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Abstract

In this paper, we propose a non-parametric estimator of the reliability of a system
with two independent components. The estimator is motivated from an approximation
of the survival function. We derive the exact distribution of the proposed estimator.
The new estimator is shown to be consistent and has asymptotically standard normal
distribution. Simulation studies are also carried out to assess the performance of the

proposed estimator.
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1 Introduction

The sum of random variables plays a vital role in a wide range of areas such as wireless
communication and insurance etc. The sum of random variables arise naturally in reliability
theory as the lifetime of a system with several subsystems. In many modern systems, in
aerospace, electronic and other industries, consist of several different subsystems. For ex-
ample, a modern aircraft flight typically involves subsystems like automated take-off, ascent,
level flight, altered flight due to interferences, descent and landing etc. Each subsystem works
independently and has different configurations. The total operational lifetime of the system
is the sum of the life times of the subsystems. For various application of sum of random
variables in reliability one could refer to Trivedi (2008), Kordecki (1997), Bolch et al. (2006)
and Zhang (2005). In insurance, assume that insurer has available various type of insurance
claims from a particular line of business. From the standpoint of the insurer, the distribution
of sum of claims is of interest. A detailed application of sum of random variables, in the field

of health insurance can be found in Panjer and Willmot (1992) and Willmot and Woo (2007).



A detailed review of some known results on the sum of identical random variables can be seen
in Nadarajah (2008).

In general, exact distributions of sum random variables, is not available in the explicit form
and it involves complex computations. For example, distribution function of sum of Weibull
random variables has no closed form. Hence, in order to estimate distribution function or
reliability function, of sums of random variables, non-parametric methods are often used
(Frees (1994) and Saavedra and Cao (2000) ).

In this paper we first propose a new approximation for the distribution function of sum
of two independent random variables. This approximation is general in the sense that where
the component random variables need not be identical. Using this approximation we suggest
a non-parametric estimator for the distribution function of sum of two independent random

variables. We derive the exact and the asymptotic distribution of the proposed estimator.

2 Sum of two independent random variables

Suppose that X and Y are two independent, continuous non-negative random variables with
quantile functions @ x(.) and Qy (.) respectively. Suppose Fx(.) and Fy(.) be the distribution
functions and fx(.) and fy(.) be the density functions of X and Y respectively. Our aim is
to find the distribution function of Z = X + Y. Note that Qx(u) + Qy(u), 0 <u <1, is
a quantile function of the random variable X + Qy (Fx (X)) or Y + Qx(Fy(Y)) (Sankaran
et al. (2014)).

But we know that if 0 < wuq,us < 1 are two independent uniform random numbers then
Qx(u1) + Qy(uz) gives the random number from the distribution of X + Y. Consider the
contour of Qx(u1) + Qy(uz) at level z, in 0 < wuy,uy < 1 plane which is a unit square. For

specific value of z the equation corresponding to contour line is

Qx(u1) + Qy (uz) = z(u1, ua). (1)

In Figure 1, contour plot of sum of two quantile functions, corresponding to exponential
distributions, with parameters values 2 and 3 is given. In the next theorem we prove that
the area under the contour line in the unit square plane 0 < uq,uy < 1 gives the distribution

function of Z.

Theorem 1. Area under the curve Q x (u1)+Qy (uz) = z in the unit square plane 0 < uy, uy <



1, gives the distribution function of Z, denoted by Fz(z) = P(Z < z).

Proof. Solving (1) for uy gives
= Fy(z — Qx(w)).

(2)

Now area under the curve (2) can be divided into four cases depending upon the value of z.

