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Abstract

Let {Xn, n ≥ 1} be a sequence of stationary associated random variables. In this paper,

we obtain consistent estimators of the distribution function and the variance of the sample

mean based on {g(Xn), n ≥ 1}, g : R → R using Circular Block Bootstrap (CBB). We extend

these results to derive consistent estimators of the distribution function and the variance of

U-statistics. As applications, we obtain interval estimators for L-moments. We also discuss

consistent point estimators for L-moments. Finally, as an illustration, we obtain point esti-

mators and confidence intervals for L-moments of a stationary autoregressive process with a

minification structure which is fitted to a hydrological dataset.

Keywords: Associated random variables; Circular Block Bootstrap; L-moments; Hardy-Krause

variation; U-statistics.

1 Introduction

Following the introduction of bootstrap by Efron (1979), several variants of bootstrap procedure

and their extensions to dependent data have been widely discussed in literature. Initial publica-

tions on block resampling techniques include Künsch(1989), Lui and Singh (1992), Politis and

Romano (1992, 1994), among others. Some recent publications on bootstrap and subsampling

techniques for dependent data are by Shao (2010), Doukhan et. al. (2011), Hwang and Shin

(2012), and Doukhan et. al. (2015). A compilation of results on bootstrap and other resam-

pling procedures can be found in Efron and Tibshirani (1994), Lahiri (2003), and Shao and Tu

(2012). These nonparametric techniques are often used for constructing tests of hypothesis and

confidence intervals of parameters.

In recent years, results on bootstrap for U-statistics based on dependent random variables

have also been presented by several authors. Dehling and Wendler (2010), and Sharipov and
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Wendler (2012) discussed bootstrap for U-statistics based on mixing processes. Leucht (2012)

showed consistency of general bootstrap methods for degenerate U-statistics based on τ - de-

pendent random variables. Dependent multiplier bootstraps for non degenerate U-statistics

under mixing conditions was discussed by Bücher and Kojadinovic (2016). Sharipov et. al.

(2016) suggested an alternative approach of getting a bootstrap version of U-statistics based on

random variables satisfying strong mixing and absolute regularity conditions, by drawing with

replacement from U-statistics calculated on subsamples.

In this paper, we discuss consistency of the Circular Block Bootstrap technique and esti-

mation of L-moments for {Xn, n ≥ 1}, where {Xn, n ≥ 1} is a sequence of stationary associated

random variables. Apropos our discussion, we give the following.

Definition 1.1. A finite collection of random variables {Xj , 1 ≤ j ≤ n} is said to be associated,

if for any choice of component-wise nondecreasing functions h1, h2 : Rn → R, we have,

Cov(h1(X1, . . . , Xn), h2(X1, . . . , Xn)) ≥ 0

whenever it exists. An infinite collection of random variables {Xn, n ≥ 1} is associated if every

finite sub-collection is associated.

Introduced by Esary et al. (1967), associated random variables have been widely used in

reliability studies, statistical mechanics, and percolation theory. Any set of independent random

variables is associated. Nondecreasing functions of associated random variables are associated,

for example, order statistics corresponding to a finite set of independent random variables, the

moving average process {Xn, n ≥ 1}, where Xn = a0εn+ ...+aqεn−q, εn are independent random

variables and a0, ..., aq have the same sign. A detailed presentation of theory and results for

associated random variables can be found in Bulinski and Shashkin (2007, 2009), Prakasa Rao

(2012), and Oliveira (2012).

This paper is organized as follows. In Section 2, we give results and definitions that will

be required to prove our main results in Sections 3 and 4. In Section 3, we obtain consistent

estimators of the variance and the distribution function of the sample mean based on {g(Xn), n ≥
1} g : R → R using Circular Block Bootstrap (CBB). In Section 4, we extend the results of

Section 3 to obtain consistent estimators of variance and distribution function of U-statistics

based on {Xn, n ≥ 1}. In Section 5, we apply the results discussed in Sections 2− 4 to obtain

point estimators and confidence intervals for L-moments of {Xn, n ≥ 1}. As an example, we

obtain point estimators and confidence intervals of the first three L-moments of a minification

process. Simulation results are also presented along. The peak flow data (1883 − 2014) of the

Thames river, Kingston, UK is presented as a case study. In Section 6, we give a brief summary

of the results obtained and discuss our intended future work.

2



2 Preliminaries

In this section, we give results and definitions which will be needed to prove our main results

given in Sections 3 and 4.

Definition 2.1. (Newman (1984)) If g and g̃ are two real-valued functions on Rk, k ∈ N, then

g � g̃ iff g̃ + g and g̃ − g are both coordinate-wise nondecreasing. If g � g̃, then g̃ will be

coordinate-wise nondecreasing.

Define, Yn = g(Xn), and Ỹn = g̃(Xn), g � g̃, n ≥ 1.

Lemma 2.2. (Newman (1984) Define,

σ2 = V ar(Y1) + 2

∞∑
j=2

Cov(Y1, Yj). (2.1)

Let σ2 > 0 and
∑∞

j=1Cov(Ỹ1, Ỹj) <∞. Then,

1√
nσ

n∑
j=1

(Yj − E(Yj))
L−→ N(0, 1) as n→∞. (2.2)

We next give a Central limit theorem for U-statistics based on {Xn, n ≥ 1}. We assume

that the underlying kernels of the U-statistics are functions of bounded Hardy-Krause variation.

This result was obtained in Garg and Dewan (2015).

Before proceeding, we give the following definitions discussing the concept of Hardy-Krause

variation (For further discussions on this topic, see Beare (2009) and the references therein.)

Definition 2.3. The Vitali variation of a function f : [a, b] → R, is defined as ||f ||V =

sup
∑

R∈A|∆Rf |, where [a, b] = {x ∈ Rk : a ≤ x ≤ b}, a, b ∈ Rk, k ∈ N . The supremum is

taken over all finite collections of k-dimensional rectangles A = {Ri : 1 ≤ i ≤ m} such that

∪mi=1Ri = [a, b], and the interiors of any two rectangles in A are disjoint. Here, if R = [c, d], a

k-dimensional rectangle contained in [a, b], then, ∆Rf =
∑

I⊆{1,2,...,k}(−1)|I|f(xI), where, xI is

the vector in Rk whose ith element is given by ci if i ∈ I, or by di if i 6∈ I, f∅ = f(b). For in-

stance, if k = 2 and R = [c1, d1]× [c2, d2] then, ∆Rf = f(d1, d2)−f(c1, d2)−f(d1, c2)+f(c1, c2).

