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Abstract

Logistic regression is an extensively used regression model for binary responses. In many applications,

misclassification of binary responses is not uncommon. If the misclassification is ignored, it may severely

bias the maximum likelihood estimators (MLE) of regression parameters towards zero. To obviate this

difficulty, we propose a pseudo-likelihood method of estimation, that uses data from internal validation

study. Under minimal assumptions, we establish rigorous asymptotic results for the maximum pseudo-

likelihood estimators. A bootstrapped version of the maximum pseudo likelihood estimators is proposed,

and its distributional consistency is proved. It enables us to use bootstrap method for statistical inference.

The results of the simulation studies clearly indicate the superiority of the maximum pseudo-likelihood

estimators to the maximum full likelihood estimators, and the maximum likelihood estimators based

on misclassified binary responses only. Also, inferences on the regression parameters using asymptotic

distribution of maximum pseudo-likelihood estimators, and its bootstrap version, are found to be similar.

Keywords: Logistic regression, Response misclassification, Internal validation, Pseudo-likelihood, Bootstrap

consistency.

˚cha@isid.ac.in
:tathagata@iima.ac.in
;sumanta.adhya@gmail.com

1



1 Introduction

Logistic regression is an important and widely used regression model for binary responses, and has found

it’s use in a variety of applied fields (cf. Hilbe (2009), Hosmer and Lemeshow (2004)), especially in epi-

demiological research, including medical and social sciences (cf. Jewell (2003)). In many applications, it is

not uncommon, that the binary responses are subject to classification errors. Misclassified binary responses

occur due to various reasons, e.g., faulty data collected through surveys (Hausman et al. (1998), Hausman

(2001), Bollinger and David (1997), Savoca (2011)), limited sensitivity and specificity of the diagnostic tests

(Lyles et al. (2011), Edwards et al. (2013), Gilbert et al. (2014)), incorrect information gathered from medical

and other records (Sposto et al. (1992)) and recall bias in assessing exposure status (Gordis (2009)). For

pervasiveness of misclassification of important binary outcomes (viz., program receipt, labor market status,

educational attainment, self reported health conditions, physical and mental impairment etc.) in survey

data, and its adverse impact on the estimates of the logistic regression parameters we refer to Meyer and

Mittag (2016) and Savoca (2011), and the references therein. Suppose, Y P t0, 1u denotes the true response

variable and rY P t0, 1u denotes the misclassified version of Y . Then, Y is said to be misclassified, if we

observe rY “ 1, when the corresponding Y “ 0, or vice-versa. In this article, we investigate the inference

problems in logistic regression when the binary responses are subject to classification errors.

Measurement errors in regression models have been widely studied, and excellent text books (cf. Fuller

(2006), Carroll et al. (2006) or Buonaccorsi (2010)) are written on it. The effects of measurement error

on covariates has been well investigated for simple logistic regression (cf. Carroll et al. (1984), Stefanski

and Carroll (1985)), and also for semiparametric logistic regression (cf. Carroll and Wand (1991), Wang

and Wang (1997)). In contrast, the study of the effect of misclassified responses in logistic regression has

received lesser attention in statistics literature. Neuhaus (1999) studied the bias and efficiency loss due to

misclassified responses in binary regression. Carroll et al. (2006) (Section 15.3) discuss misclassification of

binary responses in logistic regression, and show that, not accounting for misclassification introduces severe

bias in parameter estimates. Throughout, we assume that the information on the underlying covariates is

available without any measurement error.

In particular, we assume that the true binary response variable Y is associated with the p-dimensional

covariate vector X by the logistic regression model,

P0 pY “ 1|X “ xq “
1

1` expt´x1β0u
” ψpx1β0q, for all x P Rp, (1.1)

where, β0 “
`

β1,0, . . . , βp,0
˘1
P Rp, is an unknown regression parameter, and P0 denotes the underlying

probability distribution corresponding to β0. The binary variable rY P t0, 1u, is the misclassified version of

the true response Y . We assume the following model for misclassification (Ekholm and Palmgren (1987),

Copas (1988), Magder and Hughes (1997), Bollinger and David (1997), Hausman et al. (1998), Hausman

(2001), Roy et al. (2005), Lyles et al. (2011), Gilbert et al. (2014), Savoca (2011) and Meyer and Mittag
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(2016)),

P0

`

rY “ 1|Y “ 0
˘

“ θ1,0 and P0

`

rY “ 0|Y “ 1
˘

“ θ2,0, (1.2)

which results in the following regression model for rY ,

P0

`

rY “ 1|X “ xq “ θ1,0 ` p1´ θ1,0 ´ θ2,0q ¨ ψpx
1β0q. (1.3)

Note θ0 “ pθ1,0, θ2,0q
1

are the unknown misclassification probabilities and P0 denotes the probability

distribution under θ0. This misclassification model assumes that, conditional on Y , the data generation

process of rY is independent of the covariate X. The model, as stated above, is simple, but is not unreasonable

as a possible description of the actual data generation process. At the end, however, we extend our results

to the situations, where θ0 may depend on x.

Typically, estimation of the unknown misclassification probabilities θ0 (cf. (1.2)) requires information on

the pair
`

Y, rY
˘

. Usually, one obtains complete information on pY, rY ,Xq for a sub-sample of the main sample

known as validation sample. The validation sample is utilized to obtain an improved estimate of θ0. The

rest of the sample has information available only on prY ,Xq, and is known as the non-validation part of the

main sample. Use of validation data for adjusting estimates of regression parameters due to misclassification

of binary responses is common in many areas of applications. For example, Lyles et al. (2011), Edwards

et al. (2013) and Duffy et al. (2004) provide examples in epidemiological studies. Bollinger and David (1997)

and Meyer and Mittag (2016) describe such situations in the context of economic and social surveys.

In the applications mentioned above, though the estimation of regression parameter β0 is of primary

interest, the estimation of parameter θ0 is also considered to be important as it provides useful information

about the level of contamination in the responses. For estimation of β0 and θ0, a possible approach would

be to use the full likelihood based on the combined sample comprising validation and non-validation parts

of the main sample. Notice that θ0 shows up in the non-validation part of the full-likelihood due to the

use of misclassified responses. The full likelihood, however, as a function of both β0 and θ0 is found to be

ill behaved, in the sense that it may often lead to nonsensical estimates of θ0 even for substantially large

sample sizes. In Section 5.1 we will discuss this issue in detail. An alternative approach is to use pseudo-

likelihood method proposed by Gong and Samaniego (1981). Recently pseudo-likelihood method has been

used in various contexts (cf. Wang and Zhao (2007), Chen and Liang (2010), Guolo (2011), Ghosh et al.

(2013), Lyles and Kupper (2013)) especially when, the full likelihood function is ill behaved, yet, the pseudo-

likelihood function is well-behaved. In our situation, pseudo-likelihood based approach amounts to replacing

the unknown nuisance parameter θ0 in the likelihood by its estimate from the validation sample, and then

assuming as if θ0 is known, the likelihood is considered as a function of β0 only. The pseudo-likelihood as a

function of β0 is well behaved even for moderately large sample sizes.

Since the validation and non-validation parts of the sample do not have identical distributions, the

asymptotic results of Gong and Samaniego (1981) will not be valid in our set up. Also plugging in an

estimate of θ0, introduces dependence among the validation and the non-validation parts of the pseudo-

3



likelihood function. We develop rigorous asymptotic results under minimal assumptions, and show that the

pseudo likelihood estimator of β0 is asymptotically normal. As shown later in Section 2.2, the asymptotic

covariance of the pseudo-likelihood estimator is a complicated function of the unknown parameters β0, θ0,

and the unknown distribution of the covariates. Consequently, the analytical computation of the covariance

is unwieldy. Thus, for easy implementation of the pseudo-likelihood based inference, we develop a bootstrap

methodology. We prove the distributional consistency of the bootstrapped pseudo-likelihood estimator of β0.

