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Abstract

We discuss three different estimators for estimating the limiting variance of partial sums of

functions of associated random variables. The first two estimators are based on a Subsampling

method, while the third is obtained using Circular block bootstrap. As an application, we also

obtain estimators for the limiting variance for U-statistics based on stationary associated ran-

dom variables.
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1 Introduction

There exist several instances when the underlying random variables of interest are not inde-

pendent. For example, the components of the moving average process {Xn;n ≥ 1} defined as

Xn = a0εn + ... + aqεn−q, where {εn}n are independent random variables, and a0, ..., aq have

the same sign are dependent; in reliability studies the lifetimes of components in structures in

which components share the load so that failure of one component results in increased load on

each of the remaining components are dependent. In both these examples the random variables

are not independent but associated. Associated random variables are defined as follows.

Definition 1.1. (Esary et al. (1967)) A finite collection of random variables {Xj , 1 ≤ j ≤ n}
is said to be associated, if for any choice of component-wise nondecreasing functions k1, k2 :

Rn → R, we have,

Cov(k1(X1, . . . , Xn), k2(X1, . . . , Xn)) ≥ 0

whenever it exists. An infinite collection of random variables {Xj , j ≥ 1} is associated if every

finite sub-collection is associated.

∗Corresponding author.
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Apart from the reliability and survival studies, applications of associated random variables

can also be found in statistical mechanics, percolation theory and interacting particle systems.

Any set of independent random variables is associated, and nondecreasing functions of associated

random variables are associated (cf. Esary et al. (1967)). A detailed presentation of the

asymptotic results and examples relating to associated sequences can be found in Bulinski and

Shashkin (2007, 2009), Oliveira (2012) and Prakasa Rao (2012).

Let X = {Xn, n ≥ 1} be a sequence of associated random variables (not necessarily sta-

tionary) satisfying E(X2
1 ) < ∞. For each j ≥ 1, let Aj be a finite subset of {k, k ≥ 1} with

cardinality denoted as #Aj , and

Yj = gj(XAj ), j ≥ 1, (1.1)

where XAj = {Xi, i ∈ Aj}, j ≥ 1. We assume that there exists a g̃j such that gj�g̃j , where

gj , g̃j : R#Aj → R, j ≥ 1. The relation ′′ �′′ is defined as follows:

Definition 1.2. (Newman (1984)) If g and g̃ are two real-valued functions on Rm, m ∈ N,

then g � g̃ iff g̃ + g and g̃ − g are both coordinate-wise nondecreasing. If g � g̃, then g̃ will be

coordinate-wise nondecreasing.

Further let,

Ỹj = g̃j(XAj ), j ≥ 1. (1.2)

gj , g̃j , and Aj , j ≥ 1 are such that {Yj , j ≥ 1} and {Ỹj , j ≥ 1} are stationary sequences. Under

the condition
∑∞

j=1|Cov(Y1, Yj)|<∞, the limiting variance of partial sums of {Yj , j ≥ 1} is,

σ2
g = lim

n→∞
V ar(

n∑
j=1

gj(XAj )/
√
n) = V ar(Y1) + 2

∞∑
j=2

Cov(Y1, Yj). (1.3)

Assume σ2
g > 0.

In this paper, we look at following three estimators of σ2
g . Under suitable conditions, these

estimators are shown to be consistent.

(PS) Peligrad and Suresh (1995) had obtained a consistent estimator for lim
n→∞

(V ar(
∑n
j=1Xj√
n

)),

where {Xn, n ≥ 1} is a sequence of stationary associated random variables. Their estimator

was based on overlapping subseries of the underlying sample {Xi, 1 ≤ i ≤ n}. Using the

same technique we obtain a consistent estimator of σ2
g .

(PR) The second estimator is based on the estimator of the limiting variance of mean discussed

in Politis and Romano (1993). This estimator is also based on overlapping subseries of the

underlying sample. Politis and Romano (1993) had proved the consistency of the estimator

when the underlying sample is from a mixing sequence. We extend the results of Politis and

Romano (1993) to show consistency of the estimator when the sample is from {Yj , j ≥ 1}.
(CBB) The third estimator is based on observations obtained using Circular Block Bootstrap (in-

troduced in Politis and Romano (1992)).
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We also obtain estimators for the limiting variance for U-statistics based on stationary

associated random variables. Assume {Xn, n ≥ 1} is a sequence of stationary associated random

variables, with F as the common univariate distribution function. Define the U-statistic, Un(ρ),

based on {Xj , 1 ≤ j ≤ n}, where ρ : R2 → R is a symmetric function of degree two, by,

Un(ρ) =
2

n(n− 1)

∑
1≤i<j≤n

ρ(Xi, Xj).

Define θ =
∫
R2 ρ(x, y)dF (x)dF (y), and ρ1(x1) =

∫
R
ρ(x1, x2) dF (x2). Let,

h(1)(x1) = ρ1(x1)− θ, and, (1.4)

h(2)(x1, x2) = ρ(x1, x2)− h(1)(x1)− h(1)(x2)− θ. (1.5)

Then, using Hoeffding’s decomposition,

Un(ρ) = θ +
2

n

n∑
i=1

h(1)(Xi) +
2

n(n− 1)

∑
1≤i<j≤n

h(2)(Xi, Xj). (1.6)

Dewan and Prakasa Rao (2001) gave a central limit theorem for degenerate and non-

degenerate U-statistics based on {Xn, n ≥ 1} using an orthogonal expansion of the underlying

kernel. Dewan and Prakasa (2002) and its corrigendum (2015) obtained a CLT for U-statistics

with component-wise monotonic, differentiable, and non-degenerate kernels of degree 2, using

Hoeffding’s decomposition. The limiting distribution of U-statistics based on {Xn, n ≥ 1} can

also be obtained using the results of Beutner and Zähle (2012, 2014). The approach of Beutner

and Zähle (2012) is based on a modified delta method and quasi-Hadamard differentiability,

while Beutner and Zähle (2014) propose a continuous mapping approach. Garg and Dewan

(2015) obtained the limiting distribution of U-statistics based on kernels which are functions of

Hardy-Krause variation, when the underlying sample is from {Xn, n ≥ 1}.
The asymptotic normality of U-statistics is often used to obtain critical points, level of

significance and power for tests based on U-statistics. For applying the Central limit theorem

for U-statistics we need a consistent estimator for lim
n→∞

V ar(
√
nUn(ρ)), which is generally based

on unknown population parameters. Under suitable conditions, it can be shown that,

lim
n→∞

V ar(
√
nUn(ρ)) = 4σ2

U , where (1.7)

σ2
U = V ar(h(1)(X1))+2

∞∑
j=2

Cov(h(1)(X1), h(1)(Xj)) = V ar(ρ1(X1))+2

∞∑
j=2

Cov(ρ1(X1), ρ1(Xj)).