Definition 2.4. The Hardy-Krause variation of a function f : [a, b]→ R, is given by, ||f ||HK=∑
∅6=I⊆{1,...,k}||fI ||V , where [a, b] = {x ∈ Rk : a ≤ x ≤ b}, a, b ∈ Rk, k ∈ N. Here, given a non-

empty set I ⊆ {1, 2, ..., k}, fI denotes the real valued function on
∏
i∈I [ai, bi] obtained by setting

the ith argument of f equal to bi whenever i 6∈ I.

When k = 1, the Hardy-Krause variation is equivalent to Vitali variation and hence the

standard definition of total variation.

The following results are discussed for non-degenerate U-statistics of degree 2.
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Assume that F is the distribution function of X1. Let the U-statistic with a kernel ρ of

degree 2 based on observations {Xj , 1 ≤ j ≤ n} be denoted by Un(ρ).

Un(ρ) =
2

n(n− 1)

∑
1≤i<j≤n

ρ(Xi, Xj)

= θ +
2

n

n∑
i=1

h(1)(Xi) +
2

n(n− 1)

∑
1≤i<j≤n

h(2)(Xi, Xj). (2.3)

The equality in (2.3) is due to Hoeffding’s decomposition (Hoeffding (1948)), and h(1) and h(2)

are given as follows. Define θ =
∫
R2 ρ(x, y)dF (x)dF (y).

ρ1(x1) =

∫
R

ρ(x1, x2) dF (x2), h(1)(x1) = ρ1(x1)− θ,

and h(2)(x1, x2) = ρ(x1, x2)− ρ1(x1)− ρ1(x2) + θ.

Lemma 2.5. (Garg and Dewan (2015)) Let P (|Xn| ≤ C1) = 1 for some 0 < C1 < ∞. Let

h(2)(x, y) be a degenerate kernel of degree 2 (i.e.
∫
R h

(2)(x, y)dF (y) = 0 for all x ∈ R), and

|h(2)(x, y)| ≤ M(C1), for some 0 < M(C1) < ∞, for all x, y ∈ [−C1, C1]. Assume that

the density function of X1 is bounded and h(2) is of bounded Hardy-Krause variation and left-

continuous. Further, let
∑∞

j=1Cov(X1, Xj)
γ < ∞, for some 0 < γ < 1/6. Then, as n→∞,∑

1≤i<j≤n

∑
1≤k<j≤n

|E(h(2)(Xi, Xj)h
(2)(Xk, Xl))|= O(n2). (2.4)

Lemma 2.6. Assume that the conditions of Lemma 2.5 are true. Let σ2
1 = V ar(h(1)(X1)) <

∞, and
∑∞

j=1|σ1j |<∞, where σ1j = Cov(h(1)(X1), h(1)(X1+j)), j ≥ 1. Then, as n→∞,

V ar(Un) =
4σ2

U

n
+ o(

1

n
), where σ2

U = σ2
1 + 2

∞∑
j=1

σ1j . (2.5)

Lemma 2.7. Assume that the conditions of Lemma 2.6 are satisfied. Let σ2
U > 0. If there

exists a function h̃(1)(·) such that h(1) � h̃(1) and,

∞∑
j=1

Cov(h̃(1)(X1), h̃(1)(Xj)) <∞.

Then, √
n(Un − θ)

2σU

L−→ N(0, 1) as n→∞, (2.6)

where σ2
U is defined in (2.5).

Remark 2.1. If h1 � h̃1, then σ2
1 ≤ V ar(h̃1(X1))and |σ1j |≤ CCov(h̃1(X1), h̃1(Xj)). If h(1) is

monotonic, then h̃1 ≡ h(1) and {h(1)(Xn), n ≥ 1} is a sequence of stationary associated random

variables.
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Remark 2.2. The condition that the random variables are uniformly bounded is only required

to prove the covariance inequality in Lemma 2.5. The covariance inequality can be extended

to random variables which are not uniformly bounded by the usual truncation techniques. We

illustrate this for the U-statistic estimators for the second and the third L-moments in Theorem

5.1, Section 5.1.

Remark 2.3. The results of Lemmas 2.5 − 2.7 can be easily extended to non-degenerate U-

statistics based on kernels of finite degrees greater than 2.

Remark 2.4. The limiting distribution of U-statistics based on {Xn, n ≥ 1} with kernels that

are of bounded variation can also be obtained using the results of Beutner and Zähle (2012, 2014),

under a different set of assumptions. The approach of Beutner and Zähle (2012) is based on

a modified delta method and quasi-Hadamard differentiability, while Beutner and Zähle (2014)

proposed a continuous mapping approach. Their results require weak convergence for weighted

empirical processes of the underlying random variables. Their techniques cover a large set of

dependence structures, like ρ-mixing, α-mixing, association, etc. and even long-range dependent

sequences.

3 Bootstrap for functions of stationary associated

random variables

In the following, we prove consistency of the estimators of distribution function and variance

of the sample mean of {g(Xj), 1 ≤ j ≤ n}, g : R→ R obtained using Circular Block Bootstrap

(CBB). We assume that, there exists g̃ : R → R, such that g � g̃. Define, Yn = g(Xn), and

Ỹn = g̃(Xn), n ≥ 1.

Let Ωn = {Yi, 1 ≤ i ≤ n} have a common one-dimensional marginal distribution function

and E(Y1) = µ. Let the following be of interest:

Tn =
√
n(Ȳn − µ), and Gn(x) = P (Tn ≤ x), x ∈ R. (3.1)

The Circular Block Bootstrap (CBB) method was proposed by Politis and Romano (1992).

