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ESTIMATING THE FUNDAMENTAL FREQUENCY USING MODIFIED
NEWTON-RAPHSON ALGORITHM

SWAGATA NANDI1 AND DEBASIS KUNDU2

Abstract. In this paper, we propose a modified Newton-Raphson algorithm to estimate

the frequency parameter in the fundamental frequency model in presence of additive sta-

tionary error. The proposed estimator is super efficient in nature in the sense that its

asymptotic variance is less than that of the least squares estimator having the same rate

of convergence as the least squares estimator. With a proper step factor modification, we

start Newton-Raphson algorithm with an initial estimator of order Op(n−1) and obtain an

estimator with rate Op(n− 3
2 ), the same rate as the least squares estimator. Numerical ex-

periments are performed for different sample sizes, different error variances and different

models. Three real datasets are analyzed using fundamental frequency model where the

estimators are obtained using the proposed algorithm.

1. Introduction

In this paper, we consider the problem of estimating the frequency present in the following

fundamental frequency model;

y(t) =

p∑
j=1

[Aj cos(jλt) +Bj sin(jλt)] + e(t), t = 1, . . . , n (1)

Here y(t) is the observed signal at time point t; Ak, Bk ∈ R are unknown amplitudes and

none of them are not identically equal to zero; 0 < λ < π
p

is the fundamental frequency; the

number of components p is assumed to be known. The sequence of error random variables

{e(t)} is from a stationary linear process and satisfies the following assumption.

Assumption 1. The sequence {e(t)} has the following representation:

e(t) =
∞∑
k=0

a(k)ε(t− k),
∞∑
k=0

|a(k)| <∞, (2)

2000 Mathematics Subject Classification. 62J02; 62E20; 62C05.

Key words and phrases. Fundamental frequency model; Approximate least square; Modified Newton-

Raphson algorithm; Super efficient estimator;

1



2 SWAGATA NANDI1 AND DEBASIS KUNDU2

where {ε(t)} is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero and finite variance σ2 > 0. The arbitrary real-valued sequence {a(k)} is

absolutely summable.

Assumption 1 is a standard assumption of a weakly stationary linear process. Any sta-

tionary auto-regressive (AR), moving average (MA) or ARMA process satisfies Assumption

1 and can be expressed as (2).

The fundamental frequency model (1) is a very useful model for periodic signals when

harmonics of a fundamental frequency are present. The model has applications in a variety

of fields and is a special case of the usual sinusoidal model

y(t) =

p∑
j=1

[Aj cos(λjt) +Bj sin(λjt)] + e(t). t = 1, . . . , n. (3)

Model (1) is a particular case of model (3) with a restriction in model parameters; the

frequency of the jth component of the sinusoidal model λj = jλ. When frequencies are at

λ, 2λ, . . . , pλ instead of arbitrary λj ∈ (0, π), j = 1, . . . , p, these are termed as harmonics

of λ. The presence of an exact periodicity is a convenient approximation, but many real

life phenomena can be described using model (1). There are many non-stationary signals

like speech, human circadian system where the data indicate the presence of harmonics of

a fundamental frequency. In such cases, it is conveniently better to use model (1) than (3)

because model (1) has one non-linear parameter as compared to p in model (3).

In the literature, many authors considered the following model instead of model (1),

y(t) =

p∑
j=1

ρj cos(tjλ− φj) + e(t), (4)

where ρj’s are amplitudes, λ is the fundamental frequency and φj’s are phases and ρj > 0,

λ ∈ (0, π
p
) and φj ∈ (0, π), j = 1, . . . , p. The sequence {e(t)} is the error component.

Note that model (4) is same as model (1) with a different parametrization. In this case,

Aj = ρj cos(φj) and Bj = −ρj sin(φj).

We are mainly interested to estimate the fundamental frequency present in model (1)

under assumption 1. The problem was originally proposed by Hannan [6] and then Quinn

and Thomson [14] considered model (4) and proposed an weighted least squares approach to

estimate the unknown parameters. This is basically an approximate generalized least squares

criterion. Later on Nandi and Kundu [10] and Kundu and Nandi [9] studied the asymptotic

properties of the least squares estimator of the unknown parameters of model (4) under
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Assumption 1. Cristensen et al. [3] proposed joint estimation of fundamental frequency and

number of harmonics based on MUSIC criterion. A more general model with presence of

multiple fundamental frequencies has been considered by Christensen et al. [4] and Zhou

[15]. A further generalized model where fundamental frequencies appear in clusters has been

proposed by Nandi and Kundu [11]. It is a well known fact that even for the usual sinusoidal

model (3), the Newton-Raphson (NR) algorithm does not work well. In this paper, we have

modified Newton-Raphson algorithm by reducing the step factor in NR iterations applied to

an equivalent criterion function of the approximate least squares estimator. We have proved

that the estimator obtained from modified NR algorithm has the best rate of convergence,

the rate of the LSEs and the asymptotic variance of the modified NR (MNR) estimate is

four times less that than that of the least squares estimator.

Model (1) is an important model in analyzing periodic data and can be useful in situation

where periodic signals are observed with an inherent fundamental frequency. Baldwin and

Thomson [1] used model (1) to describe the visual observations of S.Carinae, a variable

star in the Southern Hemisphere sky. Greenhouse et al. [5] proposed the use of higher-

order harmonic terms of one or more fundamentals and ARMA processes for the errors for

fitting biological rhythms (human core body temperature data). We shall use model (1) to

analyze two speech data and transformed international airline passenger using the proposed

algorithm.

The rest of the paper is organized as follows. In section 2, the least squares and approx-

imate least squares criteria for the fundamental frequency model are described. In section

3, we propose the MNR algorithm and state the main result of the paper. In section 4, we

carry out numerical experiments based on simulation. One simulated data and three real

data are analyzed for illustrative purposes in section 5, and in final section, we summarize

the results and direction for future work..

2. Estimation of Unknown Parameters

In matrix notation, model (1) can be written as

Y = X(λ)θ + e, (5)
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where Y = (y(1), . . . , y(n))T , e = (e(1), . . . , e(n))T , θ = (A1, B1, . . . , Ap, Bp)
T , X(λ) =

(X1, . . . ,Xp) and

Xj =


cos(jλ) sin(jλ)

cos(2jλ) sin(2jλ)
...

...

cos(njλ) sin(njλ)

 .