(1.8)

We modify the estimators discussed in (PS), (PR), and (CBB) to obtain consistent estimators

for 4σ2
U .

The paper is organized as following. The three estimators for σ2
g and 4σ2

U based on (PS),

(PR), and (CBB) have been discussed in Sections 2-4, respectively. In Section 5, we compare
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the three estimators using simulations. A brief discussion on the results obtained in this paper

and our intended future work is in Section 6. The proofs of the main results discussed are given

in Section 7.

2 Estimation of σ2g and 4σ2U based on (PS)

2.1 Estimation of σ2
g

The results of this section extend the results of Peligrad and Suresh (1995) to functions of

associated random variables. Under the conditions given by Theorems 2.1− 2.2, the estimator

for σ2
g can be shown to be consistent. The information on the limiting behavior of the estimator

is given by Theorem 2.3.

Theorem 2.1. Let {`n, n ≥ 1} be a sequence of positive integers with 1 ≤ `n ≤ n and `n = o(n)

as n→∞. Set Sj(k) =
∑j+k

i=j+1 Yi , Ȳn = 1
n

∑n
j=1 Yj. Let E(Y1) = µ and E(Y 2

1 ) <∞. Define,

(write ` = `n),

BPSn =
1

n− `+ 1

(
n−∑̀
j=0

|Sj(`)− `Ȳn|√
`

)
. (2.1)

Assume,
∞∑
j=1

Cov(Ỹ1, Ỹj) <∞. (2.2)

Then,

BPSn → σg

√
2

π
in L2 as n→∞. (2.3)

Theorem 2.2. In addition to the conditions of Theorem 2.1 if we assume `n = O( n
(logn)2

) the

convergence in (2.3) is also in almost sure sense.

Information on the rate of convergence of BPSn is provided by the following.

Theorem 2.3. If the conditions of Theorem 2.1 are true, then as n→∞,√
n

`

( √
π
2

n− `+ 1

n−∑̀
j=0

(∣∣∣Sj(`)− `µ√
`

∣∣∣)−√π

2
E
∣∣∣So(`)− `µ√

`

∣∣∣)) L−→ N
(

0,
3π − 8

4
σ2
g

)
. (2.4)

For every x > 0,

limsup
n→∞

P
(√n

`

∣∣∣BPSn − E∣∣∣So(`)− `µ√
`

∣∣∣∣∣∣ > Ax
)
≤ 2P (|N |> x), (2.5)

where N is a standard normal variable and A =
(√

3π−8
2π + 1

)
σg.

The proofs of Theorems 2.1− 2.3 are in Section 7.2.
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Remark 2.4. Using (2.3), as n→∞,

π

2
B2
PSn =

π

2

(
1

n− `+ 1

n−∑̀
j=0

|Sj(`)− `Ȳn|√
`

)2
p−→ σ2

g . (2.6)

Under the conditions of Theorem 2.3, V ar(BPSn) = O( `n), or V ar(B2
PSn

) = O( `n), n→∞.

2.2 Estimation of 4σ2
U

In general, h(1) or ρ1 would not be known as they depend on unknown underlying parameters.

We next obtain a consistent estimators for 4σ2
U , denoted here by B(Un)PS .

We first cite the following result from Garg and Dewan (2015) that is used to obtain a

consistent estimator for 4σ2
U .

Lemma 2.5. (Garg and Dewan (2015)) Let P (|Xn| ≤ C1) = 1 for some 0 < C1 < ∞. Let

h(2)(x, y) be a degenerate kernel of degree two (i.e.
∫
R h

(2)(x, y)dF (y) = 0 for all x ∈ R),

and |h(2)(x, y)| ≤ M(C1), for some 0 < M(C1) < ∞, for all x, y ∈ [−C1, C1]. Assume

that the density function of X1 is bounded and h(2) is of bounded Hardy-Krause variation and

left-continuous. Further, let
∑∞

j=1Cov(X1, Xj)
γ <∞, for some 0 < γ < 1/6. Then, as n→∞,∑

1≤i<j≤n

∑
1≤k<j≤n

|E(h(2)(Xi, Xj)h
(2)(Xk, Xl))|= O(n2). (2.7)

Let there exist a function h̃(1)(·) such that h(1) � h̃(1) and,

∞∑
j=1

Cov(h̃(1)(X1), h̃(1)(Xj)) <∞.

Assume further that σ2
U > 0 (defined in (1.8)). Then, as n→∞,

V ar(
√
nUn) = 4σ2

U + o(1), (2.8)
√
n(Un − θ)

2σU

L−→ N(0, 1) as n→∞.

Remark 2.6. If h1 � h̃1, then |Cov(h1(X1), h1(Xj))| ≤ C Cov(h̃1(X1), h̃1(Xj)), j ≥ 1. If

h(1) is monotonic, then h̃1 ≡ h(1) and {h(1)(Xn), n ≥ 1} is a sequence of stationary associated

random variables.

Assume ` ≥ 2. Define,

B(Un)PS =

√
`

n− `+ 1

(
n−`+1∑
i=1

∣∣∣(`
2

)−1 ∑
i≤j<k≤i+`−1

ρ(Xj , Xk)− Un(ρ)
∣∣∣). (2.9)
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Theorem 2.7. Under the conditions of Lemma 2.5, as n → ∞,

B(Un)PS
p−→ 2σU

√
2

π
, or

π

2
B2(Un)PS

p−→ 4σ2
U . (2.10)

The proof of Theorem 2.7 is discussed in Section 7.2.