This method re-samples overlapping and periodically extended blocks of a given length ` ≡ `n,

(` is a positive integer) satisfying ` = o(n) as n → ∞ from {B(1, `), · · · , B(n, `)}. B(i, `),

i = 1, · · · , n, are defined as follows.

B(i, `) = (Yn,i, · · · , Yn,i+`−1), where (3.2)

Yn,i = Yi, if i = 1, · · · , n,

= Yj if j = i− n, i = n+ 1, · · · , n+ (`− 1)

To obtain the CBB sample, randomly select k blocks from {B(1, `), · · · , B(n, `)} with

replacement. The sample size is m = k`. Let Ω?
m = {Y ?

i , 1 ≤ i ≤ m} denote the CBB sample

of size m from Ωn.
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Let {B?(1, `), · · · , B?(k, `)} denote the selected sample of blocks and the elements in

B?(j, `) be denoted as (Y ?
(j−1)`+1, · · · , Y

?
j`), j = 1, 2, · · · , k.

P?((Y
?

1 , · · · , Y ?
` )′ = (Yn,i, · · · , Yn,i+`−1)′) =

1

n
, i = 1, · · · , n, (3.3)

where P? denotes the conditional probability given Ωn. Note that in CBB equal weights are

given to each of the observations Y1, · · · , Yn.

For our calculations, we used k = [n` ] and m = k`.

Let E? and V ar? respectively denote the conditional expectation and conditional variance,

given Ωn. Then, the bootstrap version of Tn is given by,

T ?n =
√
m(Ȳ ?

m − E?Ȳ ?
m) =

√
m(Ȳ ?

m − Ȳn), (3.4)

as E?Ȳ
?
m = Ȳn (from Lahiri (2003) (Section 2.7.1, (2.18))). Similarly, the bootstrap estimator

for Gn(x) is G?n(x) = P?(T
?
n ≤ x). Note that, lim

n→∞
V ar(Tn) = V ar(Y1) + 2

∑∞
j=2Cov(Y1, Yj).

In the following section, we prove that V ar?(T
?
n) is a consistent estimator of lim

n→∞
V ar(Tn),

and G?n(x) is a consistent estimator of the sampling distribution Gn(x), x ∈ R.

3.1 Consistency of V ar?(T
?
n)

Let,

Ui =
Yn,i + · · ·+ Yn,i+`−1

`
, (3.5)

be the average of B(i, `), i = 1, · · · , n. As re-sampled blocks are independent,

V ar?(T
?
n) = `

[
n−1

n∑
i=1

U2
i − Ȳ 2

n

]
(3.6)

The proofs of the following are similar to the results of Lahiri (2003) (Section 3.2.1), albeit

some minor modifications.

Theorem 3.1. Assume that the conditions of Lemma 2.2 are true, and that,

∞∑
j=1

Cov(Ỹ1, Ỹj)
1/3 <∞. (3.7)

Further, suppose that (
∑`

j=1 Yj − `E(Y1))/
√
` has a bounded continuous density for all ` ∈ N.

Then,

V ar?(T
?
n)

p−→ σ2 as n→∞, (3.8)

where σ2 is defined in (2.1).

Proof. Let C be a generic positive constant in the sequel. Assume without loss of generality

that µ = 0. Note that,

E(`Ȳ 2
n ) = O(

`

n
)→ 0 as n→∞.
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Therefore, we just need to prove that

`n−1
n∑
i=1

U2
i

p−→ σ2, as n→∞, (3.9)

i.e. we need, for any ε > 0,

lim
n→∞

P
(
|`n−1

n∑
i=1

U2
i − σ2|> 6ε

)
= 0. (3.10)

Let U1i =
√
`Ui, i = 1, · · · , n, and N = n− `+ 1 in the following.

P
(
|n−1

n∑
i=1

U2
1i − σ2|> 6ε

)
≤ P

(
|n−1

N∑
i=1

(U2
1i − σ2)|> 3ε

)
+ P

(
|n−1

n∑
i=N+1

(U2
1i − σ2)|> 3ε

)

≤ C
[
P
(
|n−1

N∑
i=1

(Vin − E(Vin) )|> ε
)

+ P
(
|n−1

N∑
i=1

Win|> ε
)

+
N

n
|E(V1n)− σ2|+ P

(
|n−1

n∑
i=N+1

(U2
1i − σ2)|> 3ε

)]
, (3.11)

where Vin = U2
1iI(|U1i|< (n` )1/8) and Win = U2

1i − Vin for i = 1, · · · , N .

Define, Ũ1i =
Ỹn,i+···+Ỹn,i+`−1√

`
, i = 1, 2, · · · , n, where {Ỹn,i, 1 ≤ i ≤ n} is the periodically

extended series of {Ỹi, 1 ≤ i ≤ n}. As U1i � Ũ1i, U1i, i = 1, · · · , n are square integrable.

Therefore we get,

P
(
|n−1

n∑
i=N+1

(U2
1i − σ2)|> 3ε

)
= O(

`

n
), as n→∞. (3.12)

Next,

V ar(n−1
N∑
i=1

Vin) ≤ C 1

n2
(
n

`
)1/2

( N∑
i=1

V ar(Ũ1i)
1/3 + 2

∑
1≤i<j≤N

Cov(Ũ1i, Ũ1j)
1/3
)

≤ 1

n2
(
n

`
)1/2O(n`)→ 0 as n→∞. (3.13)

The last inequality follows using (3.7). Also,

lim
n→∞

P
(
|n−1

N∑
i=1

Win|> ε
)
≤ lim

n→∞
C
E|
∑N

i=1Win|
nε

≤ lim
n→∞

C
NE|W1n|

nε

≤ lim
n→∞

CE|U2
11I(|U11|> (

n

`
)1/8)|.

As U11 =
√
`Ȳ`, under the conditions of Lemma 2.2,

√
nȲn

L−→ N(0, σ2). By dominated

convergence theorem,

lim
n→∞

E|U2
11I(|U11|> (

n

`
)1/8)|= 0. (3.14)
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Therefore,

lim
n→∞

P
(
|n−1

N∑
i=1

Win|> ε
)

= 0 and lim
n→∞

|E(V1n)− σ2|= 0. (3.15)

The result follows using (3.12), (3.13), and (3.15).

