈ SD} of finite-partite quantum systems is called a quantum
process over D.

One obtains interesting examples of discrete ‘time’ quantum processes with D = Z, Zd or a
general discrete abelian group. When D is Z, the element a in Z can be interpreted as time.
In general, a in D is interpreted as site.

Suppose D = {0, 1, 2, · · · } and Hn] = H0 ⊗H1 ⊗ · · · ⊗ Hn. Let ρn] be a density operator in
Hn] such that ρn−1] is the marginal in Hn−1] obtained by tracing out ρn] over Hn for each n.
Then {(Hn], ρn]) : n = 0, 1, 2, · · · } yields a quantum process. Denote by Bn] the C* algebra of
all bounded operators in Hn]. Then there is a natural C* embedding φn : Bn] → Bn+1] with the
property

φn(X) = X ⊗ I, X ∈ Bn],

where I is the identity operator in Hn+1. This enables the construction of an inductive limit C*
algebra B∞ with a C* embedding πn : Bn] → B∞ such that the sequence {πn(Bn])} is increasing
in n and

⋃
n πn(Bn]) is dense in B∞. This yields a normalized positive linear functional ω in

B∞ such that

ω(πn(X)) = ρn](X), X ∈ Bn], n = 0, 1, 2, , · · · .
In other words (B∞, ω) is a C* probability space which may be considered as the analogue of
Kolmogorov’s measure space constructed from a consistent family of finite dimensional prob-
ability distributions. However, there is no limiting Hilbert space in general with a density
operator. A similar construction of a C* probability space is possible for a quantum process
over any countable index set D.

Definition 2.1. Suppose D is a countable abelian group with addition operation +, Ha = H
for all a ∈ D, and % is a quantum process over D. Then it is said to be strictly stationary or
translation invariant if

ρa1+x,a2+x,··· ,an+x = ρa1,a2,··· ,an ∀x ∈ D, (a1, · · · , an) ∈ SD.

Let {ρa1,··· ,an}, {σa1,··· ,an}, (a1, · · · , an) ∈ SD be a pair of consistent families of finite-partite
states in {Ha1,··· ,an}. Then, for any 0 < p < 1

τa1,··· ,an = pρa1,··· ,an + (1− p)σa1,··· ,an , (a1, · · · , an) ∈ SD
yields a consistent family of finite-partite states.

Suppose, a 7→ Ua, a ∈ D is any map where Ua is a unitary operator in Ha for every a. Then

ρ′a1,··· ,an = (Ua1 ⊗ · · · ⊗ Uan) ρa1,··· ,an
(
U †a1 ⊗ · · · ⊗ U

†
an

)
, (a1, · · · , an) ∈ SD

also yields a consistent family of states. Indeed, this is a consequence of the following proposi-
tion.

Proposition 2.1. Let H, K be Hilbert spaces, ρ a state in H⊗K, and U, V be unitary operators
in H and K respectively. Then

Tr K(U ⊗ V )ρ(U ⊗ V )† = U (Tr K ρ)U †,

where Tr K is relative trace over K.



6 K. R. PARTHASARATHY AND RITABRATA SENGUPTA

Proof. This is immediate from the fact that relative trace over K can be computed by using
any orthonormal basis {ej} in K, and if {ej} is one such basis so is {V †ej}. �

Combining the two elementary remarks above we can construct new quantum processes over
D from a given quantum process {(Ha1,··· ,an , ρa1,··· ,an) , (a1, · · · , an) ∈ SD} as follows: Start with
a probability space (Ω,F ,P) and a random process {Ua(ω) : a ∈ D} where Ua(ω) is a unitary
operator in Ha for every a. Define

(2.1) ρ′a1,··· ,an =

∫
Ω

P (dω) (Ua1 ⊗ · · · ⊗ Uan) ρa1,··· ,an (Ua1 ⊗ · · · ⊗ Uan)† .