Remark 2.8. The condition that the random variables are uniformly bounded is only required

to prove (2.7). (2.7) can be extended to random variables which are not uniformly bounded by

the usual truncation techniques.

Remark 2.9. The results of Lemma 2.5, and hence the results of Theorem 2.7 can be easily

extended to non-degenerate U-statistics based on kernels of finite degrees greater than two.

Remark 2.10. We have assumed that the U-statistics should be based on kernels which are of

bounded Hardy-Krause variation. Examples include the U-statistic estimators of moments and

L-moments.

3 Estimation of σ2g and 4σ2U based on (PR)

3.1 Estimation of σ2
g

Politis and Romano (1993) had discussed a nonparametric estimator for the sample variance

of linear statistics derived from mixing sequences. The variance estimator for σ2
g discussed in

this section is the estimator for the sample variance of mean discussed in Politis and Romano

(1993). The consistency of this estimator for σ2
g is discussed in Theorem 3.1. The order of the

variance of the estimator has been discussed in Theorem 3.2.

Let {`n, n ≥ 1} be a sequence of positive integers with 1 ≤ `n ≤ n and `n = o(n) as n→∞.

Let ` ≡ `n.

Theorem 3.1. Assume
∞∑
j=1

Cov(Ỹ1, Ỹj)
1/3 <∞. (3.1)

Further, suppose that (S0(`)− `E(Y1))/
√
` has a bounded continuous density for all ` ∈ N.

Then, n → ∞,

B2
PRn =

1

n− `+ 1

n−∑̀
j=0

(
Sj(`)− `Ȳn√

`

)2
p−→ σ2

g , (3.2)

where Sj(`), j = 0, 1, · · · , n− `+ 1 are defined in Theorem 2.1

Theorem 3.2. Suppose E
(
S0(`)−`E(Y1)√

`

)4+ν
<∞, for all ` ∈ N, and

∑∞
j=1Cov(Ỹ1, Ỹj)

ν/3(4+ν) <

∞, for some ν > 0. Further, suppose that (S0(`)− `E(Y1))/
√
` has a bounded continuous den-

sity for all ` ∈ N, and ` = o(
√
n) as n→∞. Then,

V ar

(
B2
PRn

)
= O(

`

n
), as n→∞. (3.3)
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Proofs of Theorems 3.1− 3.2 are given in Section 7.2.

Remark 3.3. Assume E(Y1) = 0, and E|Y1|4+δ+ν , E|Ỹ1|4+δ+ν <∞, for some δ, ν > 0.

Let
∑∞

j=n+1Cov(Ỹ1, Ỹj) = O(n−(2+ν)(4+ν+δ)/2δ). Then,

E
(S0(`)√

`

)4+ν
<∞. (3.4)

This follows using Lemma 7.3.

3.2 Estimation of 4σ2
U

We obtain a consistent estimators for 4σ2
U , denoted here by B(Un)PR. Define,

B2(Un)PRn =
`

(n− `+ 1)

n−`+1∑
i=1

((`
2

)−1 ∑
i≤j<k≤i+`−1

ρ(Xj , Xk)− Un(ρ)
)2
. (3.5)

Theorem 3.4. Under the conditions of Lemma 2.5, and

∞∑
j=1

Cov(h̃(1)(X1), h̃(1)(Xj))
1/3 <∞.

Further, suppose that (
∑`

j=1 h
(1)(Xj)− `θ)/

√
` has a bounded continuous density for all ` ∈ N.

Then,

B2(Un)PRn
p−→ 4σ2

U , as n → ∞. (3.6)

Proof of the above is in Section 7.2.

4 Estimation of σ2g and 4σ2U based on (CBB)

Let Ωn = {Yi, 1 ≤ i ≤ n} have a common one-dimensional marginal distribution function and

E(Y1) = µ. Define,

Tn =
√
n(Ȳn − µ). (4.1)

Then, lim
n→∞

V ar(Tn) = σ2
g . The Circular Block Bootstrap (CBB) method was proposed

by Politis and Romano (1992). This method re-samples overlapping and periodically extended

blocks of a given length ` ≡ `n, (` is a positive integer) satisfying ` = o(n) as n → ∞ from

{B(1, `), · · · , B(n, `)}. B(i, `), i = 1, · · · , n, are defined as follows.

B(i, `) = (Yn,i, · · · , Yn,i+`−1), where

Yn,i = Yi, if i = 1, · · · , n,

= Yj if j = i− n, i = n+ 1, · · · , n+ (`− 1).
(4.2)
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To obtain the CBB sample, randomly select k blocks from {B(1, `), · · · , B(n, `)} with

replacement. The sample size is m = k`. Let Ω?
m = {Y ?

i , 1 ≤ i ≤ m} denote the CBB sample

of size m from Ωn.

Let {B?(1, `), · · · , B?(k, `)} denote the selected sample of blocks and the elements in

B?(j, `) be denoted as (Y ?
(j−1)`+1, · · · , Y

?
j`), j = 1, 2, · · · , k.

P?((Y
?

1 , · · · , Y ?
` )′ = (Yn,i, · · · , Yn,i+`−1)′) =

1

n
, i = 1, · · · , n, (4.3)

where P? denotes the conditional probability given Ωn. Note that in CBB equal weights are

given to each of the observations Y1, · · · , Yn.

For our calculations, we used k = [n` ] and m = k`. Let E? and V ar? respectively denote

the conditional expectation and conditional variance, given Ωn. Then, the bootstrap version of

Tn is given by,

T ?n =
√
m(Ȳ ?

m − E?Ȳ ?
m). (4.4)

Under CBB, E?Ȳ
?
m = Ȳn (from Lahiri (2003) (Section 2.7.1, (2.18))).