Consistency of bootstrapped pseudo-likelihood estimators has not been investigated widely in the literature,

except in very specific scenarios (cf. Aerts and Claeskens (1999) and Kasahara and Shimotsu (2008)).

Existing approaches for proving consistency of bootstrapped M-estimators (cf. Wellner and Zhan (1996),

Chatterjee and Bose (2005) and Cheng and Huang (2010)) can not be directly applied in our set-up, precisely

due to the reasons mentioned in the beginning of this paragraph. In order to establish the consistency of

the bootstrapped pseudo-likelihood estimator of β0, we have developed some new bootstrap stochastic

equicontinuity results, which may be of independent interest. This is a new contribution to the existing

literature on bootstrap consistency for pseudo-likelihood estimators. We discuss the details in Section 3.

We further extend the asymptotic results to the situations where θ0 may depend on the covariates x

in a way as discussed by Bollinger and David (1997) and Meyer and Mittag (2016). Also, we discuss the

asymptotic results when one of the components of θ0 is zero.

There may be situations when validation data may not be available. In such situations, Hausman et al.

(1998) and Hausman (2001) propose maximum likelihood estimators of θ0 and β0 based on the contaminated

data prY ,xq . ”As a cautionary note Roy et al. (2005) make the important point for practitioners” (Savoca

(2011)) that if the sample have a few x values for which ψpx1β0q lie outside the interval p0.1, 0.9q then

estimation solely on the basis of the contaminated data may lead to serious identifiability problem. The logit

function ψpx1β0q in this interval is well approximated by a suitably chosen linear function (cf. Cox and Snell

(1989)), and thus it is evident from (1.3), identifiability of β0 is then a serious issue unless the sample size is

large enough to include enough number of x values for which ψpx1β0q lie outside the interval p0.1, 0.9q. We

consider this issue in detail in Section 5.1.1.

We conduct simulation studies: (i) to compare the performances of the estimators of θ0 and β0 based

on three different likelihoods discussed above, viz., full likelihood, pseudo-likelihood and likelihood using

contaminated data only, and (ii) to investigate the validity of the asymptotic distribution of the pseudo-

likelihood estimators and its bootstrap analogues for moderate to large sample sizes. We report the bias

and mean squared error (mse) for study (i), and coverage and expected length of the confidence interval of

regression parameter for study (ii). Finally, we illustrate our methodology using a real-life data set.

The rest of the article is organized as follows. In Section 2, we state the problem formulation, and

describe the pseudo likelihood based estimation methodology. The main theoretical results on the asymptotic

properties of the pseudo-likelihood estimator are given in Section 2.2. Theoretical results on the bootstrapped

pseudo-likelihood estimator are given in Section 3. In Section 4, we discuss the extension of our results to
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more general situations, where misclassification probabilities may depend on the covariates, and also to the

situation, where one kind of classification error is absent. Results of numerical study, and the analysis of

a real data set are presented in Section 5 and concluding remarks are provided in Section 6. Proofs of the

main results are given in Section 7. In the Appendix (cf. Section 8), we provide detailed proofs of auxiliary

lemma’s needed for proving the main results, we also provide detailed expressions of some matrices used in

proving the theorems and prove an useful result on gradients of strictly concave functions.

2 Pseudo-likelihood estimation

Suppose the complete sample is of size n. The validation sample consists of n1 independent observations on

the triplet pY, rY ,Xq, and is denoted by Xn1
“
 

pYi, rYi,Xiq : 1 ď i ď n1

(

. The non-validation sample consists

of n2 “ pn´n1q independent observations on the pair prY ,Xq, and is denoted by Xn2
“

 

prYi,Xiq : pn1`1q ď

i ď n
(

. It is assumed that the validation and non-validation samples are independent of each other. The full-

likelihood at pβ,θq using the complete sample Xn “ Xn1
YXn2

is based on the joint conditional distribution

of rY, rY | Xs and is given by,

L1,n

`

β,θ
˘

”

n1
ź

i“1

!

p1´ θ2q
rYiθ
p1´ rYiq
2 ψpX1

iβq
)Yi

¨

!

θ
rYi
1 p1´ θ1q

p1´ rYiq
“

1´ ψpX1
iβq

‰

)p1´Yiq

ˆ

n
ź

i“n1`1

!

θ
rYi
1 p1´ θ1q

p1´ rYiqp1´ ψpX1
iβqq ` p1´ θ2q

rYiθ
p1´ rYiq
2 ψpX1

iβq
)

. (2.1)

where, ψp¨q denotes the logistic link function given in (1.1). In order to construct the pseudo likelihood

function for β, we need to plug in an estimator of the unknown θ0 in (2.1). An estimator of θ0 arises

naturally from the misclassification model (1.2). It is based on the observed cell frequencies of the cells

p0, 0q, p0, 1q, p1, 0q, p1, 1q, the four possible values of pY, rY q, obtained from the validation sample. However,

for small validation sample sizes n1, one or more of theses cell frequencies may be zero. In such situations,

an adjustment of the cell frequencies often improve the performance of the estimator. One commonly used

adjustment (cf. Haldane (1956) and Gart and Zweifel (1967)) is to add 1{2 to each cell frequency, and replace

the original cell frequencies in the estimator by the adjusted cell frequencies. We thus define the estimator

pθn “
´

pθ1,n, pθ2,n

¯1

, where

pθ1,n “

1
2 `

řn1

i“1 1
`

rYi “ 1, Yi “ 0
˘

1`
řn1

i“1 1pYi “ 0q
and pθ2,n “

1
2 `

řn1

i“1 1
`

rYi “ 0, Yi “ 1
˘

1`
řn1

i“1 1pYi “ 1q
. (2.2)

The small sample properties of the adjusted estimator of the odds ratio in the context of 2ˆ2 contingency

tables have been studied in Parzen et al. (2002). If the validation sample size n1 is large enough, the estimator

pθn in (2.2) is nearly equivalent to the usual cell frequencies based estimator. Substituting pθn in the full
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likelihood function L1,npβ,θq (cf. (2.1)) the scaled pseudo log-likelihood function at β becomes,

lnpβq “ n´1 ¨ logL1,n

`

β, pθn
˘

“
1

n
¨

ÿ

1ďiďn1,Yi“1

”

rYi log p1´ pθ2,nq ` p1´ rYiq log pθ2,n ` logψpX1
iβq

ı

`
1

n
¨

ÿ

1ďiďn1,Yi“0

”

rYi log pθ1,n ` p1´ rYiq log p1´ pθ1,nq ` log t1´ ψpX1
iβqu

ı

`
1

n
¨

n
ÿ

i“n1`1

log

„

ppθ1,nq
rYi
p1´ pθ1,nq

p1´ rYiq
t1´ ψpX1

iβqu ` p1´
pθ2,nq

rYi
ppθ2,nq

p1´ rYiq
ψpX1

iβq



.

In order to write down the estimating equation for β, we define the following functions:

h1,βpy,xq “ xty ´ ψpx1βqu,

h2,β,θ

`

ry,x
˘

“ p1´ θ1 ´ θ2q ¨
x ¨ ψpx1βqt1´ ψpx1βqu ¨ try ´ h3,β,θpxqu

h3,β,θpxqt1´ h3,β,θpxqu
, and

h3,β,θpxq “ θ1 ¨ t1´ ψpx
1βqu ` p1´ θ2q ¨ ψpx

1βq,

,

/

/

/

/

/

.