Then {ρ′a1,··· ,an , (a1, · · · , an) ∈ SD} is also a consistent family of finite-partite states.

Remark 2.1. When D is a countable additive abelian group and Ha = H for all a ∈ D, % is
a strictly stationary quantum process and the random process {Ua(ω) : a ∈ D} is also strictly
stationary, then the quantum process %′ determined by equation (2.1) is also strictly stationary.

3. Multi-mode processes and their covariance kernels

We now pass on to the definition of a k-mode quantum process over a countable index set
D. Let Ha = L2(Rk) for each a ∈ D, where k is a fixed positive integer called the number of
modes. We view Ha as the a-th copy of L2(Rk) and introduce the canonical Schrödinger pairs
of position and momentum observables qaj, paj, 1 ≤ j ≤ k given by

(qajf) (x) = xjf(x),

(pajf) (x) =
1

ı

∂

∂xj
f(x)

on their respective maximal domains in L2(Rk), x denoting (x1, x2, · · · , xk) ∈ Rk. We arrange
these 2k observables as

(Xa1, Xa2, · · · , Xa 2k−1, Xa2k) = (qa1, pa1, · · · , qak, pak) .
Let now % be a quantum process over D. Then Xa r can be viewed as an ampliated observable
in Ha1,a2,··· ,an whenever the element a occurs in the sequence a1, a2, · · · , an. We assume that all
observables which are closures of polynomials of degree not exceeding 2 in {Xa r, a ∈ D, r =
1, 2, · · · , 2k} have finite expectations under the process so that Xa r and Xb s have a well-defined
covariance for any a, b ∈ D, r, s ∈ {1, 2, · · · , 2k}. We write for any a, b ∈ D

κr,s(a, b) = Cov (Xa r, Xb s) , r, s ∈ {1, 2, · · · , 2k},
where the covariances can be evaluated in any state ρa1,a2,··· ,an when both a and b occur in
(a1, · · · , an) ∈ SD. Indeed, this follows from consistency of the states occurring in the quantum
process. We call K = [[K(a, b)]], a, b ∈ D the covariance kernel of the k-mode quantum process
%.

If D is an additive abelian group, 〈Xaj〉 = 0 for all a ∈ D, 1 ≤ j ≤ 2k and K(a, b) =
K(a + c, b + c) for all a, b, c ∈ D we then say that % is a mean zero second order weakly
stationary or simply weakly stationary k-mode quantum process. In such a case, there exists

a map K̃ from D into the space of 2k × 2k real matrices, such that K(a, b) = K̃(b − a). This

map K̃ is called the autocovariance map of the weakly stationary process.
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Theorem 3.1. Let K(a, b) = [[κr s(a, b)]], a, b ∈ D be a family of 2k×2k real matrices satisfying
the following conditions:

κr s(a, b) = κs r(b, a), r, s ∈ {1, 2, · · · , 2k}, a, b ∈ D.
Then there exists a k-mode quantum process % with covariance kernel K(·, ·) if and only if for
any sequence (a1, · · · , an) ∈ SD the block matrix [[K(ai, aj)]] satisfies the matrix inequality

(3.1) [[K(ai, aj)]] +
ı

2
J2kn ≥ 0.

Proof. Since ρa1,··· ,an is a kn-mode state and [[K(ai, aj)]] is the covariance matrix of the position-
momentum observables (Xa1 1, · · · , Xa1 2k, Xa2 1, · · · , Xa2 2k, · · · , Xan 1, · · · , Xan 2k) in L2(Rkn),
necessity is immediate from the uncertainty relation fulfilled by such a covariance matrix [Hol11,
ADMS95, Par10]. To prove the converse define ρa1,··· ,an to be the mean zero kn-mode Gaussian
state with covariance matrix [[K(ai, aj)]]. Then {ρa1,··· ,an} is a consistent family of Gaussian
states constituting the required quantum process. �

Definition 3.1. A kernel
K = [[K(a, b)]], a, b ∈ D

where K(a, b) are real 2k × 2k matrices satisfying the conditions

(1) K(a, b)T = K(b, a).
(2) [[K(ai, aj)]] ≥ 0 for all (a1, a2, · · · , an) ∈ SD

is called a k-mode classical covariance kernel.
If, in addition, the inequality (3.1) is fulfilled, then it is called a (k- mode) quantum covariance

kernel.

