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ESTIMATING THE FUNDAMENTAL FREQUENCY USING MODIFIED
NEWTON-RAPHSON ALGORITHM

SWAGATA NANDI! AND DEBASIS KUNDU?

ABSTRACT. In this paper, we propose a modified Newton-Raphson algorithm to estimate
the frequency parameter in the fundamental frequency model in presence of additive sta-
tionary error. The proposed estimator is super efficient in nature in the sense that its
asymptotic variance is less than that of the least squares estimator having the same rate
of convergence as the least squares estimator. With a proper step factor modification, we
start Newton-Raphson algorithm with an initial estimator of order O,(n~!) and obtain an
estimator with rate Op(n_%), the same rate as the least squares estimator. Numerical ex-
periments are performed for different sample sizes, different error variances and different
models. Three real datasets are analyzed using fundamental frequency model where the

estimators are obtained using the proposed algorithm.

1. INTRODUCTION

In this paper, we consider the problem of estimating the frequency present in the following
fundamental frequency model;

p
y(t) =Y [Ajcos(jrt) + Bysin(jM)] +e(t), t=1,....n (1)

j=1
Here y(t) is the observed signal at time point ¢; Ay, By € R are unknown amplitudes and
none of them are not identically equal to zero; 0 < A < % is the fundamental frequency; the
number of components p is assumed to be known. The sequence of error random variables

{e(t)} is from a stationary linear process and satisfies the following assumption.

Assumption 1. The sequence {e(t)} has the following representation:

e(t) = alk)et—k), Y _la(k)| < oo, (2)
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where {e(t)} is a sequence of independent and identically distributed (i.i.d.) random variables

2

with mean zero and finite variance o* > 0. The arbitrary real-valued sequence {a(k)} is

absolutely summable.

Assumption 1 is a standard assumption of a weakly stationary linear process. Any sta-
tionary auto-regressive (AR), moving average (MA) or ARMA process satisfies Assumption

1 and can be expressed as (2).

The fundamental frequency model (1) is a very useful model for periodic signals when
harmonics of a fundamental frequency are present. The model has applications in a variety

of fields and is a special case of the usual sinusoidal model
p

y(t) = [Ajcos(\it) + Bysin(\t)] +e(t). t=1,...,n. (3)
j=1

Model (1) is a particular case of model (3) with a restriction in model parameters; the
frequency of the jth component of the sinusoidal model A\; = jA. When frequencies are at
A, 2X, ..., pA instead of arbitrary A; € (0,7), j = 1,...,p, these are termed as harmonics
of A\. The presence of an exact periodicity is a convenient approximation, but many real
life phenomena can be described using model (1). There are many non-stationary signals
like speech, human circadian system where the data indicate the presence of harmonics of
a fundamental frequency. In such cases, it is conveniently better to use model (1) than (3)

because model (1) has one non-linear parameter as compared to p in model (3).

In the literature, many authors considered the following model instead of model (1),

y(t) = pycos(tir — ;) + e(t), (4)

j=1
where p;’s are amplitudes, A is the fundamental frequency and ¢;’s are phases and p; > 0,
A E (0,%) and ¢; € (0,m), j = 1,...,p. The sequence {e(t)} is the error component.
Note that model (4) is same as model (1) with a different parametrization. In this case,
Aj = pjcos(¢;) and B; = —p;sin(¢;).

We are mainly interested to estimate the fundamental frequency present in model (1)
under assumption 1. The problem was originally proposed by Hannan [6] and then Quinn
and Thomson [14] considered model (4) and proposed an weighted least squares approach to
estimate the unknown parameters. This is basically an approximate generalized least squares
criterion. Later on Nandi and Kundu [10] and Kundu and Nandi [9] studied the asymptotic

properties of the least squares estimator of the unknown parameters of model (4) under
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Assumption 1. Cristensen et al. [3] proposed joint estimation of fundamental frequency and
number of harmonics based on MUSIC criterion. A more general model with presence of
multiple fundamental frequencies has been considered by Christensen et al. [4] and Zhou
[15]. A further generalized model where fundamental frequencies appear in clusters has been
proposed by Nandi and Kundu [11]. Tt is a well known fact that even for the usual sinusoidal
model (3), the Newton-Raphson (NR) algorithm does not work well. In this paper, we have
modified Newton-Raphson algorithm by reducing the step factor in NR iterations applied to
an equivalent criterion function of the approximate least squares estimator. We have proved
that the estimator obtained from modified NR algorithm has the best rate of convergence,
the rate of the LSEs and the asymptotic variance of the modified NR (MNR) estimate is

four times less that than that of the least squares estimator.

Model (1) is an important model in analyzing periodic data and can be useful in situation
where periodic signals are observed with an inherent fundamental frequency. Baldwin and
Thomson [1] used model (1) to describe the visual observations of S.Carinae, a variable
star in the Southern Hemisphere sky. Greenhouse et al. [5] proposed the use of higher-
order harmonic terms of one or more fundamentals and ARMA processes for the errors for
fitting biological rhythms (human core body temperature data). We shall use model (1) to
analyze two speech data and transformed international airline passenger using the proposed

algorithm.