/

/

/

/

/

-

(2.3)

where, h1,β : t0, 1u ˆRp ÞÑ Rp, h2,β,θ : t0, 1u ˆRp ÞÑ Rp and h3,β,θ : Rp ÞÑ p0, 1q, for all β and θ. It should

be noted that h1,βpy,xq is the estimating function that arises in simple logistic regression and h3,β,θpxq is

same as the conditional expectation of rrY | Xs as in (1.3), if pβ0,θ0q is replaced with any arbitrary pβ,θq.

We also define the sequence of validation sample size fractions,

fn “
n1

n
“ 1´

n2

n
, n ě 1, (2.4)

and the empirical measures,

Pn1
”

1

n1

n1
ÿ

i“1

δpYi,Xiq and Pn2
”

1

n2

n1`n2
ÿ

i“n1`1

δ
p rYi,Xiq

, n1, n2 ě 1, (2.5)

where, δpy,xqp¨q and δpry,xqp¨q denote point masses py,xq and pry,xq respectively. For any measurable function

f : py,xq ÞÑ Rp, we define Pn1
f “

ş

fpy,xq dPn1
py,xq and similarly for Pn2

. With these notations, the score

function corresponding to the pseudo log-likelihood function lnpβq can be written as,

Znpβq “
d

dβ
lnpβq “ fn ¨ Zn,1pβq ` p1´ fnq ¨ Zn,2pβq, where,

Zn,1pβq “ Pn1h1,β

Zn,2pβq “ Pn2
h2,β,pθn

,

.

-

, (2.6)

Note that, Zn : Rp ÞÑ Rp is a random function. The pseudo maximum likelihood estimator (PMLE) of β0,

which we denote by pβn, satisfies the estimating equation

Znpβq “ 0, (2.7)

where, 0 denotes the pˆ 1 null vector. As seen above, the estimating function Znpβq in (2.6) is a weighted

sum of estimating functions Zn,1pβq and Zn,2pβq, which arise from the validation and non-validation samples

respectively. If fn “ 1, then the problem reduces to simple logistic regression based estimation of β0. The
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presence of misclassified responses rYi’s in the non-validation sample gives rise to the extra term Zn,2pβq.

Since pθn is based on the validation sample and is involved in Zn,2pβq, the terms Zn,1pβq and Zn,2pβq are

dependent, even though they arise from independent parts of the complete sample. Using (2.6) and (2.7),

the pseudo-likelihood estimation problem can be cast into the Z-estimation framework (cf. Chapter 5 of

van der Vaart (1998)). Although Zn,1pβq is the sample mean of the independent and identically distributed

(i.i.d.) summands th1,βpYi,Xiq : 1 ď i ď n1u, and Zn,2pβq is the sample mean of identical summands

th2,β,pθn
prYi,Xiq : n1 ` 1 ď i ď nu, their weighted sum Znpβq can not be represented as a sample mean of

i.i.d. summands. Hence, the standard asymptotic theory for Z-estimators based on i.i.d. summands will not

be directly applicable for studying the asymptotic properties of pβn.

2.1 Theoretical framework for proving asymptotic properties of the pseudo-

likelihood estimator

We describe the theoretical framework for proving the main results. Let P0 be the generic notation for the

true distribution of pY,Xq or prY ,Xq or pY, rY ,Xq under the true value of the parameter
`

β0,θ0

˘

. Although

the joint distributions of pY,Xq, prY ,Xq and pY, rY ,Xq are different, we use the same notation for simplicity.

There does not seem to be any confusion, since the underlying random vector is evident from the notation,

and the context.

We use the notation E˚0 , oP˚0
p1q and OP˚0

p1q to denote outer expectation, convergence to zero and

bounded in outer probability with respect to the probability measure P0 (cf. van der Vaart and Wellner

(1996)), respectively. Usual expectation, variance and covariance with respect to P0 will be denoted by E0,

Var0 and cov0, respectively. The symbol
d
Ñ denotes convergence in distribution. Unless stated otherwise,

we use the symbols, E and Var to denote usual expectation and variance of a random quantity (with respect

to the underlying probability distribution).

2.1.1 Technical assumptions

(A1) The true regression parameter β0 “
`

β1,0, . . . , βp,0
˘1
P Rp.

(A2) The true misclassification probabilities, θ0 “ pθ1,0, θ2,0q
1

satisfy the following conditions:

(i) there exist constants, 0 ă δ1 ă δ2 ă 1, such that, 0 ă δ1 ă θ1,0, θ2,0 ă δ2 ă 1.

(ii) θ1,0 ` θ2,0 ‰ 1.

The parameter space of θ satisfying the above restrictions is denoted by Θ.

(A3) Let the marginal distribution of the p-dimensional covariate vector X “ pX1, . . . , Xpq
1

be denoted by

Qpxq. We assume that Q is such that,

VarpXq “ Var
´

`

X1, . . . , Xp

˘1
¯

exists, and is positive definite.
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(A4) The validation sampling fractions tfn : n ě 1u, defined in (2.4), satisfy the following conditions,

(i) limnÑ8 fn “ f P p0, 1q.

(ii) |fn ´ f | “ o
`

n´1{2
˘

.

Assumption (A2)(ii) is required to avoid a non-identifiability problem. For a discussion on the impli-

cation of this assumption, we refer to Hausman et al. (1998). Assumption (A2)(i) ensures that the true

misclassification probabilities are bounded away from 0 and 1. It is an important technical assumption, and

is used throughout the proofs for obtaining upper bounds on the estimating function h2,β,θpry,xq (cf. (2.3)).

Assumption (A1) states the underlying true parameter β0 may be unbounded. Assumption (A3) implies

the existence of first and second moments. Hence, EX2
j P p0,8q and E|Xj | ă 8, for all j “ 1, . . . , p. The

positive definiteness assumption ensures that the components of X are not linearly dependent among them-

selves, and it is an essential condition to ensure identifiability of the model (1.1). Assumptions (A1) and (A3)

can be compared with some of the classical assumptions used for studying asymptotic properties of MLE’s

in simple logistic regression. For example, Amemiya (1985) assumes boundedness of β0 and Gouriéroux and

Monfort (1981) assumes that the covariates are bounded. Fahrmeir and Kaufmann (1985) studied MLE’s

in generalized linear models, and do not directly assume boundedness of β0 or the covariates. However,

they use other assumptions on the observed Fisher information matrix which are hard to verify, and are

dependent on secondary sufficient conditions, among which one of conditions is a boundedness assumption

on the covariates (cf. page 355 of Fahrmeir and Kaufmann (1985)). Compared to these restrictive assump-

tions, assumptions (A1) and (A3) are much weaker and easy to justify, but this leads to substantial technical

complications in handling the proofs, and necessitates the use of empirical process tools. Assumptions (A1),

(A2) and (A3) are related to each other, and as we will see later in Section 4.2, if one of the misclassification

probabilities is set to zero, the unboundedness assumption on β0 and the covariates has to be modified.

In assumption (A4), the first condition ensures that the limiting validation sampling fraction f is bounded

away from 0 and 1, which in turn implies that both validation and non-validation sample sizes increase with

the total sample size, and mintn1, n2u Ñ 8, as nÑ8. The second condition in (A4) provides a convergence

rate for |fn ´ f |, as nÑ 8. Effectively, this ensures that tfn : n ě 1u converges to f sufficiently quickly as

the sample size increases.