3.2 Consistency of the estimator of bootstrap distribution func-

tion

Theorem 3.2. Assume that the conditions of Theorem 3.1 are true, then,

sup
x∈R

∣∣∣G?n(x)−Gn(x)
∣∣∣ p−→ 0, as n→∞. (3.16)

Proof. Note that, Lemma 2.2, implies

sup
x∈R
|Gn(x)− Φ(xσ)|→ 0 as n→∞.

Hence, it is enough to prove,

sup
x∈R
|G?n(x)− Φ(xσ)| p−→ 0, as n→∞. (3.17)

Let,

U?j =
Y ?

(`−1)j+1 + · · ·+ Y ?
`j

`
, j = 1, · · · , k.

Observe, that given Ωn, T ?n =
∑k

j=1

√
`(U?j −Ȳn)
√
k

is a sum of independent (not identically

distributed) random variables.

Define, for a > 0, ∆̂n(a) = `k−1
∑k

j=1E?(U
?
j − Ȳn)2I(

√
`(U?j − Ȳn) > 2a).

P
(

∆̂n((n/`)1/4) > ε
)
≤ ε−1E∆̂n

(
(n/`)1/4

)
≤ ε−1E

[N
n

(U11 −
√
`Ȳn)2I((U11 −

√
`Ȳn) > 2(n/`)1/4)

]
+ C

`

n

≤ Cε−1N

n

[
E(U2

11I(|U11|> (n/`)1/4) + `E(Ȳ 2
n )
]

+ C
`

n
→ 0, as n→∞. (3.18)

Rest of the proof follows using Lindeberg’s CLT for independent random variables and Theorem

3.1, similarly as in the proof of Lahiri (2003) (Theorem 3.2).

4 Bootstrap for U-statistics based on a sequence of

stationary associated random variables.

The results developed in Section 3 are used to obtain consistent estimators of variance and

the distribution function of U-statistics based on a sequence of stationary associated random

variables.

8



4.1 Consistency of estimators of distribution function and lim-

iting variance of U-statistics based on CBB

Let {X?
i , 1 ≤ i ≤ k`} denote the sample of size k` obtained using CBB from {Xi, 1 ≤ i ≤ n}.

Let the U-statistic with a kernel ρ of degree 2 based on {X?
i , 1 ≤ i ≤ k`} be denoted as U?n(ρ),

i.e.,

U?n(ρ) =
1(
k`
2

) ∑
1≤i<j≤k`

ρ(X?
i , X

?
j ) = θ +

2

k`

k∑̀
i=1

h(1)(X?
i ) +

1(
k`
2

) ∑
1≤i<j≤k`

h(2)(X?
i , X

?
j )

= θ +
2

k`

k∑̀
i=1

h(1)(X?
i ) + U?n(h(2)). (4.1)

The proofs of the following are similar to proofs in Dehling and Wendler (2010).

Theorem 4.1. Let the conditions of Lemma 2.5 be true.

V ar?

[√
k`U?n(h(2))

]
p−→ 0, as n→∞. (4.2)

Proof. Let C be a generic positive constant in the following. Using Lemma 2.5 and following

the proof of Dehling and Wendler (2010) (Lemma 3.7), we get,

E
[
E?

[( 2√
k`(k`− 1)

∑
1≤i<j≤k`

h(2)(X?
i , X

?
j )
)2]]

≤ C

k`(k`− 1)2

n∑
i1,i2,i3,i4=1

|E(h(2)(Xi1 , Xi2)h(2)(Xi3 , Xi4))|= o(1), as n→∞. (4.3)

Theorem 4.2. Assume that the conditions of Lemma 2.7 are true, and that,

∞∑
j=1

Cov(h̃(1)(X1), h̃(1)(Xj))
1/3 <∞.

Further, suppose that (
∑`

j=1 h
(1)(Xj)− `θ)/

√
` has a bounded continuous density for all ` ∈ N.

Then,∣∣∣V ar?[√k`U?n(ρ)
]
− V ar

[√
nUn(ρ)

]∣∣∣ p−→ 0, as n→∞, (4.4)

sup
x∈R

∣∣∣P?(√k`(U?n(ρ)− E?
[
U?n(ρ)

])
≤ x

)
− P

(√
n
(
Un(ρ)− θ

)
≤ x

)∣∣∣ p−→ 0, as n→∞. (4.5)

Proof. Using the Hoeffding’s decomposition we have,

U?n(ρ) = θ +
2

k`

k∑̀
i=1

h(1)(X?
i ) + U?n(h(2)). (4.6)
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Using Lemma 2.5, ∣∣∣V ar[√nUn(ρ)
]
−→ V ar

[ 2

n

n∑
i=1

h(1)(Xi)
]∣∣∣ as n→∞. (4.7)

Using Theorem 4.1, we get,∣∣∣V ar?[√k`U?n(ρ)
]

p−→ V ar?

[ 2

k`

k∑̀
i=1

h(1)(X?
i )
]∣∣∣ as n→∞ (4.8)

Using Theorem 3.1, we get,∣∣∣V ar?[ 2

k`

k∑̀
i=1

h(1)(X?
i )
]
− V ar

[ 2

n

n∑
i=1

h(1)(Xi)
]∣∣∣ p−→ 0, as n→∞. (4.9)

Hence, (4.4) is proved. Finally, as n → ∞,

sup
x∈R

∣∣∣P?(√k`(U?n(ρ)− E?
[
U?n(ρ)

])
≤ x

)
− P?

( 2√
k`

k∑̀
i=1

(
h(1)(X?

i )− E?
[
h(1)(X?

i )
])
≤ x

)∣∣∣ p−→ 0.

(4.10)

sup
x∈R

∣∣∣P(√n(Un(ρ)− E
[
Un(ρ)

])
≤ x

)
− P

( 2√
n

n∑
i=1

h(1)(Xi) ≤ x
)∣∣∣ −→ 0. (4.11)

Using (4.10), (4.11) and Theorem 3.2, we get (4.5).