4.1 Estimation of σ2
g

Let,

Ui =
Yn,i + · · ·+ Yn,i+`−1

`
, (4.5)

be the average of B(i, `), i = 1, · · · , n. As the re-sampled blocks are independent,

B2
(CBB)n

= V ar?(T
?
n) = `

[
n−1

n∑
i=1

U2
i − Ȳ 2

n

]
= `
[
n−1

n∑
i=1

(Ui − Ȳn)2
]
. (4.6)

The consistency of B(CBB)n for σ2
g is discussed in Theorem 4.1. The order of the variance of

the estimator has been discussed in Theorem 4.2.

Theorem 4.1. Under the conditions of Theorem 3.1,

B2
(CBB)n

p−→ σ2
g , as n→∞. (4.7)

Theorem 4.2. Under the conditions of Theorem 3.2,

V ar

(
B2

(CBB)n

)
= O(

`

n
), as n→∞. (4.8)

Proofs of Theorems 4.1− 4.2 are in Section 7.2.
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4.2 Estimation of 4σ2
U

Let {Xn,i, i = 1, · · · , n} be the periodically extended series of {Xi, 1 ≤ i ≤ n}. We assume that

` ≥ 2. The consistent estimator for 4σ2
U is,

B2(Un)CBB = `

[
n−1

n∑
i=1

( ∑
i≤j<k≤i+`−1

ρ(Xn,j , Xn,k)(
`
2

) − Un(ρ)

)2]
. (4.9)

Theorem 4.3. Under the conditions of Theorem 3.4,

B2(Un)CBB
p−→ 4σ2

U , as n→∞. (4.10)

5 Simulations - A comparison of the three estimators

We used the statistical software R (http://www.r-project.org; R Development Core Team

(2014)) for our simulations. The results are based on a r = 10000 iterations of samples of

size n. We took the block length `n = dn1/3e, n = 50, 100, 200, 500, 1000.

5.1 Estimation of σ2
g

The three estimators for σ2
g based on samples of size n are π

2B
2
PSn

(given in (2.6)), B2
PRn

(given

in (3.2)), and B2
CBBn

(given in (4.6)). For the simulation results given in Table 5.1, we generated

the samples {Yi, 1 ≤ i ≤ n} in the following 3 ways.

(S1) Yj = min(Zj , Zj+1), j = 1, 2, · · · , n, where Z ′js are i.i.d Exp(1/2).

(S2) Yj = −0.5Yj−1 +
√

3
2 Zj , j = 1, 2, · · · , n, where Y0 is a N(0,1) random variable and Z ′js, j =

1, 2, · · · , n are i.i.d N(0, 1).

(S3) Yj = 2min(Yj−1, Zj), j = 1, 2, · · · , n, where Y0 is a U(0,1) random variable, and Z ′js, j =

1, 2, · · · , n are i.i.d with probability density function fZ1(x) = 1
(1−x)2

, x ∈ (0, 1
2), and 0, for

x /∈ (0, 1
2).

(S1) and (S3) generates a sequence of associated random variables. In (S2) we generate a

sequence of non-monotonic functions of associated random variables. The true values for σ2
g for

(S1), (S2), and (S3), are 1.6667, 1/3, and 1/4, respectively.

Observations from Table 5.1

(1) All three estimators seem to be performing similarly.

(2) In (S1) we generated random variables which are “almost independent”. As expected, the

convergences are faster in this case in comparison to the random variables generated using

(S2) and (S3). Larger sample sizes are needed to obtain viable consistent estimates for (S2)

and (S3).
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Table 5.1 Estimation of σ2
g

(S1) (σ2
g = 1.6667) n=50 n=100 n= 200 n= 500 n= 1000

π
2
B̄2

PSn 1.3648 1.4260 1.4771 1.5233 1.5485

Est. MSE (π
2
B2
PSn

) 0.6646 0.3851 0.2212 0.1109 0.0671

B̄2
PRn 1.3655 1.4505 1.5145 1.5632 1.5850

Est. MSE (B2
PRn

) 0.7262 0.4239 0.2433 0.1175 0.0679

B̄2
CBBn 1.3564 1.4454 1.5126 1.5625 1.5844

Est. MSE (B2
CBBn

) 0.7013 0.4132 0.2402 0.1166 0.0676

(S2) (σ2
g = 1/3) n=50 n=100 n= 200 n= 500 n= 1000

π
2
B̄2

PSn 0.4208 0.4134 0.3990 0.3845 0.3751

Est. MSE (π
2
B2
PSn

) 0.0236 0.0156 0.0094 0.0052 0.0033

B̄2
PRn 0.4108 0.4082 0.3961 0.3830 0.3741

Est. MSE (B2
PRn

) 0.0197 0.0139 0.0086 0.0048 0.0031

B̄2
CBBn 0.4179 0.4117 0.3982 0.3839 0.3745

Est. MSE (B2
CBBn

) 0.0212 0.0144 0.0089 0.0049 0.0032

(S3) (σ2
g = 1/4) n=50 n=100 n= 200 n= 500 n= 1000

π
2
B̄2

PSn 0.1681 0.1869 0.1998 0.2136 0.2214

Est. MSE (π
2
B2
PSn

) 0.0111 0.0073 0.0047 0.0025 0.0016

B̄2
PRn 0.1526 0.1736 0.1885 0.2051 0.2146

Est. MSE (B2
PRn

) 0.0123 0.0081 0.0053 0.0030 0.0019

B̄2
CBBn 0.1507 0.1722 0.1877 0.2046 0.2144

Est. MSE (B2
CBBn

) 0.0125 0.0082 0.0054 0.0030 0.0019

In Table 5.1, (1) B̄2
PSn =

∑r
i=1B

2
PSn (i)/r, where B2

PSn (i) is the estimate of σ2
g for the sample of size n at the ith

iteration, i = 1, · · · , r. (2) Est. MSE (B2
PSn

) =
∑r
i=1

(B2
PSn (i)−σ2

g)
2

2
. Similarly, the values of B̄2

PRn , Est. MSE (B2
PRn

),

B̄2
CBBn and Est. MSE (B2

CBBn
) were obtained.