Before stating the next assumption, we introduce the following notations. For any measurable function

hpy,xq, we write, P0hpY,Xq “
ş

hpy,xq dP0py,xq, and similarly for a function hpry,xq. Consider the following

nonrandom maps, Z1, Z2, Z : Rp ÞÑ Rp, defined as,

Z1pβq “ P0h1,βpY,Xq “ E
“

X ¨ tψpX1β0q ´ ψpX
1βqu

‰

,

Z2pβq “ P0h2,β,θ0
prY ,Xq

“ p1´ θ1,0 ´ θ2,0q
2
¨E

„

X ¨
ψpX1βqt1´ ψpX1βqutψpX1β0q ´ ψpX

1βqu

h3,β,θ0
pXqt1´ h3,β,θ0

pXqu



, and

Zpβq “ f ¨ Z1pβq ` p1´ fq ¨ Z2pβq,

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

(2.8)
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where, h1,β, h2,β,θ, h3,β,θ are defined in (2.3), and f is the limiting validation sampling fraction defined in

assumption (A3). Note that, in (2.8), E denotes expectation with respect to the distribution function Qpxq

of the covariate X. Let us denote the pˆ p matrix of partial derivatives of Zpβq as 9Zpβq.

(A5) Assume that 9Zpβ0q exists and is nonsingular.

This assumption ensures that the limiting score function Zpβq has a non-singular derivative at β0, which

is a commonly used assumption, similar to the non-singularity assumption of the Fisher information

matrix used in maximum likelihood estimation. The matrix 9Zpβ0q is given in (8.41).

2.1.2 Modifications of technical assumptions in presence of an intercept term

The true model (1.1) does not explicitly include an intercept term. In case (1.1) includes an intercept term,

we can write

P0

`

Y “ 1
ˇ

ˇpX2, . . . , Xpq
1
“ px2, . . . , xpq

1
˘

“ ψ

˜

β1,0 `

p
ÿ

j“2

βj,0xj

¸

, for all x P Rp´1, (2.9)

where, β0 “
`

β1,0, β2,0, . . . , βp,0
˘1

is the unknown regression coefficient with intercept term β1,0. To handle

this model, we require a simple modification of assumption (A3).

(A3:) The first component of the p-dimensional covariate vector X is equal to 1, and the remaining pp ´ 1q

components pX2, . . . , Xpq
1

satisfy the following assumptions:

(i) EpXjq “ 0, for all j “ 2, . . . , p.

(ii) Var
´

`

X2, . . . , Xp

˘1
¯

exists and is positive definite.

In Lemma 8.2, we make use of the assumption (A3:) to prove identifiability of the model with an

intercept term. Assumption (A3:)(ii) is similar to assumption (A3), and the additional condition in

(A3:)(i), which is required for centering of the covariates, is to ensure identifiability of the intercept

term in (2.9). In the rest of the article, all theorems will be stated assuming the model (1.1) without

an intercept term and using assumption (A3). For model (2.9) with an intercept term, one simply

needs to replace assumption (A3) with (A3:).

2.2 Consistency and asymptotic normality of the pseudo-likelihood estimator

In order to study the limiting behavior of pβn, the first step is to study the limit distribution of the estimated

misclassification probabilities pθn (cf. (2.2)), which is given in Lemma 2.1. In order to describe the results, we

introduce the following notations. Following the assumptions stated in Section 2.1.1, we define the following:

a0 “

ż

ψpx1β0q dQpxq, π2,0 “ θ2,0a0, π3,0 “ θ1,0p1´ a0q, and

B0 “

¨

˝

π3,0{p1´ a0q
2

0 p1´ a0 ´ π3,0q{p1´ a0q
2

π2,0{a
2
0 1{a0 π2,0{a

2
0

˛

‚

,

/

/

/

/

/

.

/

/

/

/

/

-

. (2.10)

9



It should be noted that, a0 P p0, 1q. This follows by considering the properties of the logistic link function

ψp¨q, and combining assumptions (A1) and (A3), which state that the components of β0 are finite, and X is

non-degenerate and tight in Rp. Along with assumption (A2), this implies π2,0, π3,0 P p0, 1q, and all elements

of B0 in (2.10) are finite. We also define the matrix,

Σ2,2 “

¨

˚

˚

˝

t1´ pa0 ` π3,0qupa0 ` π3,0q ´ t1´ pa0 ` π3,0quπ2,0 ´ t1´ pa0 ` π3,0quπ3,0

π2,0p1´ π2,0q ´ π2,0π3,0

π3,0p1´ π3,0q

˛

‹

‹

‚

. (2.11)

Lemma 2.1. Suppose, assumptions (A1) - (A4) hold. Then,

?
n1

´

pθn ´ θ0

¯

d
Ñ N2

`

0,B0Σ2,2B
1
0

˘

, (2.12)

where, Σ2,2 and B0 are defined in (2.11) and (2.10) respectively.

This result can be used for statistical inference on θ0. The limit distribution of pβn, however, is affected

by the asymptotic covariance of pθn.

Now we state the main result on the asymptotic behavior of pβn. In order to state our results, we need to

invoke the definitions of the matrices Σ11, Σ12 “ Σ121, Σ22, Γ, B0 and A0, which are given in (8.37), (2.11),

(8.38), (2.10) and (8.40) respectively. The explicit forms of these matrices are given in Section 8.

Theorem 2.2. Suppose, assumptions (A1) - (A5) hold. Then the following statements are true:

(i) The pseudo-maximum likelihood estimator is consistent, i.e.,

}pβn ´ β0} “ oP˚0
p1q.

(ii) The pseudo-maximum likelihood estimator is asymptotically normal, i.e.,

?
nppβn ´ β0q

d
Ñ Np

ˆ

0,
“

9Zpβ0q
‰´1

Σ0

´

“

9Zpβ0q
‰´1

¯1
˙

, (2.13)

where,

Σ0 “ f ¨Σ11 ` p1´ fq ¨
!

A0B0Σ21 `
`

A0B0Σ21

˘1
)

`
p1´ fq

2

f
¨A0B0Σ22B

1
0A

1
0 ` p1´ fq ¨ Γ,

(2.14)

and 9Zpβ0q as defined in (8.41).

As stated earlier, asymptotic properties of pβn cannot be studied by using results for Z-estimators based

on i.i.d. summands. We apply the results for general Z-estimators based on arbitrary estimating equations

(cf. Theorems 2.10 and 2.11 of Kosorok (2008)), which necessitates the verification of the required conditions.

While verifying these conditions in our case, we face two major difficulties.

10



First, for proving the consistency of pβn a key step is to show that β0 is an unique and well-separated zero

of Zpβq (cf. (2.8)). The difficulty arises because, in our case, the parameter space for β0 is not compact and

unlike the case of simple logistic regression, the limiting score function Zpβq is not the gradient of a strictly

concave function. If the limiting score function has an unique zero, then either of these two conditions are

helpful in proving well-separatedness. However, in Lemmas 8.2 and 8.3, we show that it is possible to prove

the uniqueness and well-separatedness of β0 under the assumptions stated in Section 2.1.1.

The next difficulty is to properly handle the random indexing term pθn in the classes of functions,
 

h2,β,pθn
:

β P Rp
(

, n ě 1. To be more precise, define the centered and scaled empirical processes,

Gni “
?
ni ¨

`

Pni ´P0

˘

, for i “ 1, 2, (2.15)

where, the meaning of P0 is clear from the context. In our case, verifying the Donsker property for the

classes th1,β : β P Rpu and th2,β,θ0
: β P Rpu is not enough. We need to show that it is possible to replace

the functions h2,β,pθn
with h2,β,θ0

, with appropriate scaling and uniformly over β, as pθn converges to θ0.

In Lemma 8.6 we have shown that, supβ

›

›Gn2

`

h2,β,pθn
´ h2,β,θ0

˘
›

› converges in probability to zero. This

crucial uniform convergence result has been used in (a) verifying uniform convergence of Zn while proving

consistency of pβn, and (b) verifying a stochastic equicontinuity condition about the process
?
npZn ´ Zq

while proving asymptotic normality of pβn.