The rest of the paper is organized as follows. In section 2, the least squares and approx-
imate least squares criteria for the fundamental frequency model are described. In section
3, we propose the MNR algorithm and state the main result of the paper. In section 4, we
carry out numerical experiments based on simulation. One simulated data and three real
data are analyzed for illustrative purposes in section 5, and in final section, we summarize

the results and direction for future work..

2. ESTIMATION OF UNKNOWN PARAMETERS

In matrix notation, model (1) can be written as

Y = X(\)0 +e, (5)
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where Y = (y(1),...,y(n))T, e = (e(1),...,e(n))?, 8 = (A}, By,...

(X1,...,Xp) and
cos(jA)  sin(jA)
cos(2jA)  sin(2j\)

j frd
cos(njA) sin(njA)
The matrix X; = X;()), but we do not make it explicit.

The least squares criterion minimizes

Q(0,\) = (Y = X(1)8)"(Y — X(\)0).

A

) “ipy

B,)", X(X)

For a given A, Q(6, A) is minimized at O()) = (X(A\)7X(A))"'X(A\)TY. Then,

00,)) = (Y - X(A)@(A))T (Y - X(A)@(A))

-1

= Y'Y - Y" (X(\)T(X(N)

Therefore, minimizing Q(b\, A) with respect to A is equivalent to maximizing

-1

YT (X)TXW) XY

XMN'Y.

with respect to A. This quantity is asymptotically equivalent to (see Nandi and Kundu [10])

2

Qn(A) = Z

p
J=1

1 ¢ itjA
o Z y(t)e
t=1

(7)

On the other hand, Y7X;(X;"X;)™'X;"Y and |1 >0, y(t)e“j’\‘2 are asymptotically equiv-

alent. Hence our criterion is based on the maximization of
p

g(n) =Y [Y"X(X"X) X" Y]

J=1

with respect to . Write Y7 X;(X;" X;)7'X;"Y = R;()\), then

P
A = arg IIl)E\ng(/\) = arg m)z\xxz R;(M).

j=1
Note that for large n,
n T ¢ T~ T(x.T —1y T
QO,\) =Y Y_EZY X (X X)X Y
j=1

because for large n, %XjTXk =0,j #k.

(8)
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Once \ is estimated using (9), the linear parameters are either estimated as least squares

estimators,

-~ ~

@j) = (X0 %500) "X (VTY.

or as approximated least squares estimators, given as follows:
9 4 ~ 2 .
Aj==3 y(t)cos(iM), Bj==3 y(t)sin(jAr). (10)
t=1 t=1

The estimator of A defined in (9) is nothing but the approximate least squares estimator
(ALSE) of X\ which has been studied extensively in the literature.

The asymptotic distribution of the least squares estimators and approximate least squares
estimators of the unknown parameters of model (1) under assumption 1 is obtained by Nandi
and Kundu [10]. In fact, Nandi and Kundu [10] studied model (4) and observed that the
asymptotic distribution of LSEs and ALSEs are same. Under assumption 1, the asymptotic
distribution of X, the LSE of A is as follows:

~ 2402
n32(\ — ) - N <o, ;—fG> (11)
p p o0 3 2
where 8* = > "j%(A7 + B}), 6c = Y j*(A? + B))c(j) and ¢(j) = |> _a(k)e ™| . The
j=1 j=1 k=0

notation — means convergence in distribution and A’ (a,b), the Gaussian distribution with

mean a and variance b.

3. MODIFIED NEWTON-RAPHSON ALGORITHM

Newton-Raphson algorithm is a well-known and widely used algorithm in non-linear op-
timization. We use a modified version of NR algorithm. The model, considered in this
paper, is a highly non-linear model in its frequency parameter A. For the sum of sinusoidal
model, that is, when the effective frequencies are not harmonics of a fundamental frequency,
it has been heavily criticized in the literature against the use of NR algorithm for computing
LSEs of the unknown frequencies. In many situation the NR algorithm does not converge
or converges to a local minima. Therefore, we modify in the aim of obtaining estimator of

the fundamental frequency which performs better and is consistent and efficient.



6 SWAGATA NANDI! AND DEBASIS KUNDU?

We assume that the number of components, p is known in advance. Also, the amplitudes

Aj and Bj, j =1,...,p satisty the following constraints.
Al + B} > A3+ B >---> A+ B2 (12)

This restriction is required for the ease of implementation of the proposed algorithm. It
is know that the periodogram at a frequency is proportional to the sum of squares of the
corresponding amplitudes. Therefore, the constraint (12) ensures that the periodogram
maximizer (corresponding to the largest as well as the first peak in periodogram plot) of the
observed data is an estimate of the fundamental frequency A. The constraint (12) can be
relaxed, then the first peak in the periodogram can be taken as the initial estimator of the

fundamental frequency.

P
We first describe the NR algorithm in case of g(\) = Z R;(\) in its standard form before
j=1

proceeding further. Let /):1 be the initial estimate of A and /):k be the estimate at the kth
iteration. Then, the NR estimate at the (k + 1)th iteration is obtained as

(13)

where ¢’ (/)\\k) and ¢” (Xk) are first and second order derivatives of ¢(.) evaluated at Ap.