5.2 Estimation of 4σ2
U

We considered Un = 1

(n2)

∑
1≤i<j≤n|Xi−Xj |, where {Xj , 1 ≤ j ≤ n} is the sample of stationary

associated random variables. The discussed consistent estimators for 4σ2
U are: π

2B
2(Un)PS

(given in (2.9)), B2(Un)PR (given in (3.5)), and B2(Un)CBB (given in (4.9)). We generated

{Xj , 1 ≤ j ≤ n}, in the following 2 ways.

(S4) Xj = min(Zj , Zj+1), j = 1, 2, · · · , n, where Z ′js are i.i.d Exp(1/2).

(S5) Xj = min(Zj , Zj+1, · · · , Zj+9), j = 1, 2, · · · , n, where Z ′js are i.i.d Exp(1/10).

The true values for 4σ2
U for (S4), and (S5), are 1.9430, and 8.3961, respectively.

Observations from Table 5.2

(1) For the samples generated, it can be seen that the estimator π
2B

2(Un)PS performs better

than the other two estimators.

(2) In (S4) we generated random variables which are “almost independent”. As expected, the

convergences are faster in this case in comparison to the random variables generated using

(S5). Larger sample sizes are needed to obtain viable consistent estimates in (S5).
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Table 5.2 Estimation of 4σ2
U

(S4) (4σ2
U = 1.9430) n=50 n=100 n= 200 n= 500 n= 1000

π
2
B̄2(Un)PS 1.7966 1.7929 1.8090 1.8210 1.8348

Est.MSE(π
2
B2(Un)PS) 1.2069 0.6463 0.3598 0.1777 0.1054

B̄2(Un)PR 1.6440 1.6894 1.7375 1.7818 1.8098

Est.MSE(B2(Un)PR) 1.1686 0.6805 0.3908 0.1947 0.1161

B̄2(Un)CBB 1.6390 1.6879 1.7362 1.7815 1.8097

Est.MSE(B2(Un)CBB) 1.1364 0.6703 0.3871 0.1935 0.1157

(S5) (4σ2
U = 8.3961) n=50 n=100 n= 200 n= 500 n= 1000

π
2
B̄2(Un)PS 3.7350 4.5140 5.1284 5.8882 6.2785

Est.MSE(π
2
B2(Un)PS) 32.0246 22.4448 15.5086 9.1360 6.2628

B̄2(Un)PR 2.7247 3.3440 3.8578 4.5560 4.9678

Est.MSE(B2(Un)PR) 37.4503 29.3843 23.2071 16.3825 12.8232

B̄2(Un)CBB 2.6678 3.2996 3.8270 4.5385 4.9578

Est.MSE(B2(Un)CBB) 37.9008 29.7312 23.4459 16.5033 12.8879

In Table 5.2, (1) π
2
B̄2(Un)PS =

∑r
i=1

π
2
B2(Un)PS(i)/r, where π

2
B2(Un)PS(i) is the estimate of 4σ2

U for the sample

of size n at the ith iteration, i = 1, · · · , r. (2) Est. MSE (π
2
B2(Un)PS) =

∑r
i=1

(π
2
B2(Un)PS(i)−4σ2

U )2

r
. Similarly, the

others values were obtained.

6 Discussions and Future Work

In this paper we have discussed three different consistent estimators for σ2
g ((1.3)). The first

two estimators of σ2
g , B

2
PSn (Section 2.1), and B2

PRn (Section 3.1) are based on a Subsampling

method, while the third estimator B2
CBBn (Section 4.1) is based on Circular block bootstrap. It

can be shown that under suitable conditions, the order of the variances of these three estimators

is O(`n/n), where `n denotes the block size, and n is the sample size. The estimators of σ2
g

discussed in Section 2.1 (B2
PSn), and Section 3.1 (B2

PRn) are based on the same Subsampling

method. It can be seen that the difference between the two estimators is that B2
PSn is based on

mean of the absolute values of the differences, while B2
PRn is based on the mean of the squares

of the differences. Both B2
PRn , and B2

CBBn are based on squares of differences. However, for

the latter, as the name suggests is based on the overlapping blocks of the periodically extended

series of the sample. The consistency of estimators of variance based on Moving and Non-

overlapping block bootstrap can be proved similarly as the results discussed for Circular block

bootstrap.

We have also obtained consistent estimators for limiting variance of U-statistics based

on kernels of degree two (defined in (1.7)). The estimators for U-statistics based on kernels

of degree greater than two can be obtained similarly. The discussed estimators use U-statistic

values based on sub-samples from the original sample. Hence, for larger samples and U-statistics

based on higher degrees these may be computationally cumbersome. Another way would be

to use appropriate estimates of ρ1 and use the consistent estimators for σ2
g to obtain estimates
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for σ2
U . For example, Dewan and Prakasa Rao (2003) had obtained an estimate of the limiting

variance of the Mann-Whitney test statistic under H0, by estimating ρ1(Xi) = F (Xi), 1 ≤ i ≤ n
by the empirical distribution function based on the underlying sample {Xi, 1 ≤ i ≤ n}, and

using these estimates in the variance estimator discussed in Peligrad and Suresh (1995).

Simulation results in Table 5.1 show that all the three estimators of σ2
g perform similarly

for samples sizes considered (n = 50, 100, 200, 500, 1000). A comparison of the estimators of

4σ2
U in Table 5.2 show that for all sample sizes considered (n = 50, 100, 200, 500, 1000) the

estimates based on B2(Un)PS seem to be closer to the actual values, than the estimates based

on B2(Un)PR and B2(Un)CBB.

We have not discussed the optimal value of `n for the proposed estimators in this paper.

It is under preparation.

7 Preliminary Results and Proofs of the Theorems

given in Sections 2− 4

7.1 Preliminaries

In this section we give results and definitions which will be needed to prove our main results

given in Sections 2 − 4. For the results discussed in this sub-section, assume {Xn, n ≥ 1} is a

sequence of associated random variables, {Yn, n ≥ 1}, {Ỹn, n ≥ 1}, and σ2
g (assume σ2

g > 0) are

defined in (1.1), (1.2) and (1.3) respectively.