Since we consider a specific model (cf. (1.1) and (1.2)) for the proofs, we could avoid the high-level

stochastic equicontinuity assumptions on the empirical processes Gni , i “ 1, 2, and are able to handle the

dependence between Zn,1pβq and Zn,2pβq. For the same reason, we do not need a compactness assumption

on the parameter space for β0 or a boundedness assumption on the covariates. This can be compared with

conditions used in articles with a much wider scope (cf. condition (S1) of Cheng and Huang (2010) or

Assumption A.2 of Wellner and Zhan (1996)), where high-level assumptions are used.

The terms in the expression (2.14) for the covariance matrix Σ0 clearly show the distinct contributions

of the validation and non-validation parts of the sample. The first term is the contribution of the validation

sample tpYi,Xiq : 1 ď i ď n1u, which follows immediately from the definition of Zn,1pβq (cf. (2.6)). The

fourth term is due to the non-validation sample tprYi,Xiq : n1 ` 1 ď i ď nu, which can be shown to be true

by constructing a process similar to tZn,2pβq : β P Rpu, by replacing pθn with θ0. Finally, the second and

third terms arise due to replacing the unknown θ0 with its estimator pθn in the non-validation part of the

estimating equation (2.7). Note that, the asymptotic covariance of pθn is embedded in the third term. The

details are provided in the proofs.

The scaling factors in some of the terms in (2.14) are intriguing. The factors in the first and fourth terms

are clearly due to the fact, that validation and non-validation samples comprise fn and p1´ fnq proportions

of the total sample, respectively. The scaling factor p1 ´ fq in the second term of Σ0 arises from the joint

distribution of Pn1h1,βpY,Xq and pθn, which depends on tpYi,Xiq : 1 ď i ď n1u. The scaling factor p1´ fq
2
{f

in the third term is hard to anticipate without a theoretical derivation. It arises from the joint distribution
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of Pn2
h2,β,pθn

pY,Xq and pθn, and shows that the effect of increasing or decreasing f is asymmetric, and the

scaling factor is non-linear in f .

Finally, notice that for drawing inference on β0, the asymptotic distribution in (2.13) is to be estimated.

The elements of Σ0 and 9Zpβ0q are complicated functions of the unknown parameters β0, θ0, and are defined

in terms of expected values with respect to the unknown distribution of X. For estimation of Σ0, it is possible

to plug-in pβn and pθn for β0 and θ0, and replace the expectation with respect to Qpxq by expectation with

respect to the empirical version of Qpxq based on the observed covariate values. However, a more convenient

approach, especially from the point of view of implementation, is bootstrapping, which we describe in the

next section.

3 Bootstrapped pseudo-likelihood estimator

In this section, we establish the distributional consistency of the bootstrapped PMLE in order to enable

us to use the bootstrap approximation to the distribution of pβn for statistical inference on β0. For the

finite dimensional parameter pβ0,θ0q, we are interested in inference unconditional on X. There can be

several approaches to obtain a bootstrap sample in our setup. Since the distribution function Qpxq is

typically unknown (except for the assumptions made in (A3)), to obtain the results unconditional on X,

we would prefer to use the non-parametric bootstrap or the simple (Efron’s) bootstrap (Efron (1979)).

For bootstrapping, we select independent random samples with replacement of sizes n1 and n2 from the

validation, and the non-validation samples, respectively. We denote these bootstrap samples as,

pXn1
“
 `

pYi,
p

rYi, pXi

˘

: 1 ď i ď n1

(

and pXn2
“
 `

p

rYi, pXi

˘

: pn1 ` 1q ď i ď n
(

.

Based on pXn1 , we define the bootstrap estimates of the misclassification probabilities
p

pθn “
`

p

pθ1,n,
p

pθ2,n

˘

1

,

similar to pθn in (2.2), where

p

pθ1,n “

1
2 `

řn1

i“1 1p
p

rYi “ 1, pYi “ 0q

1`
řn1

i“1 1ppYi “ 0q
and

p

pθ2,n “

1
2 `

řn1

i“1 1p
p

rYi “ 0, pYi “ 1q

1`
řn1

i“1 1ppYi “ 1q
, n ě 1. (3.1)

The usual with replacement n-out-of-n bootstrap is a special case of the exchangeably weighted bootstrap (cf.

Præstgaard and Wellner (1993)) with multinomially distributed weight vectors. For the bootstrap samples

pXni , i “ 1, 2, we define two independent multinomial random vectors Mni , i “ 1, 2, where

Mni “
`

Mni,1, . . . ,Mni,ni

˘1
„ Multinomial

ˆ

ni,
1

ni
, . . . ,

1

ni

˙

, ni ě 1, i “ 1, 2,

where, Mni,k denotes the frequency of occurrence of the k-th sample unit in the with replacement sample of

size ni, i “ 1, 2. Clearly, Mn1 and Mn2 are independent of Xn. Now, using the multinomial weights Mn1

and Mn2 , we define the weighted empirical measures

pPn1
“

1

n1

n1
ÿ

i“1

Mn1,i ¨ δpYi,Xiq and pPn2
“

1

n2

n
ÿ

i“n1`1

Mn2,i ¨ δp rYi,Xiq
, n ě 1,

12



where, δpYi,Xiq and δ
p rYi,Xiq

denote point masses at pYi,Xiq and prYi,Xiq, respectively. Following the definition

of Znpβq in (2.6), we define the corresponding bootstrap version,

pZnpβq “ fn ¨ pZn,1pβq ` p1´ fnq ¨ pZn,2pβq, where,

pZn,1pβq “ pPn1
h1,β

pZn,2pβq “ pPn2
h

2,β,
p

pθn

,

/

.

/

-

, (3.2)

where,
p

pθn is defined in (3.1). The bootstrapped PMLE, denoted by
p

pβn, satisfies the estimating equation:

pZn
`

p

pβn
˘

“ 0. (3.3)

It should be noted that there is an extensive literature on the asymptotic properties of bootstrap methods

in the context of general M-estimation. Arcones and Giné (1992) study almost sure convergence results for

bootstrapped M-estimators under strong assumptions on the underlying parameter space and estimating

functions. Chatterjee and Bose (2005) investigate generalized bootstrap methods for estimating equations,

and their results have a wide scope. However, their results cannot handle different exchangeable weights

like Mn1 and Mn2 , and non-identical random variables pY,Xq and prY ,Xq. Wellner and Zhan (1996) study

consistency of exchangeably weighted bootstrap for Z-estimators, but their results are valid for i.i.d. observa-

tions, and also require specific measurability assumptions on the class of estimating functions (cf. Giné and

Zinn (1990)). In an important piece of work, Cheng and Huang (2010) study consistency of exchangeably

weighted bootstrap for Z-estimators in general semiparametric setup in the presence of infinite dimensional

nuisance parameters using estimating equations based on i.i.d. observations. The generality and wide scope

of these results require assumptions like compactness of the finite dimensional parameter space, stochastic

equicontinuity of the underlying empirical process, measurability assumptions on the class of estimating

functions, and smoothness conditions on the limiting score functions. Besides, while proving bootstrap dis-

tributional consistency, in most cases consistency of the estimators of finite dimensional parameters, and

their bootstrapped version is assumed.

However, existing bootstrap consistency results for Z-estimators, including those mentioned above, cannot

be directly used for finding the asymptotic distribution of the bootstrapped pseudo MLE
p

pβn. The primary

difficulty arises from the dependence between pZn,1pβq and pZn,2pβq because of the presence of
p

pθn in the latter.