The standard NR algorithm (13) is modified by reducing the correction factor as follows:

~ ~ 140\
Nest = Ap — 4_1 g//(Ak)
9" (\r)

A smaller correction factor prevents the algorithm to diverge or converge to a local minima.

. (14)

At a particular iteration, if the estimator is close enough to the global minimum, then
a comparatively large correction factor may shift the estimate far away from the global

minimum. Motivation to take a smaller step factor comes from the following theorem.

THEOREM 3.1. Let Xg be a consistent estimator of X and Ay — A = O,(n27%), § € (0, 3l

~ ~ ~ 140
Suppose \g is updated as X\ = \g — — J (~0) , then
4 g//()\o)

(&) A=A =0,(n"7%) if§ <

1
G

6025G

(b) n3/2(X—/\) —>N(O7W>’ 2f5 > %,

where 5* and 0g are same as defined in the previous section. |
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This theorem states that if we start from a reasonably good initial estimator, then the
MNR algorithm produces estimator with the same convergence rate as that of the LSE of A.
Moreover, the asymptotic variance of the proposed estimator of the fundamental frequency

is four times less than the asymptotic variance of the LSE. The argument maximum of the

2k

periodogram function over Fourier frequencies ==,k = 1,..., ["

2
frequency has a convergence rate O,(n~'). We use this estimator as the starting value of

] , as an estimator of the

the algorithm implemented with a subset of the observed data vector of size n using similar
idea of Bai et al. [2], Nandi and Kundu [12], and Kundu et al.[8]. The subset is selected
in such a way that the dependence structure present in the data is not destroyed, that is, a
subset of predefined size of consecutive points is selected as a starting point. The following

algorithm assumes that the amplitudes satisfy (12).

Algorithm:

(1) Obtain the argument maximum of the periodogram function I(\) over Fourier fre-
quencies and denote it as Xg. Then Ay = O,(n™1).
(2) At k =1, take n; = n%7 and calculate \; as

~ - 14 (A
T = 3y - LIm o). (15)

4gr (M)

where g, (M) and g, (M) are same as ¢/'(.) and ¢”(.) evaluated at A with a sub-

6/7 =7/6

sample of size n;. Note that Xg — A = Op(n™!) and n; = n%7, so n = n,

~ 11
Therefore, \g — A = O,(n™!) = O,(n, ' ¢) and applying part (a) of theorem 3.1, we

1

haveiX1 —A=0,(n; %) = 0,(n"5%7) = Oy(n"7) = Op(n~""7) with § = 2.
(3) As \y — A = Op(n_l_%), 6 = 2 > &, we can apply part (b) of theorem 3.1. Take
nky+1 = n, and repeat

~ ~ 19, (A
Ak+1:Ak—Zg//k+—1(~’“), k=1,2,... (16)
gnk—i-l()‘k)
until a suitable stopping criterion is satisfied. |

Using theorem 3.1, the algorithm implies that if at any steps, the estimator of A is of order
Op(n™17%), the updated estimator is of order O,(n™'7%) if § < 1 and if § > £, the updated
estimator is of same order as the LSE. In addition, the asymptotic variance is four times

less than the LSE, hence we call it a super efficient estimator. In the proposed algorithm,

6/7 6

of the original sample of size n. The factor =

we have started with a sub-sample of size n
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is not that important and not unique. There are several other choices of n; to initiate the

algorithm, for example, n; = ns and ng = n for k > 2.

To obtain an estimator of order O,(n~!) is easy, but an estimator of order O,(n='7°),
5 € (0, %] is required to apply theorem 3.1. We have started the algorithm with a smaller
number of observations to overcome this problem. Varying sample size enables us to get
estimator of order O,(n~'"?), for some § € (0,3]. With the particular choice of ny, we can
use all the available data points from second step onwards. The proposed algorithm provides
super efficient estimator of the fundamental frequency from the relatively poor periodogram
maximizer over the Fourier frequencies. It is worth mentioning at this point is that the initial
estimator is not the ALSE and is not asymptotically equivalent to the LSE. ALSE of A in
case of fundamental frequency model maximizes the sum of p periodogram functions at the

harmonics without the constraints of Fourier frequencies (see Nandi and Kundu [10]).

4. NUMERICAL EXPERIMENTS

In this section, numerical experimental results are presented based on simulation to ob-
served the performance of the proposed estimator. We consider model (1) with p = 4 with

two different sets of parameters as follows:

Model 1:  A; =5.0, Ay =40, A;=3.0, Ay=20,

B; =30, By=25 By=225 B;=20 \=.25
Model 2:  A; =4.0, Ay =3.0, A3 =20, A, =10,

B, =20, By=15 B;=125 B,=10 \=.314.