1. When z < min (Qx (1), Qy (1)), the area is

(2=Qy (0))

A= / Fy(z = Qx(un))duy
0
2. When z > Qx(1) and z < Qy(1), the area is
1
A= / Fy(z — Qx(u))duy
0

3. When z < Qx(1) and z > Qy (1), the area is

Fx (2—Qy(0))

(
A= Fx(z—Qy(1)) +/F —ov (1) Fy(z — Qx(u1))duy

4. When z > Qx (1) and z > Qy(1), the area is
1
A= Pz - Qv + | Fy (=~ Qx(u))du
(2=Qv (1))

Now put u; = Fx(v) in (3),(4),(5) and (6). We get

(

\

0 2z < Qx(0) + Qy(0)
o O Bz — ) fx(v)dv 2 < Qx(1),2 < Qy(1)
S By (2 = v) fx (v)dv 2> Qx(1),2 < Qv(1

Fx(z—Qy(1)+ [~ gy((f —v)fx(v)dv z<Qx(1),z> Qy(1
Fx(z = Qv(1) + [250 Br(z =) fx()dv 2> Qx(1),2 > Qy(1
1 2> Qx(1) +Qy(1)

Here A gives the E(Fy (z— X)) which is the distribution function of Z and hence the theorem

is proved.

]



S L

z=5
08r- B

z=3

06 B

up

04r B

z=1

0.2+ 7=4 -
z=2

0.0 0.2 0.4 0.6 0.8 1.0
up

Figure 1: Contour plot

As mentioned in Section 1, there is no explicit form available for the distribution function
of sum of two independent random variables for most families of the distributions. Thus, in
the next section we derive a simple approximation to the distribution functions of these sums
of random variables. Since the reliability function is 1 — F(z), the above result will give us

an approximation for the reliability function.

2.1 Approximation

We use the trapezoidal rule to approximate the integration part in (3)-(6). Suppose [Fx(zo), Fix(21)]

is the domain of integration. We partition the interval [Fx(2o), Fix(21)] to m subintervals by
21 — % 2(z1 — 2
{Fx(20), Fix (Zo + %)  Fx <Zo + %) s Py (2) )

Corresponding us values are

{Fy (21 — 20), Fy ((m — D& - ZO)) | Fy ((m — 2 = ZO)) . Fy (0)}.

m




Then by trapezoidal rule the area A can be approximated as

A% Fa(z) + %mi (FX ((i+ 1) (21 — 20) +ZO)
- (1 Jen(e22m)
When X and Y is in the range [0, 00) we can write the approximation for Fy(2) as
s E (5 () (),
o (52))

Figure 2 represents approximation to Fyz(z) for various values of m, when X is distributed as

(8)
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exp(2) and Y is distributed as exp(3).

Assume that Fy(.) is twice continuously differentiable. Then, the error of approximation
can be obtained as

Em = Fz<2) — FZm(Z)

Fx(2)
= / Fy(Z — QX(ul))dul
0

B (452 (2) (5 (50 (52

(Y () (m () s ()]

Using (Atkinson, 2008, Equation 5.1.4), there exist a number & between % and %
such that

el (F ((i-i—l)z)_F iz

=0

)> Fy (&) (10)



Figure 2: Approximation

where §; € [Z(m;f*l), Z(Tnfi)] . Using mean value theorem we can write (10) as

= Fé( Ti) 2 ’ 1"
En = Z _%FY(&)

1=
where 7; € [%, @} . Since FY/(§;) and F% (7;) are continous in [0, z], we can write

|Fy (6)]< max Fy (&) < My = max FY(§)

z(m—i—1) <£i<z(m—i) OSESZ

and

|Fe(m)|< max , Fy (1) < My = max Fiy (7).

z(4) <r;< z(i+ OSTSZ
Thus from (2.1) .
E, < il S (11)

- 12m?

which is converging to zero as m — oo.

3 Non-parametric estimator of distribution function of Z

Suppose X and Y are independent random variables. Let { X7, Xo,... X, } and {Y1, Y5, ... Y, }
be independent copies of X and Y. Let Fx(x) and Fy (y) be the empirical estimators of Fi ()

and Fy (y) respectively. Now using (9), we suggest a non-parametric estimator for Fz(z) given




3.1 Asymptotic Properties
In the next theorem we prove that F(z) is consistent estimator of Fy(z).

Theorem 2. As ni,ng, m — 00

sup|F(2) — Fz(2)|—0 a.s.