Also, usual empirical process results are not directly applicable to the estimated (random) class of functions

th
2,β,

p

pθn
pry,xq : β P Rpu. Finally, the processes t pZn,ipβq : β P Rpu, i “ 1, 2, are not based on the same set of

multinomial weights and involve different sets of random variables (either pY,Xq or prY ,Xq), unlike standard

with replacement bootstrap procedure. In order to deal with these additional difficulties, the asymptotic

behavior of each of these two processes needs to be studied separately.

In order to study the asymptotic behavior of the bootstrapped PMLE
p

pβn, we need to prove two new

equicontinuity results. In particular, we show that

sup
β

›

›pGn2

`

h
2,β,

p

pθn
´ h2,β,pθn

˘
›

› and sup
β

›

›Gn2

`

h
2,β,

p

pθn
´ h2,β,pθn

˘
›

›,
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converge to zero in probability in an appropriate sense. Unlike the equicontinuity result proved for the PMLE

pβn, for proving these new results, the results of van der Vaart and Wellner (2007) can not be directly used.

We show that their approach can be extended for handling both these cases.

As evident from the above discussion, stochastic convergence of the above mentioned supremums has

to be carefully defined, since the random quantities are defined on different probability spaces. The details

are given in the proofs. This type of stochastic equicontinuity results for bootstrapped empirical processes

indexed by a fixed and a random parameter are new, and the line of arguments can be possibly extended to

develop bootstrap consistency results for similar problems.

3.1 Asymptotic results for the bootstrapped pseudo-likelihood estimator

In order to state the bootstrap consistency results, we introduce some concepts and definitions following

Wellner and Zhan (1996) and Cheng and Huang (2010).

Note that, tpYi, rYi,Xiq : i ě 1u are i.i.d. observations from a distribution P0 on a probability space

pX ,Aq. To deal with measurability issues, we view pYi, rYi,Xiq as the i-th coordinate projection from the

underlying canonical product probability space
`

X8,A8,P80
˘

into the i-th copy of X . We assume that the

multinomial weight vectors tMn1 : n1 ě 1u and tMn2 : n2 ě 1u are independent of tpYi, rYi,Xiq : i ě 1u, and

form a triangular array which is defined on some probability space
`

Z, C,PM

˘

, for all n1, n2 ě 1. To handle

the joint randomness of tpYi, rYi,Xiq : i ě 1u and
`

Mn1 ,Mn2

˘

, we define the product probability space

`

X8,A8,P80
˘

ˆ
`

Z, C,PM

˘

“ pX8 ˆ Z,A8 ˆ C,Prq ,

where, Pr “ P80 ˆ PM, is a product probability measure. For simplicity, we will denote the product

measure P80 as P0. We will use the symbols Pr˚ (Er˚), P˚0 (E˚0 ) to denote outer probabilities (expectations)

corresponding to Pr and P0, respectively. Usual expectation with respect to PM and Pr will be denoted

by EM and Er respectively.

We now define stochastic orders based on the above probability measures. The definitions would be

repeatedly used in the proofs, and are crucial for a clear understanding of the results. Consider a sequence

of real valued functions t∆n : n ě 1u, defined on the product probability space pX8 ˆ Z,A8 ˆ C,Prq. We

say that, ∆n “ oP˚M
p1q in P˚0 -probability, if for any ε, η ą 0,

P˚0 pP
˚
M p|∆n| ą εq ą ηq Ñ 0, as nÑ8.

Similarly, ∆n “ OP˚M
p1q in P˚0 -probability if, for any δ ą 0 and ε ą 0, there exists a M “ Mpε, δq P p0,8q

and an integer n0 “ n0pε, δq P N, such that

P˚0 pP
˚
M p|∆n| ąMq ą δq ă ε, for all n ě n0pε, δq.

Lemma 8.11 describes some of the relations among the stochastic orders in terms of different probability

measures, and will be heavily used in clearly describing bootstrap convergence results. For a few other
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similar results, we refer to Lemma 3 of Cheng and Huang (2010).

Lemma 3.1 describes the limiting behavior of
p

pθn.

Lemma 3.1. Suppose, assumptions (A1)-(A4) hold. Then,

(i)
?
n1

ˆ

p

pθn ´ pθn

˙

d
Ñ N2

`

0, B0Σ2,2B
1
0

˘

, conditionally almost surely pP0q, where B0 is defined in (2.10).

(ii)
?
n1

ˆ

p

pθn ´ θ0

˙

d
Ñ N2

`

0, 2B0Σ2,2B
1
0

˘

, unconditionally. The unconditional distribution of
p

pθn is with

respect to the product probability measure Pr.

Part (i) of Lemma 3.1 states the bootstrap estimator
p

pθn is distributionally consistent, and this can be

used to carry out bootstrap based inference on θ0. Also, we require this result for proving the bootstrap

consistency of
p

pβn. The unconditional convergence result stated in part (ii) of Lemma 3.1 is a major technical

tool which is used in developing some of the new bootstrap stochastic equicontinuity results. Now we can

state the main result on bootstrap consistency.

Theorem 3.2. Suppose, assumptions (A1) - (A5) hold. Then, the following statements are true:

(i) The bootstrapped PMLE
p

pβn is consistent in P˚0 -probability, i.e.,

›

›

p

pβn ´ β0

›

› “ oP˚M
p1q, in P˚0 -probability.

(ii) The conditional distribution of
?
n
`

p

pβn ´
pβn

˘

, given the sample Xn, consistently estimates the distri-

bution of
?
n
`

pβn ´ β0

˘

in the following sense,

sup
tPRp

ˇ

ˇ

ˇ

ˇ

P˚M

ˆ

?
n

ˆ

p

pβn ´
pβn

˙

ď t

˙

´P0

´?
n
´

pβn ´ β0

¯

ď t
¯

ˇ

ˇ

ˇ

ˇ

“ oP˚0
p1q,

where, the inequality “ď” is understood to be componentwise.

Note that, the bootstrap consistency result in Theorem 3.2 does not require any additional technical

conditions beyond what was needed while proving asymptotic normality of the PMLE pβn. The uniform

convergence result, in part (ii) above, holds for classes of sets, larger than all p-dimensional rectangles of the

form p´8, t1s ˆ ¨ ¨ ¨ ˆ p´8, tps, where t “ pt1, . . . , tpq
1
P Rp. The proof of part (ii) shows that,

?
n
`

p

pβn´
pβn

˘

converges conditionally in distribution (in outer probability) to the same limiting Gaussian distribution,

which is described in Theorem 2.2(ii). Using the absolute continuity of the Gaussian distribution, and the

results on uniformity classes (cf. Section 1.2 of Bhattacharya and Ranga Rao (1986)), it can be shown that

uniform convergence in part (ii) is valid over all Borel-measurable convex subsets of Rp (cf. page 55 of Lahiri

(2003)).
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3.2 Applications of bootstrap method in some inference problems

Theorem 3.2 enables us to use the bootstrap method for a variety of inference problems on β0. More

generally, the delta method for bootstrapped estimators can be used for inference on appropriate functions

of β0. Inference on regression coefficient β0 itself is of interest to assess the effect of the covariates on the

probability of occurrence of the event under study. Specifically, in epidemiology, β0j , the j-th component of

β0, represents the log-odds ratio of a disease associated with a unit increase in the scale of xj , holding all

other variables in x fixed. If xj is a binary variable, then β0j represents the adjusted log-odds ratio adjusted

for the covariates in the regression model other than xj . Inference on a linear parametric function c1β0 may

be of interest in many applications, e.g., in assessing credit worthiness of a person by a credit bureau. Also

estimating ψpx1β0q for a given value of x, say, x0 is of interest as it represents the probability of the event

under study to happen if x “ x0. Especially, we may be interested in the estimation of ψpx1β0q, wherein it

represents the risk of an adverse event. For example, in epidemiological studies, it may represent the risk of

a disease associated with the risk factors x; in financial applications, it may represent the risk of a default

associated with an individual’s profile x. In the following, we illustrate two common applications of Theorem

3.2.