Remark 4.1. These results can be easily extended to non-degenerate U-statistics based on ker-

nels with finite degrees greater than 2.

Remark 4.2. The results of Sections 3− 4 will also hold for moving block and non-overlapping

block bootstrap. The proofs will follow similarly.

5 Point and Interval estimation for L-moments

L-moments uniquely characterize a distribution function (provided the mean exists). They

are more robust to the effect of outliers in data and allow for more reliable inferences about

the underlying probability distribution than conventional moments (see, Hosking (1990)). Ap-

plications of L-moments can be found in economics, engineering, meteorology, reliability, and

hydrology. For examples, see Hosking (1990), Jones and Balakrishnan (2002), Fitzgerald (2005),

Yang et. al. (2010), Wang et. al. (2010), among others

The rth L-moment, λr, of a random variable W1 with the distribution function F , is a

function of the expected order statistics of a random sample of size r from F . Let {Wi, 1 ≤ i ≤ r}
be a random sample from F . Define, W1:r ≤ W2:r ≤ · · · ≤ Wr:r as the corresponding ordered

sample. Then,

λr = r−1
r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Wr−k:r), r = 1, 2, · · ·

10



In particular, the first three L-moments for W1 are,

λ1 = E(W1),

λ2 =
1

2

(
E(W2:2)− E(W1:2)

)
,

λ3 =
1

3

(
E(W3:3)− 2E(W2:3) + E(W1:3)

)
. (5.1)

λ1, λ2, and λ3 can be used for measuring descriptive features (location, scale and skewness,

respectively) of F .

In this section, we look at point and interval estimation for L-moments, when the under-

lying sample consists of stationary associated random variables.

5.1 Consistent point estimators for L-moments

Let {Xi, 1 ≤ i ≤ n} be a sample of stationary associated random variables from F . Define,

X1:n ≤ X2:n ≤ · · · ≤ Xn:n as the corresponding ordered sample. λr can be estimated by a

U-statistic,

λ̂r,n = r−1

(
n

r

)−1 ∑
1≤i1≤···≤ir≤n

r−1∑
k=0

(
r − 1

k

)
(−1)kXir−k:n, r = 1, · · · , n. (5.2)

And, in particular,

λ̂1,n = n−1
∑

1≤i≤n
Xi:n,

λ̂2,n =

(
n

2

)−1 1

2

∑
1≤i1<i2≤n

(Xi2:n −Xi1:n),

λ̂3,n =

(
n

3

)−1 1

3

∑
1≤i1<i2<i3≤n

(Xi3:n − 2Xi2:n +Xi1:n). (5.3)

λ̂1,n, is the mean of the sample. Under the conditions of Lemma 2.2, λ̂1,n is a weakly

consistent estimator of λ1. The consistent estimators for the variance and the distribution

function of λ̂1,n, can be obtained using Theorems 3.1− 3.2 (g(x) ≡ g̃(x) = x).

λ̂r,n, r = 2, 3 discussed above are U-statistics based on kernels that are functions of bounded

Hardy-Krause variation. Under the conditions of Lemma 2.6, λ̂r,n are weakly consistent esti-

mators of λr, r = 2, 3. The consistent estimators of variance and distribution function of λ̂r,n,

r = 2, 3 based on bootstrap can be obtained under the conditions of Theorem 4.2.

The next theorem extends the results of Lemmas 2.5 − 2.7 to non-uniformly bounded

random variables for λ̂2,n and λ̂3,n.

λ̂2,n =

(
n

2

)−1 ∑
1≤i<j≤n

ρ(Xi, Xj), where ρ(x, y) = |x− y|/2.

11



λ̂3,n =

(
n

3

)−1 ∑
1≤i<j<k≤n

t(Xi, Xj , Xk),

where t(x, y, w) = (3max(x, y, w)− 2(x+ y + w) + 3min(x, y, w))/3.

Theorem 5.1. Let {Xn, n ≥ 1} be a sequence of stationary associated random variables, such

that, E|X1|2+δ < ∞, for some δ > 0. Assume that the density function of X1 is bounded. Let∑∞
j=1Cov(X1, Xj)

γ δ
2+δ <∞, for some 0 < γ < 1/6.

(1) Let h(1) and h(2) be the kernels obtained using the Hoeffding’s decomposition of λ̂2,n. Then,

as n→∞, ∑
1≤i<j≤n

∑
1≤k<j≤n

|E(h(2)(Xi, Xj)h
(2)(Xk, Xl))|= O(n2).

Further, if σ2
1 > 0, where σ2

1 = V ar(h(1)(X1)) + 2
∑∞

j=2Cov(h(1)(X1), h(1)(Xj)), then, as

n→∞, √
n(λ̂2,n − λ2)

2σ1

L−→ N(0, 1).

Also, Cov(h(1)(X1), h(1)(Xj)) ≤ CCov(X1, Xj), j ≥ 1.

(2) Let t(1), t(2) and t(3) be the kernels obtained using Hoeffding’s decomposition for λ̂3,n.Then,

as n→∞, ∑
1≤i<j≤n

∑
1≤k<j≤n

|E(t(2)(Xi, Xj)t
(2)(Xk, Xl))|= O(n2).

∑
1≤i<j<k≤n

∑
1≤i′<j′<k′≤n

|E(t(3)(Xi, Xj , Xk)t
(3)(Xi′ , Xj′ , Xk′))|= O(n5).

Further if σ2
2 > 0, where σ2

2 = V ar(t(1)(X1)) + 2
∑∞

j=2Cov(t(1)(X1), t(1)(Xj)), then, as

n→∞, √
n(λ̂3,n − λ3)

3σ2

L−→ N(0, 1).

Also, Cov(t(1)(X1), t(1)(Xj)) ≤ CCov(X1, Xj)
δ

2+δ , j ≥ 1.

Remark 5.1. Replacing the conditions of Lemmas 2.5 − 2.7 with the conditions of Theorem

5.1, the consistency of λ̂2,n and λ̂3,n and, consistency of the variance and distribution function

estimators of λ̂2,n and λ̂3,n based on CBB observations follow for non-uniformly bounded random

variables.