The matrix Xj = Xj(λ), but we do not make it explicit.

The least squares criterion minimizes

Q(θ, λ) = (Y −X(λ)θ)T (Y −X(λ)θ). (6)

For a given λ, Q(θ, λ) is minimized at θ̂(λ) = (X(λ)TX(λ))−1X(λ)TY. Then,

Q(θ̂, λ) =
(
Y −X(λ)θ̂(λ)

)T (
Y −X(λ)θ̂(λ)

)
= YTY −YT

(
X(λ)T (X(λ)

)−1
X(λ)TY.

Therefore, minimizing Q(θ̂, λ) with respect to λ is equivalent to maximizing

YT
(
X(λ)T (X(λ)

)−1
X(λ)TY

with respect to λ. This quantity is asymptotically equivalent to (see Nandi and Kundu [10])

QN(λ) =

p∑
j=1

∣∣∣∣∣ 1n
n∑
t=1

y(t)eitjλ

∣∣∣∣∣
2

. (7)

On the other hand, YTXj(Xj
TXj)

−1Xj
TY and

∣∣ 1
n

∑n
t=1 y(t)eitjλ

∣∣2 are asymptotically equiv-

alent. Hence our criterion is based on the maximization of

g(λ) =

p∑
j=1

[
YTXj(Xj

TXj)
−1Xj

TY
]

(8)

with respect to λ. Write YTXj(Xj
TXj)

−1Xj
TY = Rj(λ), then

λ̂ = arg max
λ

g(λ) = arg max
λ

p∑
j=1

Rj(λ). (9)

Note that for large n,

Q(θ̂, λ) = YTY − 1

n

p∑
j=1

YTXj
T (Xj

TXj)
−1Xj

TY

because for large n, 1
n
Xj

TXk = 0, j 6= k.
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Once λ̂ is estimated using (9), the linear parameters are either estimated as least squares

estimators, (
Âj

B̂j

)
= (Xj(λ̂)TXj(λ̂))−1Xj(λ̂)TY.

or as approximated least squares estimators, given as follows:

Ãj =
2

n

n∑
t=1

y(t) cos(jλt), B̃j =
2

n

n∑
t=1

y(t) sin(jλt). (10)

The estimator of λ defined in (9) is nothing but the approximate least squares estimator

(ALSE) of λ which has been studied extensively in the literature.

The asymptotic distribution of the least squares estimators and approximate least squares

estimators of the unknown parameters of model (1) under assumption 1 is obtained by Nandi

and Kundu [10]. In fact, Nandi and Kundu [10] studied model (4) and observed that the

asymptotic distribution of LSEs and ALSEs are same. Under assumption 1, the asymptotic

distribution of λ̂, the LSE of λ is as follows:

n3/2(λ̂− λ)
d−→ N

(
0,

24σ2δG

β∗2

)
(11)

where β∗ =

p∑
j=1

j2(A2
j + B2

j ), δG =

p∑
j=1

j2(A2
j + B2

j )c(j) and c(j) =

∣∣∣∣∣
∞∑
k=0

a(k)e−ijkλ

∣∣∣∣∣
2

. The

notation
d−→ means convergence in distribution and N (a, b), the Gaussian distribution with

mean a and variance b.

3. Modified Newton-Raphson Algorithm

Newton-Raphson algorithm is a well-known and widely used algorithm in non-linear op-

timization. We use a modified version of NR algorithm. The model, considered in this

paper, is a highly non-linear model in its frequency parameter λ. For the sum of sinusoidal

model, that is, when the effective frequencies are not harmonics of a fundamental frequency,

it has been heavily criticized in the literature against the use of NR algorithm for computing

LSEs of the unknown frequencies. In many situation the NR algorithm does not converge

or converges to a local minima. Therefore, we modify in the aim of obtaining estimator of

the fundamental frequency which performs better and is consistent and efficient.
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We assume that the number of components, p is known in advance. Also, the amplitudes

Aj and Bj, j = 1, . . . , p satisfy the following constraints.

A2
1 +B2

1 ≥ A2
2 +B2

2 ≥ · · · ≥ A2
p +B2

p . (12)

This restriction is required for the ease of implementation of the proposed algorithm. It

is know that the periodogram at a frequency is proportional to the sum of squares of the

corresponding amplitudes. Therefore, the constraint (12) ensures that the periodogram

maximizer (corresponding to the largest as well as the first peak in periodogram plot) of the

observed data is an estimate of the fundamental frequency λ. The constraint (12) can be

relaxed, then the first peak in the periodogram can be taken as the initial estimator of the

fundamental frequency.

We first describe the NR algorithm in case of g(λ) =

p∑
j=1

Rj(λ) in its standard form before

proceeding further. Let λ̂1 be the initial estimate of λ and λ̂k be the estimate at the kth

iteration. Then, the NR estimate at the (k + 1)th iteration is obtained as

λ̂k+1 = λ̂k −
g′(λ̂k)

g′′(λ̂k)
, (13)

where g′(λ̂k) and g′′(λ̂k) are first and second order derivatives of g(.) evaluated at λ̂k.

The standard NR algorithm (13) is modified by reducing the correction factor as follows:

λ̂k+1 = λ̂k −
1

4

g′(λ̂k)

g′′(λ̂k)
. (14)

A smaller correction factor prevents the algorithm to diverge or converge to a local minima.

At a particular iteration, if the estimator is close enough to the global minimum, then

a comparatively large correction factor may shift the estimate far away from the global

minimum. Motivation to take a smaller step factor comes from the following theorem.

Theorem 3.1. Let λ̃0 be a consistent estimator of λ and λ̃0 − λ = Op(n
−1−δ), δ ∈ (0, 1

2
].

Suppose λ̃0 is updated as λ̃ = λ̃0 −
1

4

g′(λ̃0)

g′′(λ̃0)
, then

(a) λ̃− λ = Op(n
−1−3δ) if δ ≤ 1

6
.

(b) n3/2(λ̃− λ)→ N
(

0,
6σ2δG

β∗2

)
, if δ > 1

6
,

where β∗ and δG are same as defined in the previous section.
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This theorem states that if we start from a reasonably good initial estimator, then the

MNR algorithm produces estimator with the same convergence rate as that of the LSE of λ.