Lemma 7.1. (Newman (1980)) Suppose X and Y be two random variables with E(X2) < ∞
and E(Y 2) < ∞. Let h and t be differentiable functions with E(h2(X)) < ∞, E(t2(Y )) < ∞,

and finite derivates h′(·) and t′(·). Then,

|Cov(h(X), t(Y )| =
∫
R2

h′(x)t′(y)[P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y)]dxdy. (7.1)

Lemma 7.2. (Sadikova (1966)) Let F (x, y) and G(x, y) be two bivariate distribution functions

with characteristic functions f(s, t) and g(s, t) respectively. Define,

f̂(s, t) = f(s, t)− f(s, 0)f(0, t), and ĝ(s, t) = g(s, t)− g(s, 0)g(0, t).

Suppose that the partial derivatives of G with respect to x and y exist. Let,

A1 = sup
x,y

∂G(x, y)

∂x
, and A2 = sup

x,y

∂G(x, y)

∂y
.

Suppose A1 and A2 be finite. Then, for any T > 0,

sup
x,y
|F (x, y)−G(x, y)| ≤ 1

4π2

∫ T

−T

∫ T

−T

∣∣∣ f̂(s, t)− f̂(s, t)

st

∣∣∣+ 2sup
x
|F (x,∞)−G(x,∞)|

+ 2sup
y
|F (∞, y)−G(∞, y)|+2

A1 +A2

T
(3
√

2 + 4
√

3). (7.2)
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Lemma 7.3. (Matula (2001)) Assume 0 < V ar(Y1) < ∞ and E(Y1) = 0. Suppose that,

E|Y1|r+δ< 0, and E|Ỹ1|r+δ< 0 for some r > 2 and δ > 0. Assume that,

∞∑
j=n+1

Cov(Ỹ1, Ỹj) = O(n−(r−2)(r+δ)/2δ).

Let Sk =
∑k

j=1 Yj, k ∈ N. Then, there is a constant B > 0 not dependening on n such that,

sup
m≥0

E|Sn+m − Sm|r≤ Bnr/2, for all n ∈ N. (7.3)

Lemma 7.4. (Newman (1984)) Let 0 < V ar(Y1) <∞, and
∑∞

j=1Cov(Ỹ1, Ỹj) <∞. Then,∑n
j=1(Yj − E(Yj))√

nσg

L−→ N(0, 1) as n→∞. (7.4)

Lemma 7.5. (Newman (1984))

|φ−
n∏
j=1

φj |≤ 2
∑

1≤k<l≤n
|rk||rl|Cov(Ỹk, Ỹl) (7.5)

where φ and φj are given by φ = E(exp(i
∑n

j=1 rjYj)) and φj = E(exp(irjYj)).

In the following, hj �A h̃j if hj � h̃j and both hj and h̃j depend only on x′ms with m ∈ A.

A is a finite subset of {k, k ≥ 1}.

Lemma 7.6. (Newman (1984)) Let h1 �A h̃1 and h2 �A h̃2. Then,

|Cov(h1(X1, X2, ...), h2(X1, X2, ...))|≤ Cov(h̃1(X1, X2, ...), h̃2(X1, X2, ...)) (7.6)

Lemma 7.7. (Matula (2001)) Let E(Yn) = 0 for n ∈ N, then for every ε > 0,

P [ max
1≤k≤n

|Sk|≥ ε] ≤ 160ε−2V arS̃n. (7.7)

Here, Sk =
∑k

i=1 Yi, 1 ≤ k ≤ n and S̃n =
∑n

i=1 Ỹi.

7.2 Proofs

7.2.1 Proofs of Theorems stated in Section 2

The proofs require the following lemmas.

Lemma 7.8. For i, j ≥ 0

Cov[Si(`), Sj(`)] ≤ Cov[S̃i(`), S̃j(`)], (7.8)

Cov[|Si(`)|, |Sj(`)|] ≤ Cov[S̃i(`), S̃j(`)], (7.9)

where S̃j(`) =
∑j+`

i=j+1 Ỹi.
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Proof. Si(`)� S̃i(`), and |Si(`)| � S̃i(`), for all i ≥ 0. Using Lemma 7.6, we get (7.8)−(7.9).

Lemma 7.9. Under the conditions of Theorem 2.1,

lim
`→∞

1

`

[ `−1∑
j=0

Cov
{∣∣∣S0(`)√

`

∣∣∣, ∣∣∣Sj(`)√
`

∣∣∣}] =

∫ 1

0
Cov[|σgW (1)|, |σg(W (1 + t)−W (t))|]dt (7.10)

where, {W (t); t ≥ 0} is the standard Wiener process.

Proof. An invariance principle for
S[nt]√
nσg

is needed. This follows using Lemma 7.4 and Lemma

7.7. Rest follows as Lemma 2.2 in Peligrad and Suresh (1995).

Lemma 7.10. Under the conditions of Theorem 2.1,

lim
n→∞

1

n`

[ n−∑̀
j=0

V ar|Sj(`)√
`
|
]

= 2

∫ 1

0
σ2
gCov[|W (1)|, |W (1 + t)−W (t)|]dt (7.11)

where, {W (t); t ≥ 0} is the standard Wiener process.

Proof. Using inequalities (7.8) − (7.9), and Lemma 7.9, rest of the proof is as Lemma 2.3 of

Peligrad and Suresh (1995).

Lemma 7.11. Let {W (t); t ≥ 0} be the standard Wiener process. Then,∫ 1

0
Cov[|σgW (1)|, |σg(W (1 + t)−W (t))|]dt =

σ2
g

4π
(3π − 8)

Proof. The proof is elementary.

Proof of Theorem 2.1.

Proof. Using Lemma 7.4, and Lemma 7.10, the proof of the theorem follows as the proof of

Theorem 1.1 in Peligrad and Suresh (1995).

Proof of Theorem 2.2.