B():Fx&z (m:n—l)),
Ci(z) = Py ((i ;1)2«) A (z(mm— >> R ((i ml)z) A <z(mm— @))
and - (5) 5 (z(mm— )) _ B, <%) A (z(mm— i))
Now
sup|A;(2)| = sup FX(< i )FY( (m — ”) _FX(“;” )py( (m —1>>’
~ sup i+ 12\ - m@

. By (z(m :ni—l)) (Fx ((z' :11)2) s ((z‘;m))
() (B (7))

ol (45270 (5 (42) - (422
sl () 5 (=) - ()

Since as ny,ny — o0, sup,|Fx(z) — Fx(z)|— 0 and sup,|Fy(z) — Fy(z)|— 0, we have
sup,|4;(2)|]— 0 a.s.

On similar lines we can pro
0 . Now using (13), we can write

e that sup,|B;(z)|— 0 , sup,|Ci(z)|— 0 and sup,|D;(z)|—

sgp|FZ(z) —Fy (2)|= sup % Z {Ai(2) + Bi(2) + Ci(2) + D;i(2) }

3
[

<

m—1
Z up]A
=0

N | —
l\')lr—t

m— m—1 1
l 1
E E sup]C’i(z)l—FE E sup|D;(2)|— 0 a.s.
=0 =0 *
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We can write
sup|Fz(2) — Fz(2)|< sup|Fy(2) — Fz,,(2)|+sup|Fz,, (2) — Fz(2)|

As nq,ny, m — oo the righ hand side of the above expression converges to zero a.s. O

4 Exact distribution of Fi7(z)

In this section we find the exact distribution of F(z), the non-parametric estimator of the

unknown distribution function Fyz(z).

Theorem 3. 2n1n2F(2) is distributed with the probability mass function(p.m.f.) given by

1 (2k+(=1)k—1 ning)! i k=2 ning—k .
;:(0 ) T 2]§ (17112732 LI Pyt i k< nyng
P <2n1n2FZ( ) k) - l(Qk-i-(—l)k—l> ! i k—2j —k
;:kfmng g'(k— 23()7(17:12732 k+j)IQIQQ ]qgﬂlz I ka > NNy
(14)
where k =0,1...2n1no,
m—1 .
1+ 1)z 12 zilm—1—1
=X (e (55F)-m (3)) A ()
— m m
m—1 .
1+ 1)z 12 z(m —1 zim—1—1
=3 (m (55F) -1 (3) (5 (950) -5 (25))
m m m m

and

g3 =1—q1—q.
Before proceeding to the proof of the main theorem, we prove the following lemma.

Lemma 1. If the random vector { X, Xo, X3} is distributed as multinomial distribution with

parameters n and {q1,qo,qs}, where g1 + g2 + g3 = 1, then 2X; + X, is distributed with the

p.m.f given by

1 (2k+(-1)F-1) | b2 ekt
Z;:O k—25 )?(n kit )|Q1QZ JQS ! ka <n
PRXi+ Xy =k) = 1 (2k+(-1)F-1) ] ! o k=2 n—k+j (15
Z;:k,n o= 2])?(” k+])1Q1Q2 JC]g ! if k>n

where k=0,1...,2n.



Proof. The p.m.f. of {X;, X5, X3} is given by

n!
P(Xy=21,Xo =29, X3 =n—x1—19) = . ,qf1q§2q§ TR p, 9 2> 0, 1429 < N
r!zo! (n — 1 — x9)!

To find the P(2X; + X5 = k), we consider four cases

1. If kK <n and k is even,

P2X, + X, = k)
:P(Xlz(),Xg:k’,Xg:n—k)

k k
—|—P(X1:1,X2:k—2,X3:n—k:+1)++P(X1:§,X2:0,X3:n—§)
k
2
=N P(X1=j,Xo=k—2j,Xs =n—k+)
j—O
n!
o 'k2]nk+J
Z k—2))! k’+])'q1% q3
2. If k <n and k is odd,
P2X) + X, = k)
:P(Xle,XQZk,ngn—k)
k—1 k+1
+P(X1_1,X2_k—2,X3_n—]€—|—1)++P(X1_T,X2_1,X3_n—%)

k-1

N ‘

P(Xy1=j,Xo=k—-2j,Xs=n—k+))