Moreover, the asymptotic variance of the proposed estimator of the fundamental frequency

is four times less than the asymptotic variance of the LSE. The argument maximum of the

periodogram function over Fourier frequencies 2πk
n
, k = 1, . . . ,

[
n
2

]
, as an estimator of the

frequency has a convergence rate Op(n
−1). We use this estimator as the starting value of

the algorithm implemented with a subset of the observed data vector of size n using similar

idea of Bai et al. [2], Nandi and Kundu [12], and Kundu et al.[8]. The subset is selected

in such a way that the dependence structure present in the data is not destroyed, that is, a

subset of predefined size of consecutive points is selected as a starting point. The following

algorithm assumes that the amplitudes satisfy (12).

Algorithm:

(1) Obtain the argument maximum of the periodogram function I(λ) over Fourier fre-

quencies and denote it as λ̃0. Then λ̃0 = Op(n
−1).

(2) At k = 1, take n1 = n6/7 and calculate λ̃1 as

λ̃1 = λ̃0 −
1

4

g′n1
(λ̃0)

g′′n1
(λ̃0)

. (15)

where g′n1
(λ̃0) and g′′n1

(λ̃0) are same as g′(.) and g′′(.) evaluated at λ̃0 with a sub-

sample of size n1. Note that λ̃0 − λ = Op(n
−1) and n1 = n6/7, so n = n

−7/6
1 .

Therefore, λ̃0 − λ = Op(n
−1) = Op(n

−1− 1
6

1 ) and applying part (a) of theorem 3.1, we

have λ̃1 − λ = Op(n
−1− 1

2
1 ) = Op(n

− 3
2
× 6

7 ) = Op(n
− 9

7 ) = Op(n
−1− 2

7 ) with δ = 2
7
.

(3) As λ̃1 − λ = Op(n
−1− 2

7 ), δ = 2
7
> 1

6
, we can apply part (b) of theorem 3.1. Take

nk+1 = n, and repeat

λ̃k+1 = λ̃k −
1

4

g′nk+1(λ̃k)

g′′nk+1(λ̃k)
, k = 1, 2, . . . (16)

until a suitable stopping criterion is satisfied.

Using theorem 3.1, the algorithm implies that if at any steps, the estimator of λ is of order

Op(n
−1−δ), the updated estimator is of order Op(n

−1−3δ) if δ ≤ 1
6

and if δ > 1
6
, the updated

estimator is of same order as the LSE. In addition, the asymptotic variance is four times

less than the LSE, hence we call it a super efficient estimator. In the proposed algorithm,

we have started with a sub-sample of size n6/7 of the original sample of size n. The factor 6
7
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is not that important and not unique. There are several other choices of n1 to initiate the

algorithm, for example, n1 = n
8
9 and nk = n for k ≥ 2.

To obtain an estimator of order Op(n
−1) is easy, but an estimator of order Op(n

−1−δ),

δ ∈ (0, 1
2
] is required to apply theorem 3.1. We have started the algorithm with a smaller

number of observations to overcome this problem. Varying sample size enables us to get

estimator of order Op(n
−1−δ), for some δ ∈ (0, 1

2
]. With the particular choice of n1, we can

use all the available data points from second step onwards. The proposed algorithm provides

super efficient estimator of the fundamental frequency from the relatively poor periodogram

maximizer over the Fourier frequencies. It is worth mentioning at this point is that the initial

estimator is not the ALSE and is not asymptotically equivalent to the LSE. ALSE of λ in

case of fundamental frequency model maximizes the sum of p periodogram functions at the

harmonics without the constraints of Fourier frequencies (see Nandi and Kundu [10]).

4. Numerical Experiments

In this section, numerical experimental results are presented based on simulation to ob-

served the performance of the proposed estimator. We consider model (1) with p = 4 with

two different sets of parameters as follows:

Model 1 : A1 = 5.0, A2 = 4.0, A3 = 3.0, A4 = 2.0,

B1 = 3.0, B2 = 2.5, B3 = 2.25, B4 = 2.0, λ = .25

Model 2 : A1 = 4.0, A2 = 3.0, A3 = 2.0, A4 = 1.0,

B1 = 2.0, B2 = 1.5, B3 = 1.25, B4 = 1.0, λ = .314.

The sequence of error random variables {e(t)} is a moving average process of order one,

e(t) = .5ε(t − 1) + ε(t); ε(t) is a sequence of i.i.d. Gaussian random variables with mean

zero and variance σ2. The true values of the amplitudes are chosen in such a way that the

constraint (12) is satisfied. The initial estimator used here is the argument maximum of

the periodogram function over Fourier frequencies, as is discussed in section 3. We consider

different sample sizes, n = 100, 200, 300, 400 and 500 and different values of the error variance

of {ε(t)}, σ2 = .001, .01, .1, .25, .5, .75 and 1.0. Note that, for the generated MA process

{e(t)}, the variance is 1 + σ2. For the numerical experiments considered in this section, we

assume that p is known.
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In each case we generate a sample of size n using the given model parameters and find

the initial estimate of the fundamental frequency λ as the argument maximum of the pe-

riodogram function I(λ). Starting from this initial estimate and known p, we compute the

final estimate λ̂ of λ using the proposed iterative MNR algorithm. The iterative process is

terminated when the absolute difference between two consecutive iterates is less than 10−7.

The generation of the data vector and estimation of the fundamental frequency, this whole

process is replicated 5000 times and we have computed average estimates (AEs) and mean

squared errors (MSEs) based on these 5000 replications. The asymptotic distribution of the

proposed estimator as stated in theorem 3.1(b) as well as the asymptotic distribution the

LSE provided in (11) are also reported for comparison of the MSEs. The results for Model

1 are reported in Tables 1 and 2 and for Model 2, in Tables 3 and 4.

Some of the salient features of the numerical experiment reported in Table 1-4.

(i) We observe that the average estimators of the fundamental frequency are very close

to the true values in all sample sizes and σ2 considered. The estimator has a positive

bias which decreases as the sample size increases and increases as the error variance

increases in all the cases except the case of Model 2, when sample size n = 100.

(ii) The MSE increases with increase in error variance whereas it decreases with increase

in sample size. If verifies the consistency property of the proposed estimator.

(iii) In all the cases considered here, the MSE is close to the asymptotic variance of the

MNR estimator. In addition it is smaller than the asymptotic variance of the LSE.

Therefore, in line of theorem 3.1, improvement is achievable in practice.