The sequence of error random variables {e(¢)} is a moving average process of order one,
e(t) = .be(t — 1) + €(t); €(t) is a sequence of i.i.d. Gaussian random variables with mean
zero and variance 2. The true values of the amplitudes are chosen in such a way that the
constraint (12) is satisfied. The initial estimator used here is the argument maximum of
the periodogram function over Fourier frequencies, as is discussed in section 3. We consider
different sample sizes, n = 100, 200, 300, 400 and 500 and different values of the error variance
of {e(t)}, 02 = .001,.01,.1,.25,.5,.75 and 1.0. Note that, for the generated MA process
{e(t)}, the variance is 1 + 0. For the numerical experiments considered in this section, we

assume that p is known.
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In each case we generate a sample of size n using the given model parameters and find
the initial estimate of the fundamental frequency A\ as the argument maximum of the pe-
riodogram function I(A). Starting from this initial estimate and known p, we compute the
final estimate A of \ using the proposed iterative MNR algorithm. The iterative process is
terminated when the absolute difference between two consecutive iterates is less than 1077.
The generation of the data vector and estimation of the fundamental frequency, this whole
process is replicated 5000 times and we have computed average estimates (AEs) and mean
squared errors (MSEs) based on these 5000 replications. The asymptotic distribution of the
proposed estimator as stated in theorem 3.1(b) as well as the asymptotic distribution the
LSE provided in (11) are also reported for comparison of the MSEs. The results for Model
1 are reported in Tables 1 and 2 and for Model 2, in Tables 3 and 4.

Some of the salient features of the numerical experiment reported in Table 1-4.

(i) We observe that the average estimators of the fundamental frequency are very close
to the true values in all sample sizes and o2 considered. The estimator has a positive
bias which decreases as the sample size increases and increases as the error variance
increases in all the cases except the case of Model 2, when sample size n = 100.

(ii) The MSE increases with increase in error variance whereas it decreases with increase
in sample size. If verifies the consistency property of the proposed estimator.

(iii) In all the cases considered here, the MSE is close to the asymptotic variance of the
MNR estimator. In addition it is smaller than the asymptotic variance of the LSE.

Therefore, in line of theorem 3.1, improvement is achievable in practice.

5. DATA ANALYSIS

In this section, we have analyzed four datasets using the proposed modified Newton-
Raphson algorithm. Out of four datasets, one is a simulated data with eight components
and other three are real life data, namely, two sound data “uuu” and “ahh” and airline

passenger data.

5.1. Simulated data. The data have been generated using the following parameter values

A =50, Ay =45, A3 =40, Ay =35, A;=30, Ag=25, A, =20, Ag=1.5,

By =30, By=275 By=25 B,=20, Bs=1.75 Bs=125 B;=1.0, Bg=0.5,
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TABLE 1. The average estimates, mean squared errors, asymptotic variances
of LSEs and MNR estimates of the fundamental frequency in case Model 1
when sample size n = 100, 200 and 300.

Sample Size N=100

o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .252129 | 1.0844e-10 1.2539-10 3.1347e-11
01 | .252129 | 1.0843e-9 1.2539e-9 3.1347e-10
A .252129 | 1.0848e-8 1.2539e-8 3.1347e-9
25 | 252129 | 2.7133e-8 3.1347e-8 7.8367e-9
Do ].252129 | 5.4318e-8 6.2693e-8 1.5673e-8
75 | .252129 | 8.1566e-8 9.4040e-8 2.3510e-8
1.0 | .252129 | 1.0889e-7 1.2539e-7 3.1347e-8
Sample Size N=200
o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .250441 | 1.5803e-11 1.5673e-11 3.9183e-12
.01 | .250441 | 1.5802e-10 1.5673e-10 3.9183e-11
d 0 .250441 | 1.5808e-9 1.5673e-9 3.9183e-10
25 | .250441 | 3.9537e-9 3.9183e-9 9.7959e-10
5] .250441 | 7.9124e-9 7.8367€-9 1.9592e-9
75 | 250442 | 1.1876e-8 1.1755e-8 2.9388e-9
1.0 | .250442 | 1.5846e-8 1.5673e-8 3.9183e-9
Sample Size N=300
o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .250150 | 4.4782e-12 4.6440e-12 1.1610e-12
.01 | .250150 | 4.4869¢-11 4.6440e-11 1.1610e-11
1| .250150 | 4.4895e-10 4.6440e-10 1.1610e-10
25 | 250150 | 1.1225e-9 1.1610e-9 2.9025e-10
b .250150 | 2.2464e-9 2.3220e-9 5.8050e-10
75 1 .250150 | 3.3720e-9 3.4830e-9 8.7074e-10
1.0 | .250150 | 4.4994e-9 4.6440e-9 1.1610e-9

and A = .25. The true values of the amplitude parameters are chosen such that the ampli-

tudes satisfy the constraints

A2+ B> A2+ B> ... > A2+ B?
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TABLE 2. The average estimates, mean squared errors, asymptotic variances
of LSEs and MNR estimates of the fundamental frequency in case Model 1
when sample size n = 400 and 500

Sample Size N=400

o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .250072 | 1.8527e-12 1.9592e-12 4.8979e-13
.01 | .250072 | 1.8528e-11 1.9592¢-11 4.8979e-12
1] 250072 | 1.8533e-10 1.9592¢-10 4.8979%e-11
25 1 .250072 | 4.6352e-10 4.8979e-10 1.2245e-10
5 .250072 | 9.2769e-10 9.7959e-10 2.4490e-10
751 .250072 | 1.3924e-9 1.4694e-9 3.6734e-10
1.0 | .250073 | 1.8575e-9 1.9592¢-9 4.8979¢-10
Sample Size N=500
o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .250047 | 9.7541e-13 1.0031e-12 2.5077e-13
01 | .250047 | 9.7532e-12 1.0031e-11 2.5077e-12
A0 .250047 | 9.7511e-11 1.0031e-10 2.5077e-11
25 1 .250048 | 2.4376e-10 2.5077e-10 6.2693e-11
5| .250048 | 4.8755e-10 5.0155-10 1.2539e-10
751 .250048 | 7.3143e-10 7.5232e-10 1.8808e-10
1.0 | .250048 | 9.7541e-10 1.0031e-9 2.5077e-10