3.2.1 Interval estimation of a linear parametric function

We can use Theorem 3.2 to construct an asymptotically consistent confidence interval for c1β0. The confi-

dence interval is,

In,η “
´

c1pβn ´ n
´1{2 ¨ pξn,1´ηpcq, c1pβn ´ n

´1{2 ¨ pξn,ηpcq
¯

, (3.4)

where, pξn,ηpcq is the η-quantile of
?
n
`

c1
p

pβn ´ c1pβn
˘

, for any η P p0, 1q. As stated in the next corollary, In,η

is an asymptotically consistent level p1´ 2ηq confidence interval for c1β0.

Corollary 3.3. Under the conditions of Theorem 3.2, for any η P p0, 1{2q and any fixed c P Rp,

P˚0
`

c1β0 P In,η
˘

Ñ p1´ 2ηq.

3.2.2 Interval estimation of Risk

The risk at x0 is given by

πx0
pβ0q ” ψpx10β0q.

To avoid trivialities, we assume that x0 ‰ 0. The naive estimator of risk at x0 is πx0p
pβnq “ ψ

`

x10
pβn

˘

,

and the bootstrap estimator is πx0p
p

pβnq “ ψ
`

x10
p

pβn
˘

. For any η P p0, 1{2q, let pκn,η denote the η-quantile of
?
n
`

πx0p
p

pβnq ´ πx0p
pβnq

˘

. Define the following confidence interval for πx0pβ0q,

Jn,η “
´

πx0
ppβnq ´ n

´1{2 ¨ pκn,1´η, πx0
ppβnq ´ n

´1{2 ¨ pκn,η

¯

. (3.5)
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Corollary 3.4. Under the conditions of Theorem 3.2, for any η P p0, 1{2q,

P˚0 pπx0
pβ0q P Jn,ηq Ñ p1´ 2ηq.

4 Some additional results

Motivated by the practical applications, we consider two specific situations, wherein the asymptotic results

proved in Sections 2 and 3 are not directly applicable. In this section, we show that, our results continue to

hold with appropriate modifications.

4.1 Differential classification error

Until now, we have developed the asymptotic theory, assuming that, the probabilities of misclassification

are independent of the covariates x. In other words, we have assumed a non-differential classification error.

However, as mentioned by Meyer and Mittag (2016), ”there is little ex ante reason to believe that misclas-

sification is independent of the covariates.” In a HIV related study, Lyles et al. (2011) consider a regression

model for the misclassification probabilities with subject specific binary covariates. In social and economic

surveys (cf. Bollinger and David (1997) and Abrevaya and Hausman (1999)), it has been observed that, the

misclassification probabilities of the binary response (like, whether beneficiary of a program or not) depend

on the covariates, like union membership of a worker (a member or not), income (above or below median

income), age (above the median age or not) etc.

We now consider extension of our theory to differential classification errors. For simplicity, we assume

that, the sample space for x can be divided into K non-overlapping subsets, each representing the profile of a

distinct group, possibly with different misclassification probabilities. Denote these K groups by G1, . . . , GK .

We assume that, a random sample of size nk is obtained from Gk, with K remaining fixed, and mintnk :

1 ď k ď Ku Ñ 8. The underlying true model is,

P0

`

Y “ 1 | X “ x
˘

“ ψpx1β0q, and

P0

`

rY “ 1 | Y “ 0
˘

“ θ
pkq
1,0 , P0

`

rY “ 0 | Y “ 1
˘

“ θ
pkq
2,0 ,

,

.

-

for all x P Gk, k P t1, . . . ,Ku, (4.1)

where, θ
pkq
0 “

`

θ
pkq
1,0 , θ

pkq
2,0

˘1

are the misclassification probabilities for the group Gk. Writing fn,k “ n1,k{nk,

where n1,k and n2,k “ pnk ´ n1,kq are the validation and the non-validation sample sizes, respectively, we

assume that assumption (A2) remains valid with θ0 replaced by θ
pkq
0 . Similarly, we assume that assumption

(A4) remains true in the following sense: fn,k Ñ fk P p0, 1q and
?
nk ¨ |fn,k´fk| Ñ 0 as nÑ8. Assumptions

(A1) and (A3) or (A3:) remain unchanged. Based on the observations from Gk, one can estimate pθ
pkq

n using
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(2.2). Following similar arguments as above, the estimating function can be written as,

Zn,Kpβq “
K
ÿ

k“1

”

fn,k ¨ Pn1,k
h1,βpY,Xq ` p1´ fn,kq ¨ Pn2,k

h
2,β,pθ

pkq

n

prY ,Xq
ı

,

where, Pn1,k
and Pn2,k

denote the empirical measures corresponding to validation and non-validation samples

in group Gk, respectively. The PMLE pβn satisfies the estimating equation,

Zn,K
`

β
˘

“ 0. (4.2)

Following the arguments given in Lemma 2.1, and using the above mentioned assumptions on θ
pkq
0 and fn,k,

it can be shown that pθ
pkq

n will be asymptotically normal. Also, using the arguments similar to those given

in Lemma 8.7, it will follow that, supβ }Zn,Kpβq ´ ZKpβq} “ oP˚0
p1q, where,

ZKpβq “
K
ÿ

k“1

”

fk ¨P0h1,βpY,Xq ` p1´ fkq ¨P0h2,β,θ
pkq
0
prY ,Xq

ı

.

Further, following arguments similar to that used in Lemma 8.2 and 8.3, it can be shown that ZKpβq has an

unique and well-separated root at β “ β0. Specifically, note that
ř

k fk ¨ P0h1,β “ f ¨ P0h1,β “ f ¨ Z1pβq,

where f is defined in (A4), and Z1pβq is defined in (2.8). So, the arguments in Lemma 8.2 can be repeated in

this case for Z1pβq, and the rest of the proof follows by sandwiching ZKpβq within constant positive multiples

of Z1pβq, as shown in Lemma 8.3. The proof of Donsker and Glivenko-Cantelli properties can be carried out

similarly, and this will imply consistency of pβn (cf. (4.2)). Next, we will assume that assumption (A5) holds

if Zpβq (cf. (2.8)) is replaced by ZKpβq. Then, following the arguments in case of a single group, it can be

shown that pβn will be asymptotically normal, and the bootstrap version of pβn, which can be constructed in

the same manner by independently resampling within each group, will also be distributionally consistent in

probability. The asymptotic variance of pβn defined in (4.2) can be obtained using the variance expression

given in (2.13). The primary differences will be, 9Zpβ0q will be replaced by 9ZKpβ0q and Σ0 in (2.14) will be

replaced by,

Σ0,K “ f ¨Σ11 `

K
ÿ

k“1

”

p1´ fkq ¨
!

A0,kB0,kΣ21,k `
`

A0,kB0,kΣ21,k

˘1
)

`
p1´ fkq

2

fk
¨A0,kB0,kΣ22,kB

1
0,kA

1
0,k ` p1´ fkq ¨ Γk

ff

,

where, the matrices Σ12,k “ Σ121,k, Σ22,k, Γk, A0,k and B0,k, are similarly defined as in (8.37), (2.11), (8.38),

(8.40) and (2.10) respectively, by replacing θ0 with θ
pkq
0 .