Corollary 3.1. If K is a k-mode quantum covariance kernel and C is a k-mode classical co-
variance kernel then K + C is a k-mode quantum covariance kernel.

Proof. Immediate. �

Let % be a k-mode quantum process over D with quantum covariance kernel K = [[K(a, b)]],
a, b ∈ D. Suppose C = [[C(a, b)]], a, b ∈ D is the covariance kernel of a real 2k-variate classical
stochastic process so that the matrix inequalities∑

i,j

αiαjC(ai, aj) ≥ 0

for all real scalars α1, · · · , αn, elements a1, · · · , an ∈ D. Then the sum

K + C = [[K(a, b) + C(a, b)]]

is the covariance kernel of a k-mode quantum process σ. We shall now realise such a process
σ by an explicit construction which is an interaction between the quantum process % and a
family of unitary conjugations mediated by a classical process with covariance kernel C.

To this end we start with the 1-mode Hilbert space L2(R), its Schrödinger position-momentum

pair q, p, the associated annihilation-creation pair a, a† given by a = 2−
1
2 (q + ıp), a† =

2−
1
2 (q − ıp) and the unitary Weyl (displacement) operators W (z) = exp(za† − z̄a), z ∈ C

satisfying the relations
W (z)aW (z)† = a− z, z ∈ C
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with the convention that z denotes the scalar as well as the operator zI. This leads to the
relations

W (2−
1
2 z)qW (2−

1
2 z)† = q − x,(3.2)

W (2−
1
2 z)pW (2−

1
2 z)† = p− y,(3.3)

where x = Re z, y = Im z.
Now for a ∈ D, let

za = (za 1, za 2, · · · , za k)T ,
za r = xa r + ıya r,

where xa r = Re za r, ya r = Im za r. Viewing H = L2(Rk) as L2(R)⊗L2(R)⊗· · ·⊗L2(R), k-fold,
introduce the k-mode Weyl operators

W (za) = W (za 1)⊗ · · · ⊗W (za k).

Then the relations (3.2, 3.3) yield the relations for the operators Xa 1, · · · , Xa 2k defined above
as

(3.4) W (2−
1
2za)


Xa 1

Xa 2
...

Xa 2k

W (2−
1
2za)

† =


Xa 1 − αa 1

Xa 2 − αa 2
...

Xa 2k − αa 2k


where

(3.5) (αa 1, αa 2, · · · , αa 2k) = (xa 1, ya 1, xa 2, ya 2, · · · , xa k, ya k) .
Let (ξa 1, ηa 1, ξa 2, ηa 2, · · · , ξa k, ηa k) (ω), ω ∈ Ω, a ∈ D be a 2k real variate stochastic process

defined on a probability space (Ω,F , P ) with zero means and covariance kernel C = [[C(a, b)]]
where

(3.6) C(a, b) = E



ξa 1

ηa 1

ξa 2

ηa 2
...
ξa k
ηa k


[
ξa 1, ηa 1, ξa 2, ηa 2, · · · , ξa k, ηa k

]
, a, b ∈ D.

Define the random unitary operators Ua(ω) in Ha, a ∈ D by putting

ζa r = ξa r + ıηa r, r = 1, 2, · · · , k(3.7)

Ua(ω) = W (2−
1
2ζa(ω))†(3.8)

where ζa = (ζa 1 · · · , ζa k) ∈ Ck. By following the remarks in §2 equation (2.1), define the
k-mode quantum process σ by

(3.9) σa1,··· ,an =

∫
Ω

P (dω)Ua1(ω)⊗ · · · ⊗ Uan(ω)ρa1,··· ,anUa1(ω)† ⊗ · · · ⊗ Uan(ω)†.