Note that this is not a crucial restriction. This is just for convenience of implementation.
The sequence of error random variables {e(t)} is same as considered in case of numerical
experiments reported in section 4 with o2 = 1.0. The initial estimator of the fundamental
frequency A has been taken as the periodogram maximizer over Fourier frequencies, %,
k=20,..., [%} which is equal to 0.251327. The generated data and the corresponding
periodogram function are plotted in Fig. 1. Periodogram plot reveals that there are eight
harmonics of the fundamental frequency A. Therefore, we have implemented the MNR
algorithm with eight components and X has come out as 0.250232. The linear parameters
are estimated using the approximate least squares method . Then the predicted values are

obtained using these parameter estimates and are plotted in Fig. 2 along with the generated
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TABLE 3. The average estimates, mean squared errors, asymptotic variances
of LSEs and MNR estimates of the fundamental frequency in case Model 2
when sample size n = 100, 200 and 300.

Sample Size N=100

o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .316324 | 2.2248e-10 3.0918e-10 7.7296e-11
01 | .316324 | 2.2257e-9 3.0918e-9 7.7296e-10
d ] 316324 | 2.2303e-8 3.0918e-8 7.7296e-9
,25 | .316323 | 5.5922e-8 7.7296e-8 1.9324e-8
Do ].316322 | 1.1238e-7 1.5459e-7 3.8648e-8
75 | .316321 | 1.6935e-7 2.3189%e-7 5.7972e-8
1.0 | .316320 | 2.2686e-7 3.0918e-7 7.7296e-8
Sample Size N=200
o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .314611 | 3.5864e-11 3.8648e-11 9.6620e-12
.01 | .314611 | 3.5952e-10 3.8648e-10 9.6620e-11
d | .314611 | 3.5970e-9 3.8648e-9 9.6620e-10
25 | .314611 | 8.9970e-9 9.6620e-9 2.4155e-9
b5 .314611 | 1.8027e-8 1.9324e-8 4.8310e-9
75 | 314611 | 2.7098e-8 2.8986e-8 7.2465e-9
1.0 | .314611 | 3.6208e-8 3.8648e-8 9.6620e-9
Sample Size N=300
o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .314272 | 1.0821e-11 1.1451e-11 2.8628e-12
.01 | .314272 | 1.0646e-10 1.1451e-10 2.8628e-11
d0.314272 | 1.0750e-9 1.1451e-9 2.8628e-10
25 | .314272 | 2.6959e-9 2.8628e-9 7.1570e-10
Do 314272 | 5.4035e-9 5.7256e-9 1.4314e-9
75 | 314272 | 8.1172e-9 8.5884e-9 2.1471e-9
1.0 | .314272 | 1.0836e-8 1.1451e-8 2.8628e-9

dataset. They match reasonably well. For this generated dataset the sequence {e(t)} is from
an MA process. We have estimated the error as e(t) = 0.0917 + €(t) + 0.4799¢(t — 1).
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TABLE 4. The average estimates, mean squared errors, asymptotic variances
of LSEs and MNR estimates of the fundamental frequency in case Model 2
when sample size n = 400 and 500

Sample Size N=400

o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .314152 | 4.6585e-12 4.8310e-12 1.2077e-12
01 | .314152 | 4.6730e-11 4.8310e-11 1.2077e-11
d | 314152 | 4.6732e-10 4.8310e-10 1.2077e-10
25 | 314152 | 1.1671e-9 1.2077e-9 3.0194e-10
5| 314152 | 2.3358e-9 2.4155e-9 6.0387e-10
75 | 314152 | 3.5082¢-9 3.6232¢-9 9.0581e-10
1.0 | .314152 | 4.6834e-9 4.8310e-9 1.2077e-9

Sample Size N=500

o? | Average | Variance | Asym. Var. (LSE) | Asym. Var. (MNR)
.001 | .314096 | 2.4124e-12 2.4735e-12 6.1837e-13
.01 | .314096 | 2.4166e-11 2.4735e-11 6.1837e-12
d 0 .314096 | 2.4243e-10 2.4735e-10 6.1837e-11
25 | .314096 | 6.0615e-10 6.1837e-10 1.5459e-10
5| 314096 | 1.2124e-9 1.2367e-9 3.0918e-10
75 | 314096 | 1.8188e-9 1.8551e-9 4.6377e-10
1.0 | .314096 | 2.4262e-9 2.4735e-9 6.1837e-10