The above result can be similarly extended to λ̂r,n, r = 4, · · · , n.

5.2 Interval estimation for the L-moments

Interval estimates for the L-moments, when the underlying sample consists of stationary associ-

ated random variables, can be obtained using the asymptotic normality or using Circular Block

Bootstrap.
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λ̂1,n is the sample mean. Its asymptotic normality follows using Lemma 2.2, and the

consistency of the estimator of the distribution function using CBB follows from Theorem 3.2

(g(x) ≡ g̃(x) = x).

For λ̂2,n and λ̂3,n asymptotic normality follows using Theorem 5.1, while the consistency

of the estimator of the distribution function based on CBB follows from Theorem 4.2.

Results for higher order L-moments can be obtained similarly.

5.3 Example - A Marshall-Olkin Log-Logistic process

Many authors (Lewis and McKenzie (1991), Balakrishna and Jacob (2003), Alice and Jose

(2005), Jose et. al. (2010), among others) have developed and discussed statistical properties

of various autoregressive models with minification structures. In the following, we discuss

a Marshall-Olkin Log-Logistic process with a minification structure generating a sequence of

stationary associated random variables. A case study is also presented.

The survival function of MO Log-Logistic Distribution (MO − LLG(α, β, p, g)) is,

F̄ (x; p, α, β, g) =
1

1
p(x−gα )β + 1

, α, β, p > 0, x > g. (5.4)

When p = 1, F̄ is survival funtion of a Log-logistic (LLG(α, β, g)) random variable with

shape parameter β, location parameter g, and scale parameter α. The statistical properties of

MO − LLG(α, β, γ, 0) and its application in minification processes have been discussed in Gui

(2013).

Following is a Marshall-Olkin Log-Logistic process generating a sequence of stationary

associated random {Xn, n ≥ 1} with common one-dimensional marginal distribution MO −
LLG(α, β, p, g). Assume X0 follows MO − LLG(α, β, p, g).

Xn = εn with probability p,

= min(Xn−1, εn) with probability (1− p), n ≥ 1,
(5.5)

where 0 < p < 1 and {εn, n ≥ 1} is a sequence of i.i.d LLG(α, β, g) random variables indepen-

dent of {Xn, n ≥ 0}. Observe that,

Cov(X0, Xn) ≤ (1− p)nV ar(X0), n ≥ 1. (5.6)

Note that, {Xn, n ≥ 1} is a sequence of stationary associated random variables as nonde-

creasing functions of associated random variables are associated (Esary et. al. (1967)).

5.3.1 Point estimation of L-moments and parameters α, β, and g

The parameters of MO-LLG process can be written as functions of L-moments.

c =
1

β
=
λ3

λ2
, a = αpc = λ2

sin(πc)

πc2
, g = λ1 −

λ2
2

λ3
. (5.7)
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The conditions of Theorem 5.1 are satisfied under β ≥ 3. As n → ∞, λ̂r,n → λr in L2,

r = 1, 2, 3. The condition
∑∞

j=1Cov(X1, Xj)
γ δ

2+δ < ∞, for some 0 < γ < 1/6, is satisfied

because of (5.6). Hence, when p is known, replacing the L-moments with sample L-moments in

the set of equations given in (5.7) provide weakly consistent estimators for α, β, and g.

For all the following simulations we assumed that the value of p is known. We took α = 0.2,

β = 5, g = 2, and varied the value of p. We used the statistical software R (http://www.r-

project.org; R Development Core Team (2014)) for our simulations.

Table 5.1 gives the estimates of the first three L-moments and the parameters α, β, and g,

based on samples of size n (n = 100, 200, 500) generated using the model (5.5). The estimates

of the first three L-moments are obtained using (5.3). Let α̂n, β̂n, and ĝn, denote the estimators

of α, β, and g respectively. The following results are based on N = 5000 iterations.

Table 5.1 Estimation of (λ1, λ2, λ3, α, β, g)

p = 0.3, λ1 = 2.1680, λ2 = 0.0336, λ3 = 0.0067 n=100 n=200 n=500

¯̂
λ1,n(Est.M.S.E(λ̂1,n)) 2.1682(0.00010) 2.1680(0.00005) 2.1681(0.00002)

¯̂
λ2,n(Est.M.S.E(λ̂2,n)) 0.0330(0.00002) 0.0333(0.00001) 0.0335(0.00000)

¯̂
λ3,n(Est.M.S.E(λ̂3,n)) 0.0071(0.00001) 0.0069(0.00001) 0.0068(0.00000)

¯̂αn(Est.M.S.E(α̂n)) 0.2553(9.32993) 0.2086(0.01180) 0.2023(0.00141)

¯̂
βn

(
Est.M.S.E(β̂n)) 7.0618(10667.2) 5.3655(11.7929) 5.1140(1.21931)

¯̂gn
(
Est.M.S.E(ĝn)) 1.9431(9.32904) 1.9905(0.01156) 1.9973(0.00132)

p = 0.5, λ1 = 2.1861, λ2 = 0.0372, λ3 = 0.0074 n=100 n=200 n=500

¯̂
λ1,n(Est.M.S.E(λ̂1,n)) 2.1861(0.00009) 2.1860(0.00004) 2.1861(0.00002)

¯̂
λ2,n(Est.M.S.E(λ̂2,n)) 0.0370(0.00002) 0.0371(0.00001) 0.0372(0.00001)

¯̂
λ3,n(Est.M.S.E(λ̂3,n)) 0.0077(0.00001) 0.0076(0.00001) 0.0075(0.00000)

¯̂αn
(
Est.M.S.E(α̂n)) 0.2396(1.40422) 0.2112(0.00437) 0.2039(0.00117)

¯̂
βn

(
Est.M.S.E(β̂n)) 6.3085(1234.42) 5.3920(3.63175) 5.1356(0.93060)