>~ .
[l
= O

N ‘

n! 7 k=25 n— k:-i—]
T2 ke %

<.
Il
o
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3. k> mn and k is even,

P2X: + X, = k)
:P(Xlzk—n,X2:2n—k,X3:O)

k
+P(X1:k—n+1,X2:2n—k—2,X3:1)—|——I—P(X1:§,X2:O,X3:n—§)

J n

k
= Y P(Xy=j,Xo=k—2j,Xs=n—k+j)
o
k
2

nl N ‘
— j k—2j n—k+j
Sk =2 n =k e

j=k—n

4. k> n and k is odd,

:P(Xlzk—n,X2:2n—k,X3:O)
k—1 E+1

+P(X1:k‘—n+1,X2:2n—k—2,X3:1)—|—+P(X1:T,X2:1,X3:R—T)

el

—1

= P(X1:j7X2:k_2J7X3:n_k+]>

—n

v ‘

<.
ES
| ol

1

v ‘

nl N ‘
— j k—2j n—k+j
Sk =2 n =k e

—n

Il
e

J

Combining all four cases, we can write

1 k
T (2k+(=1)k-1) n! J k=2 ki s g
T =0 =2 kg 192 43 E=
PX,+ Xy =k) = 1 (2k+(-1)F-1) , , :
4 n! j k—2j n—k+j if k>
j=k-n M2k 12 43 1 n

Now we prove the main theorem.
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Proof. Consider Fy(z)

3

m

1( (L) g (1)) L) o (7))

i

l\l)l»—l i
S o

-1 <#;p s < (z+1)z #g; s < (zz) (#?/wsﬁ (m i)z #yw8<( ml)z)]

o ni ni No no

wherev=1,2..nj,w=1,2...n9

s _<#x;s between (i)z and ZH) )
1

MIH

n

=0

No N2

m—1 . .
{(#xgs between (:7); and (i + 1)2)

m
=0

(s ewn 27120 g (102 4 (g =i 1))

2n1n2

m m

m—1 . .
1 , ()z . (i+1)z
= g { E {(#xvs between g and o

1=0

X (#y;s between (m—i—1)z and (m — Z)Z)]

m m

2y (s verwern €% and €705 ) e (s < 200 }

1
— 2 (CQ + 201),

[ANLD)
where
m—1 ) . '
1 —i—1
- Z K#%S between )z and u) X (#yius < M)]
i=0 m m m
and

m—1 . . . .
Cy = Z #x s between (i)z and i+1) X | #y., s between (m—i—1)z and (m — i)z .
m m

- m m
=0

Let us denote

Ac={ o

. . 1 —7—1 __ 9
xve(%,(wr )Z},yweCm : )Z,(m Z)Z” 1=0,1...m-1
m m m m v=1,2...n1,w=1,2...n2

12



Bi={ 0w

v=1,2..n1,w=1,2...n9

m m m
Here A;NA; = BbNB; =0,i #j =0,1.m—1and A, NB; = 0,4, = 0,.m — 1,
where () denotes empty set. Also it can be seen that U/";'4; and U, B; are also disjoint.

(Ut Ay, U By, (U5 (A U B;)) ) is a partition of (0,00) x (0, 00). Now
C; = Number of elements in U",' B;,

Cy = Number of elements in U ;' A;,

and let
C3 = Number of elements in (Ui"if)l(Ai U Bi))C =ning — C; — Cs.