5.2. “auu” data. This dataset is for vowel sound “uuu”. It contains 512 data points sam-
pled at 10 kHz frequency. The data were collected from the Signal Processing lab, II'T
Kanpur. The mean corrected data and the periodogram function are presented in Fig. 3.
It seems from the periodogram plot that there are four harmonics of the fundamental fre-
quency. Also, note that the fundamental frequency model used to analyze this dataset, does
not satisfy the condition (12) because the magnitude of the j-th peak in the periodogram
plot is proportional to A? +B]2. Therefore, we take the first significance frequency as the fun-
damental frequency and rest are the harmonics. Initially, we have estimated the fundamental
frequency with four components using the proposed MNR algorithm. Then further analysis
of the residuals from the four components model indicates that there are two more significant

harmonics present in the residuals. Basically, the periodogram of the residuals reveals the
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Simulated data Periodogram plot of simulated data
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FIGURE 2. Simulated data: the fitted values (red) along with the generated
data (blue).

presence of frequencies at 5\ and 6. Hence, we consider model (1) with 6 components. The
initial estimate of A\ is 0.116582 and the MNR estimate is 0.114215. The linear parameters
are estimated as above. The fitted values (red)and mean corrected observed “uuu” data
(blue) are plotted in Fig. 4. They match very well. Using the parameter estimates, the error
sequence is estimated which can be fitted as the following stationary ARMA(2,4) process;
e(t) = —4.636+ 1.8793¢e(t — 1) — 0.9308e(t — 2) + €(t) — 0.8657¢(t — 1)
—0.4945¢(t — 2) + 0.2859¢(t — 3) + 0.1415¢(t — 4)

This fitting has been done based on minimum AIC.

5.3. “ahh” data. The third dataset is again a sound data “ahh”. It contains 340 signal

values sampled at 10 kHz frequency, The mean corrected data and its periodogram function
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Observed uuu data
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FIGURE 3. Mean corrected “uuu” data and its periodogram function.
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FIGURE 4. The fitted values (red) along with the mean corrected “uuu” data (blue).

are plotted in Fig. 5. Following the same methodology as applied in case of “uuu” data, we
assume a fundamental frequency model with six components for “ahh” data. Using the initial
estimator of the fundamental frequency A as .092399, the MNR algorithm has been applied
and the final estimate of A\ is obtained as .092939. Then, the fitted values are obtained
similarly as simulated data and “uuu” data. The fitted values match quite well with the

mean corrected “ahh” data. The estimated error in this case is
e(t) = 1.8128 + 0.6816e(t — 1) + €(t) + 0.4246¢(t — 1) — 0.5315¢(t — 2) — 0.6572¢(t — 3).

This is a stationary ARMA(1,3) process and can be expressed as (2).

5.4. International airline passenger data. This dataset is a classical dataset in times se-
ries analysis. The data represent the monthly international airline passengers during January
1953 to December 1960 and are collected from the Time Series Data Library of Hyndman [7].

This data has been analyzed by Nandi and Kundu [13] using a linear plus sinusoidal model.
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Observed ahh data Periodogram plot of ahh data
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FIGURE 5. Mean corrected “ahh” data and its periodogram function.
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FIGURE 6. The fitted values (red) along with the mean corrected “ahh” data (blue).

The raw data is plotted in Fig. 7 and we observe that the variance is not constant. So, we
apply log transform as a variance stabilizing transformation. The log transform data are
plotted in Fig. 8. Fig 8 indicates that the variance can be assumed to be constant and there
is a linear trend present with superimposed periodic components. Our aim is see whether
the periodic part of the log transform data can be analyzed using fundamental frequency
model. Hence we take the mean corrected first difference series of the log transform data
which is plotted in Fig 9 and the corresponding periodogram in Fig. 10. It appears from
the periodogram plot that the model (1) with five harmonics might be a suitable model for
the mean corrected first difference log transform data. Now, the periodogram maximizer is
0.529110 and using this as the initial estimate in MNR algorithm, we obtain X = 0.523273.

The linear parameters are estimated as in section 5.1-5.3. Finally, the fitted values (red) as
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Airline passengers data
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well as the mean corrected first difference log transform data (blue) are plotted in Fig 11.

The estimated error in this case is an i.i.d. sequence e(t) = €(t).

6. CONCLUDING REMARKS

In this paper, we have considered the fundamental frequency model. This model is the

multiple sinusoidal frequency model, where frequencies are harmonics of a fundamental fre-

quency. We are mainly interested in estimating A, the fundamental frequency. Once the

A is estimated efficiently, the other linear parameters are easily estimated using LS or ap-

proximate LS approach. It is well known that NR algorithm does not work well in case of
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Airline passenger data along with fitted values
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FIGURE 11. The fitted values (red) along with the log difference of airline

passenger data (blue).

sinusoidal model. In this paper, we propose to modify the step factor in NR algorithm and
observe that it improves the performance of the algorithm quite effectively. The asymptotic
variance of the proposed estimator is smaller than that of the LSE. The fundamental fre-
quency as a single nonlinear parameter has a quite complicated form in LS or approximate
LS approach. The modified NR algorithm does not require any optimization. The calcula-
tion of first and second order derivatives at each step is only required, hence it is very simple

to implement.