5. Data Analysis

In this section, we have analyzed four datasets using the proposed modified Newton-

Raphson algorithm. Out of four datasets, one is a simulated data with eight components

and other three are real life data, namely, two sound data “uuu” and “ahh” and airline

passenger data.

5.1. Simulated data. The data have been generated using the following parameter values

A1 = 5.0, A2 = 4.5, A3 = 4.0, A4 = 3.5, A5 = 3.0, A6 = 2.5, A7 = 2.0, A8 = 1.5,

B1 = 3.0, B2 = 2.75, B3 = 2.5, B4 = 2.0, B5 = 1.75, B6 = 1.25, B7 = 1.0, B8 = 0.5,
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Table 1. The average estimates, mean squared errors, asymptotic variances

of LSEs and MNR estimates of the fundamental frequency in case Model 1

when sample size n = 100, 200 and 300.

Sample Size N=100

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .252129 1.0844e-10 1.2539-10 3.1347e-11

.01 .252129 1.0843e-9 1.2539e-9 3.1347e-10

.1 .252129 1.0848e-8 1.2539e-8 3.1347e-9

.25 .252129 2.7133e-8 3.1347e-8 7.8367e-9

.5 .252129 5.4318e-8 6.2693e-8 1.5673e-8

.75 .252129 8.1566e-8 9.4040e-8 2.3510e-8

1.0 .252129 1.0889e-7 1.2539e-7 3.1347e-8

Sample Size N=200

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .250441 1.5803e-11 1.5673e-11 3.9183e-12

.01 .250441 1.5802e-10 1.5673e-10 3.9183e-11

.1 .250441 1.5808e-9 1.5673e-9 3.9183e-10

.25 .250441 3.9537e-9 3.9183e-9 9.7959e-10

.5 .250441 7.9124e-9 7.8367e-9 1.9592e-9

.75 .250442 1.1876e-8 1.1755e-8 2.9388e-9

1.0 .250442 1.5846e-8 1.5673e-8 3.9183e-9

Sample Size N=300

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .250150 4.4782e-12 4.6440e-12 1.1610e-12

.01 .250150 4.4869e-11 4.6440e-11 1.1610e-11

.1 .250150 4.4895e-10 4.6440e-10 1.1610e-10

.25 .250150 1.1225e-9 1.1610e-9 2.9025e-10

.5 .250150 2.2464e-9 2.3220e-9 5.8050e-10

.75 .250150 3.3720e-9 3.4830e-9 8.7074e-10

1.0 .250150 4.4994e-9 4.6440e-9 1.1610e-9

and λ = .25. The true values of the amplitude parameters are chosen such that the ampli-

tudes satisfy the constraints

A2
1 +B2

1 > A2
2 +B2

2 > · · · > A2
8 +B2

8
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Table 2. The average estimates, mean squared errors, asymptotic variances

of LSEs and MNR estimates of the fundamental frequency in case Model 1

when sample size n = 400 and 500

Sample Size N=400

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .250072 1.8527e-12 1.9592e-12 4.8979e-13

.01 .250072 1.8528e-11 1.9592e-11 4.8979e-12

.1 .250072 1.8533e-10 1.9592e-10 4.8979e-11

.25 .250072 4.6352e-10 4.8979e-10 1.2245e-10

.5 .250072 9.2769e-10 9.7959e-10 2.4490e-10

.75 .250072 1.3924e-9 1.4694e-9 3.6734e-10

1.0 .250073 1.8575e-9 1.9592e-9 4.8979e-10

Sample Size N=500

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .250047 9.7541e-13 1.0031e-12 2.5077e-13

.01 .250047 9.7532e-12 1.0031e-11 2.5077e-12

.1 .250047 9.7511e-11 1.0031e-10 2.5077e-11

.25 .250048 2.4376e-10 2.5077e-10 6.2693e-11

.5 .250048 4.8755e-10 5.0155-10 1.2539e-10

.75 .250048 7.3143e-10 7.5232e-10 1.8808e-10

1.0 .250048 9.7541e-10 1.0031e-9 2.5077e-10

Note that this is not a crucial restriction. This is just for convenience of implementation.

The sequence of error random variables {e(t)} is same as considered in case of numerical

experiments reported in section 4 with σ2 = 1.0. The initial estimator of the fundamental

frequency λ has been taken as the periodogram maximizer over Fourier frequencies, 2πk
n

,

k = 0, . . . ,
[
n
2

]
which is equal to 0.251327. The generated data and the corresponding

periodogram function are plotted in Fig. 1. Periodogram plot reveals that there are eight

harmonics of the fundamental frequency λ. Therefore, we have implemented the MNR

algorithm with eight components and λ̂ has come out as 0.250232. The linear parameters

are estimated using the approximate least squares method . Then the predicted values are

obtained using these parameter estimates and are plotted in Fig. 2 along with the generated
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Table 3. The average estimates, mean squared errors, asymptotic variances

of LSEs and MNR estimates of the fundamental frequency in case Model 2

when sample size n = 100, 200 and 300.

Sample Size N=100

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .316324 2.2248e-10 3.0918e-10 7.7296e-11

.01 .316324 2.2257e-9 3.0918e-9 7.7296e-10

.1 .316324 2.2303e-8 3.0918e-8 7.7296e-9

,25 .316323 5.5922e-8 7.7296e-8 1.9324e-8

.5 .316322 1.1238e-7 1.5459e-7 3.8648e-8

.75 .316321 1.6935e-7 2.3189e-7 5.7972e-8

1.0 .316320 2.2686e-7 3.0918e-7 7.7296e-8

Sample Size N=200

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .314611 3.5864e-11 3.8648e-11 9.6620e-12

.01 .314611 3.5952e-10 3.8648e-10 9.6620e-11

.1 .314611 3.5970e-9 3.8648e-9 9.6620e-10

.25 .314611 8.9970e-9 9.6620e-9 2.4155e-9

.5 .314611 1.8027e-8 1.9324e-8 4.8310e-9

.75 .314611 2.7098e-8 2.8986e-8 7.2465e-9

1.0 .314611 3.6208e-8 3.8648e-8 9.6620e-9

Sample Size N=300

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .314272 1.0821e-11 1.1451e-11 2.8628e-12