Then it can be observed that (Cy, Cs, Cs) is distributed with multinomial distribution with

parameter (n1ns, q1, g2, q3) , Where

B () () (57

and

B=1—q —q.
Thus using Lemma 1, 2n1n2f7’z(z) = (5 + 2C is distributed with p.m.f. given in (14). O
Lemma 2. When n is large,

2X1+ Xo—p

~ N(0,1
- 0.1)

where mean p1 = n(2q1 + g2) and variance is given by

o” = n(qiq2 + ¢332 + 4q1g3)

Proof. Since X = {Xi, X5, X3} follows multinomial distribution with parameters n and

{¢1, g2, g3}, we have moment generating function (M.G.F.) of X is given by

E (6i(t1X1+t2X2+t3X3)) _ (qletl + q26t2 + qgetg)n

13



M.G.F. of 2X; + X, is given by

Pax,+x,(t) = B [6t(2X1+X2)}

—F [e(QtXl—l-tXQ)]

= (@e” + qe' +q3)".
M.G.F. of 285821 j5 given by

I F(@)} _ . Mp [65(2x1+xg)]

= 677‘“(@162% + (]26é +q3)"

¢ ¢
1n((¢11€25 +goev +Q3)"> —u

=€

Taylor’s series expansion of In ((qle% + q2e§ + Q3)n) is

t(2ng, +n t? (n +n + 4n 1
In <(q1625 +qge§ Jrqg)n) :ln(q1+qQ+q;>,)"+ ( q1 QQ) ( 41492 q3q> Q1Q3) O< )

o(q1 + ¢+ q3) 202 (1 + g2+ q3) 2 nt/2
tn 2 1
;+E+O(m>

Thus as n — oo,
2X 1+ Xo—p 2
F [et< o )} =ez2,

which is the M.G.F. of standard normal distribution. O

Theorem 4. As nqy,ny — 00,

. 1
Vnins <FZ(Z) — FZm(Z)> ~ N <0, 5\/((11@2 + q3q2 + 4Q1Q3)) ;

¢ = mzl (FX ((i tnl)z) ~ Fy <g>) Fy (—Z<m _ml = 1)) ,
() () (5 ()

g =1—q — q.

where
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Proof. From Theorem 3 and Lemma 2 we have, as ny,ny — 00,

2n1n2FZ(2) ~ N <n1n2(2q1 + q2), \/n1n2(Q1Q2 + @392 + 4Q1Q3)> .

e =2$2 (e (55) < (£)) e (2020)
B () (D) (5 () - (7))
(e (452) - (2)
o (2570 (22) o (50}
B () () (o () e ()
=2Fy,(2)

5 Simulation study

In this section, we carry out a simulation study to assess the performance of the proposed
estimator. For the simulation study we use various parameter combinations of Weibull, log-
normal and gamma distributions. For each combination we generate 1000 samples of size 25
from each distribution and we then calculate bias and MSE of the estimator at four proba-
bilities 0.2,0.4,0.6 and 0.8. The chosen values of m are 5,10 and 15. Simulation results are
summarized in Tables 1-4. Tables give the approximation error and the bias and the MSE
of the nonparametric estimator. From Tables 1-4, it can be seen that approximation error
decreases as m increases and approximation error increases as u increases. The maximum
reported error is 0.262 for the sum of Weibull(1.0.5) and lognormal(1,0.5), when v = 0.8 and
m = 5. Our estimator gives very small bias and MSE in all cases when m = 15. The maxi-
mum reported bias is for the sum of Weibull(1.0.5) and lognormal(1,0.5), when « = 0.8 and
m = 5. The reason for the high bias is due to the high approximation error. But bias reduces

significantly when m = 15. In Figure 3, we plot F(z), the approximation F,_(z) and the

15



non-parametric estimator F 7(2) for m = 15. The name of the distributions considered are

labelled on top of each figure.

{Weibull(1, 1)+gamma(2, 0.5) m=15} {Weibull(1, 1)+LogNorm(1, 1) m=15} (Weibull(1, 0.5)+Weibull(1, 1) m=15}

Figure 3: Plot of F(z), Fy,.(z) and F4(z) for m = 15

6 Conclusion

The present study provided a non-parametric estimator based on an approximation of the
distribution function of sum of two independent random variables. We derived the exact
distribution of the estimator. We established the consistency and asymptotic normality of
the estimator. Simulation studies showed that the estimator has small bias and small MSE.
The result will be useful in estimating the reliability of the system with two independent
components, where the system-life length is the sum of the component life lengths. The

general case with more than two components is still under investigation.
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