We think sequential application of the proposed algorithm will be required if higher order
harmonic terms are present for more than one fundamental frequency. The proposed algo-
rithm can be extended in case of multiple fundamental frequency model (Chirstensen et al.
[4]) and cluster type model (Nandi and Kundu [11]). This a topic of ongoing research and

would be reported elsewhere.
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APPENDIX
Proof of Theorem 3.1: In the proof of theorem 3.1, at any iteration we use \ as the initial

estimator and \ as the updated estimator of \. Now, define the following matrices to express

the first and second order derivatives of R;(\).

D; = diag{j,2j,...,nj}, E=

0 1 d d?
Xj= —X =DjX;E, X;= X =-Di’X;.
-1 o]’ d\ dN P

Note that EE = —I, EE” =1 = E’E and

d _ e . _
E(XJTXJ) b= (XTXG) XX+ XX (X X) T

d
Write —+ R (A) = R;()) and £ R;(\) = R/()\). Then

1 . .
533()\) =Y XX X)) 7' XTY - YIOXG(XTX) X X (X X)) T XY, (1)

and
%R}'(A) = Y'X;(X7 X)) XY - YOXG(XTX) TN XX + XX (X X) T XTY
+ YTXG(XTX) XY - YIXG(XGTXG) XY X (X X)) T XGTY
+YTXG (X X)X X + X XG) (X X)X X (X XG) T XY
— YIXG(X5 X)X XG) (X X) T XY
— YTXG(XTXG) X X)) (X7 X)X TY
+YTXG(XGTXG) XX (X5 XG) T XT X + X XG) (X XG) T X TY
— YTXG(XTXG) XX (X TX) XY (18)
P p
By definition g(A) = » R;()), therefore, we have g'(\ ZR’ ) and ¢g"(\) = ZR}’(A).
j=1 j=1

- 1 -
Assume that A — A\ = O,(n™'7%), § € (0, 5] Therefore, for large n, at A = A,

(1X7X5) " = X)X () =2 T+ 0,1, (19)
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Using the large sample approximation (19) in the first term of $R’(\) in (17), we have at
A=A,

%YTXJ(XjTXj)_lijY
= YOO X050 Y
— 2YTDX,VEX;(N) Y
= % [(Z y(t)t cos( j)\t ) (Zy ) sin ]/\t ) — (Zy(t)tsin(th)> (Z y(t) COS(th>>] :

Then along the same line as Bai et al.[2] (see also Nandi and Kundu[12]), it can be shown
that,

Zy cos(jAt) = (A +0,(n7%)), Zy sin(jAt) = (B +0,(n7%).  (20)

Now consider

;y(t)te_im = ;(

hS]

[Ag, cos(kAt) + By sin(kAt) + e(t )]> oA

k=1

p
= %Z(Ak — iBy) Zt el RA=INE 1
k=1 t=1
1 <& o
5 Ak + iBy) Zt e ilkA+iNt + Z te_”’\t (21)

Similarly as Bai et al.[2], the following can be established for harmonics of fundamental

frequency;
Zt e—i(k)\—i-jX)t =0,(n), Vk,j=1,...p
t=1
Zt o (kA=) _ Op(n), Vk#£j=1,...p
and for k = j,
n o n ~ n 1 < .
@iVt t+iA=N)7F ) t2—=A=N%2%2)

1, ~y s 1 VTR ey
—az()\—)\)3]32t4+ ﬁ()\—)\)"‘]‘th‘r’e (A=At (22)
=1 t=1
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The last term of (22) is approximated as

)\)4j4 Z t5ei()\f)\*)jt _ Op(n2746).
t=1

For the last term in (21), choose L large enough such that LJ > 1 and using the Taylor

series expansion of e~ we obtain,
Z e(t)te’iﬂt
t=1
= Z a(m) Z e(t — m)te_int
m=0 t=1
) n [e'S) L— 1 "’ n
— Z a(m) Z (t — m)te M + Z Z e(t — m)tHHle— i
m=0 t=1 . 1:1 t=1
S O(n(A — \)*
+) a(m) == Z tle(t — m)| (here || < 1)
m=0 t=1
_ Z CL( )Z ( te—zy)\t + ZO 1+5)l ( H—%) + Za(m)Op(nE_L‘s)
m=0 t=1 m=0
= Z a(m) Z e(t —m)te M 4 O, (n2~0)
m=0 t=1
Therefore,
S y(t)t cos(N)

;Ak (;t - %()\ - X)2j2;t3>
5 B, (Z(A _Nje - %(A - X)?*f”Z#)

t=1 t=1

o n

+ Y a(m) Z e(t —m)tcos(jAt) + Oy(n ’_Lé) + O0,(n) + O, (n*=*). (23)
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y(t)tsin(jAt)

M=

~

=1

hS]

| —

t=1

M:

+ ) alm)

m=0 t=1

ZBk (it—%@—
P ~ 1 N
—ZAk (Z A=At = (A=)

e(t —m)tsin(jAt) + Oy(n

X)2j2 Z t3>
t=1

3j3 i t4>

t=1

Next, the second term of $R)()) in (17) is approximated as

1 e _
EYTXJ(XJTXJ) XIX(XTX) XY

1 . .
= SYIX(XG X)) T ETXG DX (X X)X Y

n

- #YTXJ-ETXJ-TY + O,

for large n and \ = A

Now to simplify R (X) and R (X), we need the following results, for any A € (0,

and

1

1
=X"DyX; = j6I+O( ),

1 T J
EXJ. D;X; = 4I+O (n)

=0,

n

1) 4 0y(n) + 0, (n* ).