.01 .314272 1.0646e-10 1.1451e-10 2.8628e-11

.1 .314272 1.0750e-9 1.1451e-9 2.8628e-10

.25 .314272 2.6959e-9 2.8628e-9 7.1570e-10

.5 .314272 5.4035e-9 5.7256e-9 1.4314e-9

.75 .314272 8.1172e-9 8.5884e-9 2.1471e-9

1.0 .314272 1.0836e-8 1.1451e-8 2.8628e-9

dataset. They match reasonably well. For this generated dataset the sequence {e(t)} is from

an MA process. We have estimated the error as e(t) = 0.0917 + ε(t) + 0.4799ε(t− 1).
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Table 4. The average estimates, mean squared errors, asymptotic variances

of LSEs and MNR estimates of the fundamental frequency in case Model 2

when sample size n = 400 and 500

Sample Size N=400

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .314152 4.6585e-12 4.8310e-12 1.2077e-12

.01 .314152 4.6730e-11 4.8310e-11 1.2077e-11

.1 .314152 4.6732e-10 4.8310e-10 1.2077e-10

.25 .314152 1.1671e-9 1.2077e-9 3.0194e-10

.5 .314152 2.3358e-9 2.4155e-9 6.0387e-10

.75 .314152 3.5082e-9 3.6232e-9 9.0581e-10

1.0 .314152 4.6834e-9 4.8310e-9 1.2077e-9

Sample Size N=500

σ2 Average Variance Asym. Var. (LSE) Asym. Var. (MNR)

.001 .314096 2.4124e-12 2.4735e-12 6.1837e-13

.01 .314096 2.4166e-11 2.4735e-11 6.1837e-12

.1 .314096 2.4243e-10 2.4735e-10 6.1837e-11

.25 .314096 6.0615e-10 6.1837e-10 1.5459e-10

.5 .314096 1.2124e-9 1.2367e-9 3.0918e-10

.75 .314096 1.8188e-9 1.8551e-9 4.6377e-10

1.0 .314096 2.4262e-9 2.4735e-9 6.1837e-10

5.2. “uuu” data. This dataset is for vowel sound “uuu”. It contains 512 data points sam-

pled at 10 kHz frequency. The data were collected from the Signal Processing lab, IIT

Kanpur. The mean corrected data and the periodogram function are presented in Fig. 3.

It seems from the periodogram plot that there are four harmonics of the fundamental fre-

quency. Also, note that the fundamental frequency model used to analyze this dataset, does

not satisfy the condition (12) because the magnitude of the j-th peak in the periodogram

plot is proportional to A2
j +B2

j . Therefore, we take the first significance frequency as the fun-

damental frequency and rest are the harmonics. Initially, we have estimated the fundamental

frequency with four components using the proposed MNR algorithm. Then further analysis

of the residuals from the four components model indicates that there are two more significant

harmonics present in the residuals. Basically, the periodogram of the residuals reveals the
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Figure 2. Simulated data: the fitted values (red) along with the generated

data (blue).

presence of frequencies at 5λ and 6λ. Hence, we consider model (1) with 6 components. The

initial estimate of λ is 0.116582 and the MNR estimate is 0.114215. The linear parameters

are estimated as above. The fitted values (red)and mean corrected observed “uuu” data

(blue) are plotted in Fig. 4. They match very well. Using the parameter estimates, the error

sequence is estimated which can be fitted as the following stationary ARMA(2,4) process;

e(t) = −4.636 + 1.8793e(t− 1)− 0.9308e(t− 2) + ε(t)− 0.8657ε(t− 1)

−0.4945ε(t− 2) + 0.2859ε(t− 3) + 0.1415ε(t− 4)

This fitting has been done based on minimum AIC.

5.3. “ahh” data. The third dataset is again a sound data “ahh”. It contains 340 signal

values sampled at 10 kHz frequency, The mean corrected data and its periodogram function
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Figure 3. Mean corrected “uuu” data and its periodogram function.
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Figure 4. The fitted values (red) along with the mean corrected “uuu” data (blue).

are plotted in Fig. 5. Following the same methodology as applied in case of “uuu” data, we

assume a fundamental frequency model with six components for “ahh” data. Using the initial

estimator of the fundamental frequency λ as .092399, the MNR algorithm has been applied

and the final estimate of λ is obtained as .092939. Then, the fitted values are obtained

similarly as simulated data and “uuu” data. The fitted values match quite well with the

mean corrected “ahh” data. The estimated error in this case is

e(t) = 1.8128 + 0.6816e(t− 1) + ε(t) + 0.4246ε(t− 1)− 0.5315ε(t− 2)− 0.6572ε(t− 3).

This is a stationary ARMA(1,3) process and can be expressed as (2).

5.4. International airline passenger data. This dataset is a classical dataset in times se-

ries analysis. The data represent the monthly international airline passengers during January

1953 to December 1960 and are collected from the Time Series Data Library of Hyndman [7].

This data has been analyzed by Nandi and Kundu [13] using a linear plus sinusoidal model.
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Figure 6. The fitted values (red) along with the mean corrected “ahh” data (blue).

The raw data is plotted in Fig. 7 and we observe that the variance is not constant. So, we

apply log transform as a variance stabilizing transformation. The log transform data are

plotted in Fig. 8. Fig 8 indicates that the variance can be assumed to be constant and there

is a linear trend present with superimposed periodic components. Our aim is see whether

the periodic part of the log transform data can be analyzed using fundamental frequency

model. Hence we take the mean corrected first difference series of the log transform data

which is plotted in Fig 9 and the corresponding periodogram in Fig. 10. It appears from

the periodogram plot that the model (1) with five harmonics might be a suitable model for

the mean corrected first difference log transform data. Now, the periodogram maximizer is

0.529110 and using this as the initial estimate in MNR algorithm, we obtain λ̂ = 0.523273.

The linear parameters are estimated as in section 5.1-5.3. Finally, the fitted values (red) as
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well as the mean corrected first difference log transform data (blue) are plotted in Fig 11.

The estimated error in this case is an i.i.d. sequence e(t) = ε(t).