¯̂gn
(
Est.M.S.E(ĝn)) 1.9596(1.40345) 1.9883(0.00421) 1.9959(0.00111)

p = 0.8, λ1 = 2.2045, λ2 = 0.04089, λ3 = 0.0082 n=100 n=200 n=500

¯̂
λ1,n(Est.M.S.E(λ̂1,n)) 2.2046(0.00008) 2.2044(0.00004) 2.2044(0.00002)

¯̂
λ2,n(Est.M.S.E(λ̂2,n)) 0.0409(0.00002) 0.04085(0.00001) 0.0409(0.00000)

¯̂
λ3,n(Est.M.S.E(λ̂3,n)) 0.0082(0.00001) 0.0409(0.00000) 0.0082(0.00000)

¯̂αn(Est.M.S.E(α̂n)) 0.2335(0.09386) 0.2134(0.00368) 0.2054(0.00097)

¯̂
βn(Est.M.S.E(β̂n)) 5.9978(77.7062) 5.4052(2.76671) 5.1613(0.72606)

¯̂gn(Est.M.S.E(ĝn)) 1.9665(0.09352) 1.9865(0.00354) 1.9946(0.00092)

In the table above, (1)
¯̂
λr,n =

∑N
i=1 λ̂r,n,i

N
, where λ̂1,n,i is estimate of λr in the ith iteration, i = 1, 2, · · · , N , r = 1, 2, 3.

(2) Est. M.S.E(λ̂r,n) =
∑N

i=1(λ̂r,n,i−
¯̂
λr,n)2

N
, r = 1, 2, 3.

Similarly, the values for ¯̂αn,
¯̂
βn, ¯̂gn, Est.M.S.E(α̂n), Est.M.S.E(β̂n), and Est.M.S.E(ĝn) were obtained.

Observations

(i) Estimation of λ1, λ2 and λ3: For a fixed set of values of the parameters, as the sample size

increases,
¯̂
λr,n, r = 1, 2, 3 become closer to the true values and the corresponding estimated
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M.S.Es reduce, i.e. the sample L-moments converge to the true values. As p becomes closer

to 1, this convergence becomes faster.

(ii) Estimation of α, β and g: As n increases, ¯̂αn,
¯̂
βn, ¯̂gn become closer to the true values and the

corresponding estimated M.S.Es reduce. As p becomes closer to 1, this convergence becomes

faster.

(iii) The convergences for the parameters are slower than the convergences for the L-moments. In

particular, for the set of parameters chosen, it can be seen that larger sample sizes (n ≥ 200)

are needed for a viable consistent estimator of β.

5.3.2 Interval estimation for the L-moments

Table 5.2 gives a comparison of the lower tail empirical probabilities obtained using the esti-

mates of the percentiles of λ̂2,n using normal distribution approximation (Theorem 5.1) and

the bootstrap technique ((4.4) and (4.5)). The results are based on a N = 5000 iterations of

samples of size n. For each iteration, the samples were drawn 1000 times for the bootstrap

results. We took the block length `n = dn1/3e, n = 20, 50, 100, 200. The results obtained using

normal distribution approximations are given in the parenthesis (.).

Table 5.2 Empirical probabilities (EP)

p = 0.3 n=20 n=50 n= 100 n= 200

EP for the 95th percentile 0.9316(0.9642) 0.9424(0.9608) 0.9464(0.9596) 0.9536(0.961)

EP for the 50th percentile 0.5792(0.6568) 0.5376(0.5998) 0.5068(0.5616) 0.4986(0.5522)

EP for the 5th percentile 0.2196(0.2984) 0.1624(0.2036) 0.1320(0.1606) 0.1076(0.1206)

p = 0.5 n=20 n=50 n= 100 n= 200

EP for the 95th percentile 0.9272(0.9606) 0.9538(0.9688) 0.9568(0.9658) 0.9610(0.9654)

EP for the 50th percentile 0.5394(0.6128) 0.5068(0.5748) 0.4930(0.5492) 0.4930(0.534)

EP for the 5th percentile 0.1942(0.2628) 0.1456(0.1806) 0.1206(0.1406) 0.1020(0.1122)

p = 0.8 n=20 n=50 n= 100 n= 200

EP for the 95th percentile 0.9224(0.9564) 0.9594(0.9692) 0.9664(0.9734) 0.969(0.968)

EP for the 50th percentile 0.5010(0.5784) 0.4934(0.5464) 0.4724(0.5244) 0.4920(0.5258)

EP for the 5th percentile 0.1776(0.2406) 0.1370(0.1636) 0.1134(0.1232) 0.1002(0.1058)

To apply Theorem 5.1, an estimator for σ2
1 is needed. We obtained a consistent estimator

by using Theorem 3.1. In general, h(1) would not be known. We used a consistent point

estimator ĥ
(1)
n of h(1), ĥ

(1)
n (x) =

∑n
j=1|Xj − x|/(2n). Taking Yi = ĥ

(1)
n (Xi) in (3.6), we get a

consistent estimator for σ2
1.

Observations

(i) In general, the empirical probabilities obtained using cut-offs from bootstrap are closer to the

expected values than the empirical coverage probabilities obtained using the cut-offs from

the normal distribution approximation. The bootstrap seems to provide a better estimate of

the percentiles than the normal approximation.
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(ii) Larger sample sizes are needed to obtain viable estimates for the 5th percentile using both

bootstrap and normal distribution approximation.

(iii) The value of p also affects the cut-offs obtained from both the bootstrap as well as the

normal distribution approximation. In general, the values of empirical probabilities seem to

get closer the expected values as the value of p increases.

Table 5.3 gives the empirical coverage probabilities for the 95% confidence intervals (CIs)

using the bootstrap technique for the first three L-moments. The results are based on a N =

2000 iterations of samples of size n. For each iteration, the samples were drawn 1000 times for

the bootstrap results. We took the block length `n = dn1/3e, n = 50, 100, 200, 400.

It can be seen that as the sample size increases, the empirical coverage probabilities become

closer to 0.95.