— lSYTXJ- (21 + Op(%)) ET j GI + O,,(%)) (21 + Op(%)> X;'Y

Zt sin®(j\t) ——+O( ),
Zsin2(j)\t) = —+o(n),
t=1

Ztg sin?(jAt) ———I—O( %),

j 1 1
EYTDJXJ- = Z—l(A- Bj)+ O (ﬁ) ﬁYTDﬁxj =

).

(24)

(25)

(26)

(27)

(28)
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Next to simplify 515 R/()A), use (19) at the first step.

2n3

1 ~ 2 . 4 . . . 2 . .
53 ) = EYTXJ-XJ-TY—ﬁYTXj(XIXj+XjTXj)XjTYj+mYTXijT Y;
4 re < 8 : o
— SYIXXPXXGTY S YIXG (XX 4 X X)X XX Y
4 . 4 . T« T
— ﬁYTXJ-XJ?XJ-XJ-TY— EYTXJ-XJ- X;X;'Y
8 < T o T . T T 4 1o ol oT 1
YRR X (XX X X)X Y - S YIXGX XX Y+ Op(-).

In the second step, use XJ = D;X,E and X = —Dj2Xj.

1 ~ 2 4
53 RI(\) = —EYTDJ.ZXJ-XJ-TY - EYTDijE(ETXjTDjXj + X" DiX;E)X;"Y
2 4
+ HYTDJXJEETXJ-TDJ-Y — ﬁYTDJ-XjEETXjTDijXjTY

8

4
+ EYTXJ-(ETXJ-TDJ-XJ- +X;"D;XE)ET X D X XY + EYTXJXJTDjszXjTY

4 8
— ﬁYTXjETXjTDfXjEXjTY + ﬁYTXjETXjTDij(ETXjTDij

4 1
+ X;"DyX;E)X;TY — EYTXJ.ETXJ-TDJ-XJ-ETXjTDjY +0p().

Next, using (26)-(31), we observe

1 "N 2 2 j2 jz j2 j2 j2 j2 1

— R'\) = (A2+B?) |-L — L _ L Lo _ L L -

5,3 R7(N) (A + Bj) 6 0+8 8+0+6 6+0+8 +Op(n)
7% e 2 1

The correction factor in Newton-Raphson algorithm can be written as

1 & ~
<~ 53 > RN
g L ]:1 (33)
1 "N
55 2
j=1
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1 &~
Using (23), (24) and (25), e ZR;()\) is simplified as
1

1 <& ~
55 2 50
j=1

. . 1 N 1 b 9 2 2 1
and using (32), the denominator of (33) is — Z RI(N\) = ~51 ;j (A + B5) + Op(ﬁ)'

Therefore,

2 p
i 2
j=1
B; - Tyog2 L Y\3 .3 - 4
+5 > (A=Wt — (=N N

t=1 t=1

—|—§:a Zet— )t cos(jAL) + Op(n2~5) + Op(n) + O, (n> 1)

t=1

2(A + O,( { (Zt——/\ A“Zf’)
—% (i(x /\)jtz—é(/\ A33Zt4>

t=1 t=1

+ Z a(k) Z e(t — k)tsin(jAt) + Op(n%—L5> +0,(n) + Op<n2_45> }]

j J){Z(A Njt* — (A—X)?’jgzt“}

t=1

1 o0
+—{BJ§ a( E e(t — k)t cos(jAt)
n?
0 t=1

+A; 3 a(k) 2”: e(t — k:)tsin(j)\t)}]

k=0 t=1

3

+0,(n"2 75 4+ 0,(n72) + O, (n~1-1),

p

In3 J
7j=1

1g0) 51 "Z
49//()‘> 4 1 R//(X)

om3 J
Jj=1

o { g (S j0-wrrye)
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1 &, ~

Jj=1

|

1 < . 1
—53 204+ B) + 0,(-)
j=1

1 n
A2 Bz 2__ 3.3 4
53 (A7 + {; (A= N)jit ()\ N) ;t H

[e.o] n

</3+o ijxns{ﬂza elt = )t cos(iAt)

k=0 t=1

6 p
M +op<5>> 2]

n

+A; Z Ze t —k)tsin(jAt) p + Op(n )+ O0,(n72) + O, (n~171)34)
k=0 t=1

P 2(A2 4 B2
Here f* = Z ‘% is same as defined after (11). When 6 < 1
j=1

< Llin (34), A -\ =
Op(n~173%) whereas if 6 > %, then for large n,

~ d 6n_3/2 p n
2 -\ = 5 Z a( Zet— t cos(jAt)
j=1 k: t=1
—l—AJZa Zet— tsmj)\t)}
k=0 =1
— N(0,9)

where

k=0
6 P > ’ 60’2(56'
2022 7*(A2 + BY) Za(k)eﬂkﬂ* .
p* j=1 k=0 B

This proves the theorem.
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