6. Concluding Remarks

In this paper, we have considered the fundamental frequency model. This model is the

multiple sinusoidal frequency model, where frequencies are harmonics of a fundamental fre-

quency. We are mainly interested in estimating λ, the fundamental frequency. Once the

λ is estimated efficiently, the other linear parameters are easily estimated using LS or ap-

proximate LS approach. It is well known that NR algorithm does not work well in case of
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sinusoidal model. In this paper, we propose to modify the step factor in NR algorithm and

observe that it improves the performance of the algorithm quite effectively. The asymptotic

variance of the proposed estimator is smaller than that of the LSE. The fundamental fre-

quency as a single nonlinear parameter has a quite complicated form in LS or approximate

LS approach. The modified NR algorithm does not require any optimization. The calcula-

tion of first and second order derivatives at each step is only required, hence it is very simple

to implement.

We think sequential application of the proposed algorithm will be required if higher order

harmonic terms are present for more than one fundamental frequency. The proposed algo-

rithm can be extended in case of multiple fundamental frequency model (Chirstensen et al.

[4]) and cluster type model (Nandi and Kundu [11]). This a topic of ongoing research and

would be reported elsewhere.
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Appendix

Proof of Theorem 3.1: In the proof of theorem 3.1, at any iteration we use λ̃ as the initial

estimator and λ̂ as the updated estimator of λ. Now, define the following matrices to express

the first and second order derivatives of Rj(λ).

Dj = diag{j, 2j, . . . , nj}, E =

[
0 1

−1 0

]
,

.

Xj=
d

dλ
X = DjXjE,

..

Xj=
d2

dλ2
X = −Dj

2Xj.

Note that EE = −I, EET = I = ETE and

d

dλ
(Xj

TXj)
−1 = −(Xj

TXj)
−1[ẊT

j Xj + Xj
T Ẋj](Xj

TXj)
−1.

Write
d

dλ
Rj(λ) = R′j(λ) and d2

d2λ
Rj(λ) = R′′j (λ). Then

1

2
R′j(λ) = YT Ẋj(Xj

TXj)
−1XTY −YTXj(Xj

TXj)
−1ẊT

j Xj(Xj
TXj)

−1Xj
TY, (17)

and

1

2
R′′j (λ) = YT Ẍj(Xj

TXj)
−1Xj

TY −YT Ẋj(Xj
TXj)

−1(ẊT
j Xj + Xj

T Ẋj)(Xj
TXj)

−1Xj
TY

+ YT Ẋj(Xj
TXj)

−1ẊT
j Y −YT Ẋj(Xj

TXj)
−1ẊT

j Xj(Xj
TXj)

−1Xj
TY

+ YTXj(Xj
TXj)

−1(ẊT
j Xj + Xj

T Ẋj)(Xj
TXj)

−1ẊT
j Xj(Xj

TXj)
−1Xj

TY

− YTXj(Xj
TXj)

−1(ẌT
j Xj)(Xj

TXj)
−1Xj

TY

− YTXj(Xj
TXj)

−1(ẊT
j Ẋj)(Xj

TXj)
−1Xj

TY

+ YTXj(Xj
TXj)

−1ẊT
j Xj(Xj

TXj)
−1(ẊT

j Xj + Xj
T Ẋj)(Xj

TXj)
−1Xj

TY

− YTXj(Xj
TXj)

−1ẊT
j Xj(Xj

TXj)
−1ẊT

j Y. (18)

By definition g(λ) =

p∑
j=1

Rj(λ), therefore, we have g′(λ) =

p∑
j=1

R′j(λ) and g′′(λ) =

p∑
j=1

R′′j (λ).

Assume that λ̃− λ = Op(n
−1−δ), δ ∈ (0,

1

2
]. Therefore, for large n, at λ = λ̃,

(
1

n
Xj

TXj)
−1 = (

1

n
Xj(λ̃)TXj(λ̃))−1 = 2 I +Op(

1

n
). (19)
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Using the large sample approximation (19) in the first term of 1
2
R′j(λ) in (17), we have at

λ = λ̃,

1

n3
YT Ẋj(Xj

TXj)
−1Xj

TY

=
1

n3
YT Ẋj(λ̃)(Xj(λ̃)

T
Xj(λ̃))−1Xj(λ̃)

T
Y

=
2

n4
YTDjXj(λ̃)EXj(λ̃)

T
Y

=
2j

n4

[(
n∑
t=1

y(t)t cos(j̃λt)

)(
n∑
t=1

y(t) sin(jλ̃t)

)
−

(
n∑
t=1

y(t)t sin(jλ̃t)

)(
n∑
t=1

y(t) cos(jλ̃t)

)]
.

Then along the same line as Bai et al.[2] (see also Nandi and Kundu[12]), it can be shown

that,

n∑
t=1

y(t) cos(jλ̃t) =
n

2

(
Aj +Op(n

−δ)
)
,

n∑
t=1

y(t) sin(jλ̃t) =
n

2

(
Bj +Op(n

−δ)
)
. (20)

Now consider

n∑
t=1

y(t)te−ijλ̃t =
n∑
t=1

(
p∑

k=1

[Ak cos(kλt) +Bk sin(kλt) + e(t)]

)
te−ijλ̃t

=
1

2

p∑
k=1

(Ak − iBk)
n∑
t=1

t ei(kλ−jλ̃)t +

1

2

p∑
k=1

(Ak + iBk)
n∑
t=1

t e−i(kλ+jλ̃)t +
n∑
t=1

e(t)te−ijλ̃t (21)

Similarly as Bai et al.[2], the following can be established for harmonics of fundamental

frequency;

n∑
t=1

t e−i(kλ+jλ̃)t = Op(n), ∀ k, j = 1, . . . p

n∑
t=1

t e−i(kλ−jλ̃)t = Op(n), ∀ k 6= j = 1, . . . p

and for k = j,

n∑
t=1

t ei(λ−λ̃)jt =
n∑
t=1

t+ i(λ− λ̃)j
n∑
t=1

t2 − 1

2
(λ− λ̃)2j2

n∑
t=1

t3

−1

6
i(λ− λ̃)3j3

n∑
t=1

t4 +
1

24
(λ− λ̃)4j4

n∑
t=1

t5ei(λ−λ
∗)jt. (22)



FUNDAMENTAL FREQUENCY MODEL 21

The last term of (22) is approximated as

1

24
(λ− λ̃)4j4

n∑
t=1

t5ei(λ−λ
∗)jt = Op(n

2−4δ).