Proof. Let C be a generic positive constant in the sequel. Let Sn =
∑n

i=1 Yi and S̃n =
∑n

i=1 Ỹi.

For any ε > 0,

∞∑
n=1

P
[ |(S2n − 2nµ)|

2n/2log2n
≥ ε
]
≤ Cε−2

∞∑
n=1

2−nn−2V ar(S̃2n) ≤ Cε−2
∞∑
n=1

1

n2
<∞. (7.12)

The second inequality follows as Sn � S̃n.

∞∑
n=1

P
[ 1

2n/2log2n
max

2n<k≤2n+1
|Sk − kµ− (S2n − 2nµ)|≥ ε

]
≤ Cε−2

∞∑
n=1

1

2nn2
V ar(S̃2n+1 − S̃2n)

≤ Cε−2
∞∑
n=1

1

2nn2
V ar(S̃2n+1) ≤ Cε−2

∞∑
n=1

1

n2
<∞. (7.13)
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The second inequality follows from Lemma 7.7. Using Borel-Cantelli lemma we have,

lim
n→∞

|Sn − nµ|
n1/2logn

= 0 a.s.

Using the central limit theorem for Sn, (Lemma 7.4) which holds under the conditions of The-

orem 2.1, we have,

E
∣∣∣Sj(`)− `µ√

`

∣∣∣→ σg
√

2/π as `→∞.

So, we just need to prove,

1

n− `+ 1

n−∑̀
j=0

∣∣∣Sj(`)− `µ√
`

∣∣∣− E∣∣∣Sj(`)− `µ√
`

∣∣∣→ 0 a.s. as n→∞. (7.14)

As Yk − E(Yk) � Ỹk − E(Yk) for all k ∈ N, without loss of generality, we can assume µ = 0.

Observe that under (2.2) and solving as Lemma 7.10, we have,

V ar
[ n−∑̀
j=0

S̃j(`)√
`

]
= O(

n2

(logn)2
) as n→∞. (7.15)

Now, |Sj(`)| is a sequence in j and is dominated by the associated sequence S̃j(`), as |Sj(`)| �
S̃j(`). From (7.15) and Lemma 7.7, for any ε > 0,

P
[
max

`<n≤2j+1

1

n− `+ 1

∣∣∣∑n−`
j=0 |Sj(`)|−E|Sj(`)|√

`

∣∣∣ > ε
]

= O(
1

j2
) as j →∞.

For a large N ∈ N,

P
[
∪

n>N

1

n− `+ 1

∣∣∣∑n−`
j=0 |Sj(`)|−E|Sj(`)|√

`

∣∣∣ > ε
]

≤
∑

j=[log2N ]−1

P
[
max

`≤n≤2j+1

1

n− `+ 1

∣∣∣∑n−`
j=0 |Sj(`)|−E|Sj(`)|√

`

∣∣∣ > ε
]
. (7.16)

Using Borel-Cantelli Lemma, (7.14) is proved.

Proof of Theorem 2.3.

Proof. Without loss of generality, assume µ = 0. 1√
n`

∑n−`
j=0(|Sj(`)|−E(|Sj(`)|) is divided into

(kn + 1) blocks where
[
n−`
`

]
= kn. Define, for all 1 ≤ i ≤ kn,

Vi =

`−1∑
j=0

{|S(i−1)`+j(`)|−E|S(i−1)l+j(`)|}, and Ṽi =

`−1∑
j=0

{S̃(i−1)`+j(`)− E(S̃(i−1)`+j(`))}.
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Vi � Ṽi, 1 ≤ i ≤ kn. Using Lemma 7.5, and stationary,

|E(e(it/
√
n`)

∑kn
j=1 Vj )−

kn∏
j=1

E(e(it/
√
n`)Vj )|≤ 2t2

n`2

∑
1≤i<j≤kn

Cov(Ṽi, Ṽj) (7.17)

≤ t2

n`2

[
V ar(

kn∑
i=1

Ṽi)−
kn∑
i=1

V ar(Ṽi)
]
→ 0 as n→∞.

Under the conditions of Theorem 2.1, the variance of the remainder is,

V ar
[ 1√

n`

n−l∑
j=kn`

|Sj(`)|
]
≤ V ar

[ 1√
n`

`−1∑
j=0

S̃j(`)
]
→ 0 as n→∞. (7.18)

Also by Lemma 7.4, under condition (2.2), a central limit theorem for Sn is implied. Using

these, proof of (2.4) follows similarly as proof of Theorem 1.3 in Peligrad and Suresh (1995).

Next, observe, √
n

`

∣∣∣BPSn − 1

n− `+ 1

n−∑̀
j=0

|Sj(`)|√
`

∣∣∣ ≤ Sn√
n
.

Using (2.4) and Lemma 7.4, (2.5) follows.

Proof of Theorem 2.7

Proof. ∣∣∣B(Un)PS − 2σU

√
2

π

∣∣∣
=
∣∣∣ 1

(n− `+ 1)

n−`+1∑
i=1

∣∣∣√`(`
2

)−1 ∑
i≤j<k≤i+`−1

ρ(Xj , Xk)−
√
`Un(ρ)

∣∣∣− 2σU

√
2

π

∣∣∣
≤ J1 + J2 (say).

where,

J1 =
∣∣∣ 1

(n− `+ 1)

n−`+1∑
i=1

∣∣∣ 2√
`

i+`−1∑
j=i

h(1)(Xj)− 2

√
`

n

n∑
j=1

h(1)(Xj)
∣∣∣− 2σU

√
2

π

∣∣∣.
J2 =

1

(n− `+ 1)

n−`+1∑
i=1

∣∣∣√`(`
2

) ∑
i≤j<k≤i+`−1

h(2)(Xj , Xk)−
√
`(
n
2

) ∑
1≤j<k≤n

h(2)(Xj , Xk)
∣∣∣.