Table 5.3 Empirical Coverage Probabilities (CP) for 95% CIs.

p = 0.3 n=50 n=100 n=200 n=400

empirical CP for λ1 0.8535 0.8845 0.8995 0.9220

empirical CP for λ2 0.8345 0.8715 0.8960 0.9190

empirical CP for λ3 0.8445 0.8820 0.9020 0.9170

p = 0.5 n=50 n=100 n=200 n=400

empirical CP for λ1 0.893 0.9135 0.9325 0.9385

empirical CP for λ2 0.8675 0.8965 0.9135 0.9250

empirical CP for λ3 0.8200 0.8785 0.904 0.9110

p = 0.8 n=50 n=100 n=200 n=400

empirical CP for λ1 0.9030 0.919 0.9265 0.9285

empirical CP for λ2 0.878 0.9025 0.9155 0.9245

empirical CP for λ3 0.8215 0.855 0.897 0.9100

Remark 5.2. Though, for the example considered in Section 5.3 we have assumed a specific

structure for the minification process, the results of Sections 5.3.1 and 5.3.2 can be easily extended

to other stationary autoregressive processes with minification structures.

5.3.3 Case Study

We fit the discussed MO-LLG process to the dataset consisting of the annual peak flows (in

m3/s) of The Thames at Kingston for the years 1883− 2014 (Source: The UK National River

Flow Archive (NRFA), http://nrfa.ceh.ac.uk/data/station/peakflow/39001). The dataset con-

sists of 132 values.

We fitted the model with p = 0.9. Using the results of Section 5.3.1, estimates of first three

L-moments and the parameters are: (λ̂1, λ̂2, λ̂3) = (327.6378, 64.0396, 8.6281), and (α̂, β̂, ĝ) =

(467.8424, 7.4222,−147.6764).

Using (5.4), an estimate of the median annual peak flow is α̂p1/β̂ + ĝ = 313.5717.

Figure 1 gives the Q-Q plot and the plot of the empirical cdf of the observed and the

simulated data. It can be seen that the simulated data provides a good fit to the observed data.

The parameter g can be taken as an estimate of the minimum of the annual peak flows, but it
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Figure 1: Fitted vs. Observed

is observed in literature (for example, see Fitzgerald (2005)) that reasonable estimates of the

quantiles can be obtained even with a negative values of g, as is in the present case.

Using the results of Section 5.3.2, the 95% confidence intervals for the first three L-

moments were obtained as: for λ1: (312.3809, 343.6756), for λ2: (54.9795, 73.7574), and for

λ3: (2.1364, 14.8681). Using the results of Section 3, the 95% confidence interval for the prob-

ability that the annual peak flow would be less than the estimated median was obtained as

(0.3936, 0.5616), and the 95% confidence interval for the probability that the annual peak flow

would be less than λ̂1, i.e. the estimated mean, was obtained as (0.4835, 0.6286). These intervals

are based on 1000 bootstrap samples.

6 Discussions and intended future work

In this paper, we have discussed the consistency of Circular Block Bootstrap for functions

of stationary associated random variables. We also proved the consistency of the estimators

of variance and distribution function of U-statistics based on Circular plug-in bootstrap. As

applications, interval estimators for L-moments of a stationary sequence of associated random

variables are discussed. We have also shown that the U-statistic estimators of L-moments are

weakly consistent. To illustrate the use of the theory discussed, we obtain the point estimators

and confidence intervals of L-moments of a stationary autoregressive process with a minification

structure. Simulations indicate that the point estimates converge faster if the underlying random

variables are “almost independent”. A comparison between the estimates of the percentiles of

the U-statistics generated via the bootstrap and normal distribution show that, in general, the

former provides a better estimate.

We have not discussed the choice of optimal block lengths for the estimators using CBB.

Lahiri et. al. (2007) suggested a a nonparametric plug-in principle based on the Jackknife-After-

Bootstrap (JAB) method to obtain an optimal choice of the block length. They established the
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consistency of this method for strongly mixing processes. Extension of this method to stationary

associated random variables are under preparation.
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Bücher A. and Kojadinovic I. (2016). Dependent multiplier bootstraps for non-degenerate U -statistics under mixing

conditions with applications. J. Statist. Plann. Inference, 170:83 – 105.

Bulinski A. and Shashkin A. (2007). Limit theorems for associated random fields and related systems. Advanced Series on

Statistical Science and Applied Probability. World Scientific, Singapore.

Bulinski A. and Shashkin A. (2009). Limit Theorems for Associated Random Variables. Brill Academic Pub.

Dehling H. and Wendler M. (2010). Central limit theorem and the bootstrap for -statistics of strongly mixing data. J.

Multivar. Anal., 101(1):126 – 137.

Doukhan P., Lang G., Leucht A., and Neumann M.H. (2015). Dependent wild bootstrap for the empirical process. J. Time

Ser. Anal., 36(3):290–314.

Doukhan P., Prohl S., and Robert C.Y. (2011). Subsampling weakly dependent time series and application to extremes.

Test , 20(3):447–479.

Efron B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann. Statist., 7(1):1–26. doi:10.1214/aos/1176344552.

Efron B. and Tibshirani R. (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC Monographs on Statistics &

Applied Probability. Taylor & Francis.

Esary J.D., Proschan F., and Walkup D.W. (1967). Association of random variables, with applications. Ann. Math. Statist.,

38(5):1466–1474.

Fitzgerald D.L. (2005). Analysis of extreme rainfall using the log logistic distribution. Stoch. Env. Res. Risk. A., 19(4):249–

257.

Garg M. and Dewan I. (2015). On asymptotic behavior of U -statistics based on associated random variables. Statist.

Probab. Lett., 105:209 – 220.

Gui W. (2013). Marshall-olkin extended log-logistic distribution and its application in minification processes. Appl. Math.

Sci., 7(80):3947–3961.

Hoeffding W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statistics, 19(3):293–325.

Hosking J.R. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics. J.

R. Stat. Soc. Ser. B Stat. Methodol., 52(1):105–124.

Hwang E. and Shin D.W. (2012). Strong consistency of the stationary bootstrap under ψ-weak dependence. Statist. Probab.

Lett., 82(3):488–495.

Jones M.C. and Balakrishnan N. (2002). How are moments and moments of spacings related to distribution functions? J.

Statist. Plann. Inference, 103(1-2):377–390.
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