For the last term in (21), choose L large enough such that Lδ > 1 and using the Taylor

series expansion of e−ijλ̃t we obtain,

n∑
t=1

e(t)te−ijλ̃t

=
∞∑
m=0

a(m)
n∑
t=1

e(t−m)te−ijλ̃t

=
∞∑
m=0

a(m)
n∑
t=1

e(t−m)te−ijλt +
∞∑
m=0

a(m)
L−1∑
l=1

(−i(λ̃− λ)j)l

l!

n∑
t=1

e(t−m)tl+1e−ijλt

+
∞∑
m=0

a(m)
θ(n(λ̃− λ))L

L!

n∑
t=1

t|e(t−m)| (here |θ| < 1)

=
∞∑
m=0

a(m)
n∑
t=1

e(t−m)te−ijλt +
L−1∑
l=1

Op(n
−(1+δ)l)Op(n

l+ 3
2 ) +

∞∑
m=0

a(m)Op(n
5
2
−Lδ)

=
∞∑
m=0

a(m)
n∑
t=1

e(t−m)te−ijλt +Op(n
5
2
−Lδ).

Therefore,

n∑
t=1

y(t)t cos(j̃λt)

=
1

2

[
p∑

k=1

Ak

(
n∑
t=1

t− 1

2
(λ− λ̃)2j2

n∑
t=1

t3

)

+

p∑
k=1

Bk

(
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

)]

+
∞∑
m=0

a(m)
n∑
t=1

e(t−m)t cos(jλt) +Op(n
5
2
−Lδ) +Op(n) +Op(n

2−4δ). (23)
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Similarly,

n∑
t=1

y(t)t sin(j̃λt)

=
1

2

[
p∑

k=1

Bk

(
n∑
t=1

t− 1

2
(λ− λ̃)2j2

n∑
t=1

t3

)

−
p∑

k=1

Ak

(
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

)]

+
∞∑
m=0

a(m)
n∑
t=1

e(t−m)t sin(jλt) +Op(n
5
2
−Lδ) +Op(n) +Op(n

2−4δ). (24)

Next, the second term of 1
2
R′j(λ) in (17) is approximated as

1

n3
YTXj(Xj

TXj)
−1ẊT

j Xj(Xj
TXj)

−1Xj
TY

=
1

n3
YTXj(Xj

TXj)
−1ETXj

TDjXj(Xj
TXj)

−1Xj
TY

=
1

n3
YTXj

(
2I +Op(

1

n
)

)
ET j

(
1

4
I +Op(

1

n
)

)(
2I +Op(

1

n
)

)
Xj

TY

=
j

n3
YTXjE

TXj
TY +Op(

1

n
) = Op(

1

n
), (25)

for large n and λ = λ̃.

Now to simplify R′j(λ̃) and R′′j (λ̃), we need the following results, for any λ ∈ (0, π).

n∑
t=1

t cos2(jλt) =
n2

4
+O(n),

n∑
t=1

t sin2(jλt) =
n2

4
+O(n), (26)

n∑
t=1

cos2(jλt) =
n

2
+ o(n),

n∑
t=1

sin2(jλt) =
n

2
+ o(n), (27)

n∑
t=1

t2 cos2(jλt) =
n3

6
+O(n2),

n∑
t=1

t2 sin2(jλt) =
n3

6
+O(n2), (28)

and

1

n2
YTDjXj =

j

4
(Aj Bj) +Op(

1

n
),

1

n3
YTDj

2Xj =
j2

6
(Aj Bj) +Op(

1

n
), (29)

1

n3
Xj

TDj
2Xj =

j2

6
I +Op(

1

n
),

1

n
Xj

TY =
1

2
(Aj Bj)

T +Op(
1

n
), (30)

1

n2
Xj

TDjXj =
j

4
I +Op(

1

n
). (31)
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Next to simplify 1
2n3 R

′′
j (λ̃), use (19) at the first step.

1

2n3
R′′j (λ̃) =

2

n4
YT ẌjXj

TY − 4

n5
YT Ẋj(Ẋ

T
JXj + Xj

T Ẋj)Xj
TYj +

2

n4
YT ẊjẊ

T
j Yj

− 4

n5
YT ẊjẊ

T
j XjXj

TY +
8

n6
YTXj(Ẋ

T
j Xj + Xj

T Ẋj)Ẋ
T
j XjXj

TY

− 4

n5
YTXjẌ

T
j XjXj

TY − 4

n5
YTXjẊj

T
ẊjXj

T
Y

+
8

n6
YTXjẊj

T
Xj(Ẋ

T
j Xj + Xj

T Ẋj)Xj
TY − 4

n5
YTXjẊj

T
XjẊj

T
Y +Op(

1

n
).

In the second step, use Ẍj = DjXjE and Ẍ = −Dj
2Xj.

1

2n3
R′′j (λ̃) = − 2

n4
YTDj

2XjXj
TY − 4

n5
YTDjXjE(ETXj

TDjXj + Xj
TDjXjE)Xj

TY

+
2

n4
YTDjXjEE

TXj
TDjY −

4

n5
YTDjXjEE

TXj
TDjXjXj

TY

+
8

n6
YTXj(E

TXj
TDjXj + Xj

TDjXjE)ETXj
TDjXjXj

TY +
4

n5
YTXjXj

TDj
2XjXj

TY

− 4

n5
YTXjE

TXj
TDj

2XjEXj
TY +

8

n6
YTXjE

TXj
TDjXj(E

TXj
TDjXj

+ Xj
TDjXjE)Xj

TY − 4

n5
YTXjE

TXj
TDjXjE

TXj
TDjY +Op(

1

n
).