Using Theorem 2.1, we get, J1
p−→ 0, as n → ∞. To prove J2

p−→ 0. Under the conditions of

Lemma 2.5, as n→∞,

`(
`
2

)2E( ∑
i≤j<k≤i+`−1

h(2)(Xj , Xk)
)2
−→ 0, for all, i = 1, 2, · · · , n− `+ 1.

`(
n
2

)2E( ∑
1≤j<k≤n

h(2)(Xj , Xk)
)2
−→ 0.

Hence, B(Un)PS
p−→ 2σU

√
2
π as n→∞, or π

2B
2(Un)PS

p−→ 4σ2
U .
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7.2.2 Proofs of Theorems stated in Section 3

Proof of Theorem 3.1

Proof. Let N = n− `+ 1, and, define µN =
∑N
j=1 Vj
N , where

Vj =
Yj + Yj+1 + · · ·+ Yj+`−1

`
, for all j = 1, 2, · · · , N.

Note that,

B2
PRn = `

( 1

N

N∑
i=1

V 2
i − µ2

N

)
+

1

N

N∑
i=1

(
`µ2

N + `Ȳ 2
n − 2

i+`−1∑
j=i

Yj Ȳn

)
= I1 + I2. (7.19)

Note that, I1 is the value of V ar?(T
?
n), when T ?n is based on observations from {Xi, 1 ≤ i ≤ n}

using Moving Block Bootstrap. Under the given conditions,

I1
p−→ σ2

g , as n→∞. (7.20)

The proof of (7.20) follows similarly as the proof of Theorem 3.1 in Garg and Dewan (2016).

Assume without loss of generality that E(Y1) = 0. Under the given conditions, `Ȳ 2
n

p−→ 0 and

`µ2
N

p−→ 0, as n → ∞. Also,

1

N

N∑
i=1

(
2
i+`−1∑
j=i

Yj Ȳn) = 2`ȲnµN
p−→ 0. (7.21)

Using (7.19)-(7.21), we get (3.2).

To discuss the order of variance we need the following lemma.

Lemma 7.12. Define, Sj(`) =
∑j+`

k=j+1 Yk, j = 0, · · · , n − `. Assume E(Y1) = 0. Suppose

E
(
S0(`)√

`

)4
<∞, for all ` ∈ N, and

∑∞
j=1Cov(Ỹ1, Ỹj) <∞. Then,

lim
`→∞

1

`

[ `−1∑
j=0

Cov
{(S0(`)√

`

)2
,
(Sj(`)√

`

)2}]
=

∫ 1

0
Cov[(σgW (1))2, (σg(W (1+t)−W (t)))2]dt (7.22)

where, {W (t); t ≥ 0} is the standard Wiener process.

Proof. The proof follows similarly as that of Lemma 7.9.

Proof of Theorem 3.2

Proof. Let C be a generic positive constant in the sequel. Without loss of generality assume

that E(Y1) = 0. Observe that, using Lemmas 7.1, 7.2 and 7.5, along with the usual truncation

technique, for j = 1, · · · , n− `, we get,

Cov
((S0(`)√

`

)2
,
(Sj(`)√

`

)2)
≤ CCov

(( S̃0(`)√
`

)
,
( S̃j(`)√

`

))ν/3(4+ν)
, (7.23)
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where S̃j(`), j = 0, 1, · · · , n− ` are defined in Lemma 7.8. Hence,

lim
n→∞

V ar

(
B2
PRn

)
≤ lim

n→∞
CV ar

(
1

(n− `+ 1)

n−∑̀
j=0

(Sj(`)√
`

)2
)

≤ lim
n→∞

1

(n− `+ 1)2
C
[
(n− `+ 1)E

(S0(`)√
`

)4
+ 2

∑
0≤i<j≤n−`

Cov
((Si(`)√

`

)2
,
(Sj(`)√

`

)2)]
= lim

n→∞
[I1 + 2I2]. (7.24)

Note that, I1 = O( 1
n), which tends to 0 as n → ∞. As done in Peligrad and Suresh (1995), we

can decompose I2 as following: (u = un, such that un →∞ and un = o(`n) as n → ∞)

I2 ≤
1

(n− `+ 1)2

[
n−2`−1∑
i=0

i+`−1∑
j=i+1

Cov
((Si(`)√

`

)2
,
(Sj(`)√

`

)2)
+
n−2`∑
i=0

i+`+u∑
j=i+`

Cov
((Si(`)√

`

)2
,
(Sj(`)√

`

)2)

+
n−2`∑
i=0

n−∑̀
j=i+u+`+1

Cov
((Si(`)√

`

)2
,
(Sj(`)√

`

)2)
+

n−`−1∑
i=n−2`+1

n−∑̀
j=i+1

Cov
((Si(`)√

`

)2
,
(Sj(`)√

`

)2)]

=
1

(n− `+ 1)2

[
J1 + J2 + J3 + J4

]
. (7.25)

From Lemma 7.12, we have J1
(n−`+1)2

= O( `n) as n → ∞. Using (7.23),

J2 ≤ n
`+u∑
j=`

Cov
((S0(`)√

`

)2
,
(Sj(`)√

`

)2)
≤ n

`+u∑
j=`

Cov
(( S̃0(`)√

`

)
,
( S̃j(`)√

`

))ν/3(4+ν)

≤ nu `

`ν/3(4+ν)

∞∑
j=2

Cov(Ỹ1, Ỹj)
ν/3(4+ν), (7.26)

i.e. J2
(n−`+1)2

→ 0, as n → ∞. Similarly, J3
(n−`+1)2

→ 0, and J4
(n−`+1)2

→ 0, as n → ∞. Hence,

I2 = O( `n) as n→∞ and (3.5) is proved.

Proof of Theorem 3.4

Proof. The result follows similarly as the proof of Theorem 2.7.

7.2.3 Proofs of Theorems stated in Section 4

Proof of Theorem 4.1

Proof. The result follows similarly as the proof of Theorem 3.1 in Garg and Dewan (2016).

Proof of Theorem 4.2

Proof. The result follows similarly as the proof of Lemma 3.2.

Proof of Theorem 4.3

Proof. The result follows similarly as the proof of Theorem 2.7.
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