Then we have the following theorem:
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Theorem 3.2. The covariance kernel of the σ process determined by the finite-partite states
(3.9) is equal to K + C.

Proof. Consider the observable Xa j. Its expectation under the σ process is given by

TrXa rσa =

∫
P (dω)TrUa(ω)†Xa rUa(ω)ρa

=

∫
P (dω)Tr (Xa r − γa r) ρa

where

(γa 1(ω), · · · , γa 2k(ω)) = (ξa 1(ω), ηa 1(ω), · · · , ξa k(ω), ηa k(ω)) .

Since the classical γ process has mean 0 we have

(3.10) 〈Xa r〉σ = 〈Xa r〉ρ .

Going to second order moments

TrXa rXb s σa b =

∫
P (dω)TrXa rXb sUa(ω)⊗ Ub(ω)ρa bUa(ω)† ⊗ Ub(ω)†

=

∫
P (dω)W (2−

1
2ζa)⊗W (2−

1
2ζb)Xa rXb sW (2−

1
2ζa)

† ⊗W (2−
1
2ζb)

†ρa b

=

∫
P (dω)Tr (Xa r − γa r) (Xb s − γb s) ρa b

=

∫
P (dω)

[
〈Xa rXb s〉% + γa r(ω)γb s(ω)− γa r(ω) 〈Xb s〉 − γb s(ω) 〈Xa r〉

]
= 〈Xa rXb s〉% + Cr s(a, b).

Let a 6= b. Then

Covσ(Xa r, Xb s) = 〈Xa rXb s〉σ − 〈Xa r〉σ 〈Xb s〉σ
= 〈Xa rXb s〉% + Cr s(a, b)− 〈Xa r〉% 〈Xb s〉%
= Kr s(a, b) + Cr s(a, b).

Let a = b. Then Cr s(a, b) = Cr s(a, a) = Cs r(a, a).

Covσ(Xa r, Xa s) =

〈
1

2
(Xa rXa s +Xa sXa r)

〉
σ

− 〈Xa r〉% 〈Xa s〉%

=

〈
1

2
(Xa rXa s +Xa sXa r)

〉
%

+ Cr s(a, a)− 〈Xa r〉% 〈Xa s〉%

= Cov%(Xa r, Xa s) + Cr s(a, a)

= Kr s(a, a) + Cr s(a, a).

�
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Remark 3.1. If % is a weakly stationary quantum process, and (ξa 1, ηa 1, · · · , ξa k, ηa k) is a
weakly stationary classical process with mean 0 such that

K(a, b) = K̃(b− a), a, b ∈ D,
C(a, b) = C̃(b− a),

then σ is also a weakly stationary quantum process.

Remark 3.2. If % is a Gaussian process then so is σ.

4. The KMW spectrum of a weakly stationary k-mode quantum process

Let % be a weakly stationary k-mode quantum process over a countable discrete additive

abelian group D, with autocovariance map K̃. Let D̂ be the compact dual multiplicative group

of all characters of D. Denote by F the Borel σ-algebra on D̂.
Define

(4.1) L(a) = K̃(a) +
ı

2
1{0}(a)J2k, a ∈ D.

Then Theorem 3.1 yields the following proposition.

Proposition 4.1. A real 2k × 2k matrix-valued map K̃ is the autocovariance map of a second
order weakly stationary k-mode quantum process if and only if the associated map L defined by
(4.1) satisfies the following matrix inequalities

[[L(as − ar)]] ≥ 0, r, s ∈ {1, 2, · · · , n}

for all (a1, a2, · · · , an) ∈ SD, n = 1, 2, · · · .