Next, using (26)-(31), we observe

1

2n3
R′′j (λ̃) = (A2

j +B2
j )

[
−j

2

6
− 0 +

j2

8
− j2

8
+ 0 +

j2

6
− j2

6
+ 0 +

j2

8

]
+Op(

1

n
)

= − j
2

24
(A2

j +B2
j ) +Op(

1

n
). (32)

The correction factor in Newton-Raphson algorithm can be written as

g′(λ̃)

g′′(λ̃)
=

1

2n3

p∑
j=1

R′j(λ̃)

1

2n3

p∑
j=1

R′′j (λ̃)

(33)
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Using (23), (24) and (25),
1

2n3

p∑
j1

R′j(λ̃) is simplified as

1

2n3

p∑
j=1

R′j(λ̃) =
2

n4

p∑
j=1

j

[
n

2
(Bj +Op(n

−δ))

{
Aj
2

(
n∑
t=1

t− 1

2
(λ− λ̃)2j2

n∑
t=1

t3

)

+
Bj

2

(
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

)

+
∞∑
k=0

a(k)
n∑
t=1

e(t− k)t cos(jλt) +Op(n
5
2
−Lδ) +Op(n) +Op(n

2−4δ)

}

−n
2

(Aj +Op(n
−δ))

{
Bj

2

(
n∑
t=1

t− 1

2
(λ− λ̃)2j2

n∑
t=1

t3

)

−Aj
2

(
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

)

+
∞∑
k=−

a(k)
n∑
t=1

e(t− k)t sin(jλt) +Op(n
5
2
−Lδ) +Op(n) +Op(n

2−4δ)

}]

=

p∑
j=1

j

[
1

2n3
(A2

j +B2
j )

{
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

}

+
1

n3

{
Bj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t cos(jλt)

+Aj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t sin(jλt)

}]
+Op(n

− 1
2
−Lδ) +Op(n

−2) +Op(n
−1−4δ),

and using (32), the denominator of (33) is
1

2n3

p∑
j=1

R′′j (λ̃) = − 1

24

p∑
j=1

j2(A2
j + B2

j ) + Op(
1

n
).

Therefore,

λ̂ = λ̃− 1

4

g′(λ̃)

g′′(λ̃)
= λ̃− 1

4

1

2n3

p∑
j=1

R′j(λ̃)

1

2n3

p∑
j=1

R′′j (λ̃)
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= λ̃− 1

4

1

2n3

p∑
j=1

R′j(λ̃)

− 1

24

p∑
j=1

j2(A2
j +B2

j ) +Op(
1

n
)

= λ̃+
6

(β∗ +Op(
1
n
))

p∑
j=1

j

[
1

2n3
(A2

j +B2
j )

{
n∑
t=1

(λ− λ̃)jt2 − 1

6
(λ− λ̃)3j3

n∑
t=1

t4

}]

+
6

(β∗ +Op(
1
n
))

p∑
j=1

j

f(jλ)

1

n3

{
Bj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t cos(jλt)

+Aj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t sin(jλt)

}
+Op(n

− 1
2
−Lδ) +Op(n

−2) +Op(n
−1−4δ).(34)

Here β∗ =

p∑
j=1

j2(A2
j +B2

j )

f(jλ)
is same as defined after (11). When δ ≤ 1

6
in (34), λ̂ − λ =

Op(n
−1−3δ) whereas if δ > 1

6
, then for large n,

n3/2(λ̂− λ)
d
=

6n−3/2

β∗

p∑
j=1

j

{
Bj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t cos(jλt)

+Aj

∞∑
k=0

a(k)
n∑
t=1

e(t− k)t sin(jλt)

}
d−→ N (0, γ)

where

γ =
36

β∗2
σ2

6

p∑
j=1

j2(A2
j +B2

j )

{ ∞∑
k=0

a(k) cos(kjλ)

}2

+

{
∞∑
k=0

a(k) sin(kjλ)

}2


=
6

β∗2
σ2

p∑
j=1

j2(A2
j +B2

j )

∣∣∣∣∣
∞∑
k=0

a(k)e−ikjλ

∣∣∣∣∣
2

=
6σ2δG

β∗
2 .

This proves the theorem.

References

[1] Baldwin, A. J., Thomson, P. J. (1978), “Periodogram analysis of S. Carinae.Royal Astronomy

Society New Zealand (Variable Star Section), 6,31-38.



26 SWAGATA NANDI1 AND DEBASIS KUNDU2

[2] Bai, Z.D., Rao, C.R., Chow, M. and Kundu, D. (2003), “An efficient algorithm for estimating the

parameters of superimposed exponential signals”, Journal of Statistical Planning and Inference,

110, 23 - 34.

[3] Christensen, M. G., Jakobsson, A. and Jensen, S. H., (2007), “Joint high-resolution fundamental

frequency and order estimation”, IEEE Transactions on Audio, Speech, and Language Processing,

15(5), 1635-1644.

[4] Christensen, M. G., Hovang, J. L., Jakobsson, A. and Jensen, S. H., (2011), “Joint fundamental

frequency and order estimation using optimal filtering”, EURASIP Journal on Advances in Signal

Processing, 2011(13).

[5] Greenhouse, J. B., Kass, R. E. and Tsay, R. S. (1987), “Fitting non linear models with ARMA

errors to biological rhythm data” , Statistics in Medicine, 6(2),167-183.

[6] Hannan, E. J. (1974), “Time series analysis”, IEEE Trans. Auto. Control, 19, 706-715.

[7] Hyndman, R.J. (n.d.) Time Series Data Library, http://www.robhyndman.info/TSDL. Accessed

on 01.01.2008.

[8] Kundu, D., Bai, Z., Nandi, S. and Bai, L. (2011), “Super efficient frequency estimator”, Journal of

Statistical Planning and Inference, 141, 2576 - 2588.

[9] Kundu, D. and Nandi, S. (2004), “A Note on estimating the frequency of a periodic function”,

Signal Processing, 84(3), 653-661.

[10] Nandi, S. and Kundu, D. (2003), “Estimating the fundamental frequency of a periodic function”,

Statistical Methods and Applications, 12(3), 341-360 .

[11] Nandi, S. and Kundu, D. (2006a), “Analyzing Non-Stationary Signals Using Generalized Multiple

Fundamental Frequency Model”, Journal of Statistical Planning and Inference, Vol. 136, 3871-3903.

[12] Nandi, S. and Kundu, D. (2006b), “A fast and efficient algorithm for estimating the parameters of

sum of sinusoidal model”, Sankhya, 68, 283 - 306.

[13] Nandi, S. and Kundu, D. (2013), “Estimation of parameters of partially sinusoidal frequency

model”, Statistics: A Journal of Theoretical and Applied Statistics, 47(1), 45-60.

[14] Quinn, B. G. and Thomson, P. J. (1991),“Estimating the frequency of a periodic function”,

Biometrika, 78, 65-74.

[15] Zhou, Z. (2013), “Spectral analysis of sinusoidal signals from multiple channels”, Ph. D. thesis

submitted to Department of Electronic Engineering, City University of Hong Kong.

1Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 7, S.J.S.

Sansanwal Marg, New Delhi - 110016, India, nandi@isid.ac.in

2Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Pin

208016, India, kundu@iitk.ac.in