Proof. Immediate. �

Theorem 4.1. A real 2k×2k matrix-valued map K̃ on D is the autocovariance map of a second
order weakly stationary k-mode quantum process on D if and only if there exists a 2k × 2k

Hermitian positive matrix-valued measure Φ on (D̂,F) satisfying the following conditions:

(1) Φ(D̂) = K̃(0),

(2) K̃(a) =
∫
D̂
χ(a)Φ(dχ),

(3) Φ(S) + ı
2
λ(S)J2k ≥ 0, ∀S ∈ F ; where λ is the normalized Haar measure of the compact

group D̂. In particular, λ is absolutely continuous with respect to Tr Φ.
(4) Φ(S−1) = Φ(S) = Φ(S)T , ∀S ∈ F .

Proof. Let K̃ be the autocovariance map of a weakly stationary k-mode process. Define L by
(4.1). By Proposition 4.1 the matrices [[L(as − ar)]], r, s ∈ {1, 2, · · · , n}, (a1, a2, · · · , an) ∈ SD
are positive. Hence for any vector u ∈ C2k, the function

(4.2) ψu(a) = u†L(a)u, a ∈ D
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is positive definite on the abelian group D in the sense of Bochner. By Bochner’s theorem there
exists a totally finite measure νu on F satisfying the relations

ψu(a) =

∫
D̂

χ(a) νu(dχ), a ∈ D,(4.3)

ψu(0) = u†L(0)u

= u†
(
K̃(0) +

ı

2
J2k

)
u, u ∈ C2k.(4.4)

By (4.2) the left hand side of (4.3) is a quadratic form in u for each fixed a in D. By the

bijective correspondence between totally finite measures on D̂ and their Fourier transforms on
D it follows that there exists a 2k× 2k Hermitian positive matrix-valued measure Ψ on F such
that

L(a) =

∫
D̂

χ(a) Ψ(dχ), a ∈ D(4.5)

L(0) = K̃(0) +
ı

2
J2k = Ψ(D̂) ≥ 0.(4.6)

Now define

φu(a) = u†K̃(a)u, a ∈ D, u ∈ C2k.

By (4.1), K̃(a) = ReL(a) and hence [[K̃(as − ar)]] ≥ 0 for any (a1, a2, · · · , an) ∈ SD. In other
words, φu is also a positive definite function on D and by the same arguments as employed for
L we have the relations

K̃(a) =

∫
D̂

χ(a) Φ(dχ),(4.7)

K̃(0) = Φ(D̂),(4.8)

where Φ is again a 2k × 2k Hermitian positive matrix-valued measure on F .
By (4.1)

L(a)− K̃(a) =
ı

2
1{0}(a)J2k

=

[
ı

2

∫
D̂

χ(a)λ(dχ)

]
J2k, a ∈ D(4.9)

Subtracting (4.7) from (4.5) and using (4.9) we have∫
D̂

χ(a)(Ψ− Φ)(dχ) =

[
ı

2

∫
D̂

χ(a)λ(dχ)

]
J2k

for all a ∈ D. Thus by uniqueness of Fourier transform we have

Ψ(S)− Φ(S) =
ı

2
λ(S)J2k, ∀S ∈ F .

Thus

(4.10) Φ(S) +
ı

2
λ(S)J2k ≥ 0, ∀S ∈ F .
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Now property (1) follows from (4.8), property (2) from (4.7), and property (3) from (4.10). If
Tr Φ(S) = 0 then Φ(S) = 0 and (4.10) implies

ı

2
λ(S)J2k ≥ 0

and this is positive only if λ(S) = 0. In other words λ� Tr Φ.

To prove property (4) of Φ we introduce the map τ : D̂ → D̂, τ(χ) = χ = χ−1 and observe
that

K̃(a) = K̃(a) =

∫
D̂

χ(a) Φ(dχ)

=

∫
χ(a) Φτ−1(dχ)

=

∫
χ(a) Φ(dχ).

Thus

Φτ−1 = Φ,

or

Φ(S−1) = Φ(S) = ΦT (S), ∀S ∈ F .
This completes the proof of necessity. To prove sufficiency consider a 2k×2k Hermitian positive
matrix-valued measure Φ satisfying properties (3) and (4) of the theorem. Define

K̃(a) =

∫
D̂

χ(a) Φ(dχ).

Property (3) implies that the function L(a), a ∈ D defined by

L(a) = K̃(a) +
ı

2
1{0}(a)J2k

=

∫
D̂

χ(a)
(

Φ +
ı

2
λJ2k

)
(dχ)

satisfies the matrix inequalities [[L(as − ar)]] ≥ 0 for any sequence (a1, · · · , an) ∈ SD. By

Proposition 4.1, K̃ is the autocovariance function of a strictly stationary mean zero k-mode
quantum Gaussian process. �

Remark 4.1. As already described in the introduction, we call equation (2) in Theorem 4.1,

the spectral representation of the autocovariance map K̃ and say that Φ is the Kolmogorov-
Wiener-Masani (KWM) spectrum of the k-mode weakly stationary quantum process. Theorem
4.1 enables us to construct a whole class of examples of KWM spectra and hence autocovariance

maps as follows. Choose and fix any Borel map χ 7→ M(χ), χ ∈ D̂ where M(χ) is a k-mode
quantum covariance matrix of order 2k, so that

M(χ) +
ı

2
J2k ≥ 0, for every χ ∈ D.

Assume that M(·) is integrable with respect to the normalised Haar measure λ on D̂. Let Ψ

be any totally finite positive Hermitian 2k× 2k matrix-valued measure on (D̂,F) satisfying the
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conjugate symmetry condition Ψ(S−1) = Ψ(S) for any Borel set S ⊂ D̂. Define

Φ(S) =

∫
D̂

M(χ)λ(dχ) + Ψ(S), S ∈ F .

Then by Theorem 4.1, Φ is the KWM spectrum of a stationary quantum Gaussian process over

D with autocovariance map K̃ given by equation (2) of the theorem.

Remark 4.2. The second part of property (3) of Φ in Theorem 4.1 implies that λ(S) = 0
whenever Tr Φ(S) = 0. In other words the KWM spectrum of a weakly stationary k-mode

quantum process over D cannot admit a gap of positive Haar measure in D̂. For example, when

D = Z and D̂ is identified with [0, 2π], the KWM spectrum of a stationary k-mode quantum
Gaussian process over Z cannot admit an interval gap.

Remark 4.3. In Theorem 4.1, express the KWM spectrum Φ as

Φ = [[φrs]], r, s ∈ {1, 2, · · · , 2k}
and write

Φq = [[φ2i−1,2j−1]], i, j ∈ {1, 2, · · · , k}
Φp = [[φ2i,2j]], i, j ∈ {1, 2, · · · , k}.

In the inductive limit C* probability space (B∞, ω) associated with the process % described in §2
the commuting family of position observables {qa r : a ∈ D, r ∈ {1, 2, · · · , k}} affiliated to B∞
execute a classical weakly stationary process with spectrum Φq. A similar property holds for the
family {pa r : a ∈ D, r ∈ {1, 2, · · · , k}}.

Remark 4.4. Following [PS15] one can introduce the observable

Na j =
1

2

(
q2
a j + p2

a j − 1
)
, 1 ≤ j ≤ k,

which is the number of particles (photons) in the j-th mode at the site a. If the underlying
process % is Gaussian with mean 0 then

〈Na j〉 =
1

2

{
φ2j−1,2j−1(D̂) + φ2j,2j(D̂)− 1

2

}
.

This is a consequence of property (1) of Φ in the Theorem 4.1 and Corollary 3.1, equation (3.4)
[PS15].

This shows that the relationships between photon numbers and KWM spectrum need a deeper
exploration.
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