4.2 One of the misclassification probabilities equal to zero

The classification errors are usually asymmetric. An extreme case of asymmetry could be, one of the

misclassification probabilities is equal to zero, while the other is non-zero. For example, it may be that
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P0prY “ 0 | Y “ 1q “ θ2,0 “ 0, while P0prY “ 1 | Y “ 0q “ θ1,0 is non-zero. In this case, the parameter θ0

reduces to a scalar parameter θ1,0. While discussing about literacy data, collected through census in India,

Kothari and Bandyopadhyay (2011) mention that the indirect method of determining the literacy status of

an individual leads to misclassification. In this case, the chances of misclassifying a literate person (Y “ 1)

as an illiterate (rY “ 0) are negligible and can be practically considered equal to zero. However, the chance

of other type of misclassification is significantly high. The detailed discussion is deferred to Section 5.4,

where this particular example has been analysed. This type of extreme asymmetrical misclassification may

arise in medical diagnostic studies, Demidenko (2004) (pp. 512) provides such an example related to cancer

detection. The unknown non-zero misclassification probability θ1,0 can be estimated using (2.2) and for

purposes of computation, we can define, pθ2,n “ 0 with probability 1. The pseudo-likelihood based estimating

equation in (2.7) can be used with this modified definition of pθn “
`

pθ1,n, 0
˘1

. In this case, under assumption

(A2)(i), we have

δ1 ă h3,β,θpxq “ h3,β,θ1pxq “ θ1,0 ` p1´ θ1,0q ¨ ψpx
1βq ă 1, (cf. (2.3)), for all x, β and θ1 P pδ1, δ2q.

As a result, h3,β,θ1pxq remains bounded away from 0, but not bounded away from 1. This implies,
`

1´ h3,β,θ1pxq
˘´1

can become arbitrarily large. This is unlike the case when both misclassification proba-

bilities are present in the model, and are bounded away from 0 and 1. As a result, all technical arguments

used in the general case will fail in this situation.

In order to extend the theoretical results to this case, we need to modify some of the original technical

assumptions stated in Section 2.1.1. Specifically, we strengthen assumption (A1) to ensure boundedness of

the coefficient β0, assumption (A2)(i) is only applicable on the non-zero misclassification probability θ1,0 and

it remains bounded away from 0 and 1, assumption (A3) is also strengthened and we assume boundedness

of the covariate X along with positive definiteness of VarpXq. Assumption (A2)(ii) is redundant in this

case, and assumptions (A4) and (A5) remain unchanged. For the model with intercept (2.9), the same

modifications are applicable along with the changes described in assumption (A3:).

With these new set of assumptions, ψpx1β0q remains bounded away from 0 and 1, and as a result,

h3,β,θ1pxq is also bounded away from 0 and 1, for all x, θ1,0 P pδ1, δ2q and β P Rp. It is now possible to prove

the theoretical results about the PMLE pβn, and it’s bootstrap version, by retracing the technical arguments

for the general case, replacing pθn by pθ1,n and
p

pθn by
p

pθ1,n. The boundedness of β0 will simplify some of the

convergence arguments used in the proofs. We skip the details. There will be some changes while computing

the expression for asymptotic covariance of pβn (cf. (2.13) and (2.14)), which depend on θ0. For all matrices,

the unknown θ2,0 is to be replaced by θ2,0 “ 0. Since θ2,0 is not estimated, the asymptotic covariance

expression of pθn (cf. Lemma 2.1), which is used in the third term of (2.14) will be slightly changed. The

matrix B0Σ22B
1
0 should be replaced by a 2 ˆ 2 matrix, with p1, 1q-th element equal to the corresponding

element of B0Σ22B
1
0 and all other elements equal to zero.

Apparently a simplification of the model (1.2), with one of the misclassification probabilities being equal
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to zero, leads to the use of stronger assumptions requiring boundedness of the covariates and the true

regression coefficient. At present, we do not know of an alternative proof under weaker assumptions.

5 Simulation results and real data analysis

5.1 Comparisons with other likelihood based estimation methods

As mentioned in Section 1, we carry out extensive simulation studies to compare the performances of PMLE

with other likelihood based estimators, one based only on contaminated (misclassified) responses, considered

by Hausman et al. (1998) and Hausman (2001) in the absence of any validation sample, and the other, based

on the joint likelihood of both validation and non-validation samples considered by Lyles et al. (2011). We

refer to them as CMLE, and JMLE, respectively. In the following, we briefly discuss the likelihood functions,

and the associated score equations for finding CMLE and JMLE. Computation of the likelihood estimates,

including PMLE involves solving p or pp ` 2q (in case of JMLE and CMLE) nonlinear equations with the

same number of variables. For solving the nonlinear equations, we have used R-package BB, developed by

Varadhan and Gilbert (2009).

5.1.1 CMLE: Likelihood & score equations

In the absence of a validation sample, information on the true responses is not available. In this case,

Hausman et al. (1998) suggested jointly estimating pβ,θq using the likelihood based on the set of observations

tprYi,Xiq : 1 ď i ď nu. However, this approach has some serious drawbacks, which we discuss briefly. As

noted earlier (cf. (1.3)),
“

rYi | Xi “ xi
‰

„ Bernoulli
`

h3,β,θpxiq
˘

, for all i “ 1, . . . , n, and are independent,

where h3,β,θpxq is defined in (2.3). The likelihood function will be,

Ln,C
`

β,θ
˘

“

n
ź

i“1

`

h3,β,θpxiq
˘yi
¨
`

1´ h3,β,θpxiq
˘1´yi

.

The estimating equations for pβ,θq are,

B

Bβ
n´1 logLn,C

`

β,θ
˘

“ Pn

«

X ¨
ψpX1βq ¨ t1´ ψpX1βqu ¨ trY ´ h3,β,θpXqu

h3,β,θpXq ¨ t1´ h3,β,θpXqu

ff

“ 0,

B

Bθ1
n´1 logLn,C

`

β,θ
˘

“ Pn

«

t1´ ψpX1βqu ¨ trY ´ h3,β,θpXqu

h3,β,θpXq ¨ t1´ h3,β,θpXqu

ff

“ 0,

B

Bθ2
n´1 logLn,C

`

β,θ
˘

“ Pn

«

ψpX1βq ¨ trY ´ h3,β,θpXqu

h3,β,θpXq ¨ t1´ h3,β,θpXqu

ff

“ 0,

,
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(5.1)

where, Pn “ n´1
řn
i“1 δp rYi,Xiq

, denotes the empirical measure based on tprYi,Xiq : 1 ď i ď nu. Denote these

estimates by
`

pβn,C ,
pθn,C

˘

. Often, the estimating equations in (5.1) become nearly non-identifiable, and thus,

lead to nonsensical estimates
`

pβn,C ,
pθn,C

˘

for the following reasons.

20



It has been noted by Cox and Snell (1989), that for every β, there exists a β˚, such that ψpx1βq « x1β˚

for ψpx1βq P p0.1, 0.9q. Thus, the logistic and linear functions are almost identical on a large part of their

range, except for the tails. Hence, for ψpx1βq P p0.1, 0.9q, we have,

h3,β,θpxq “ θ1 `
`

1´ θ1 ´ θ2

˘

¨ ψpx1βq « θ1 `
`

1´ θ1 ´ θ2

˘

¨ x1β˚ “ θ1 ` x1β˚, (5.2)

where, β˚ “ p1´ θ1´ θ2q ¨β
˚. Thus, if

`

θ1, θ2

˘

are unknown, the likelihood estimates based on Ln,C fails to

recover the estimates of the model parameters, unless there are enough number of observations in the tails

of ψpx1βq. Thus, if the covariate X is such that, the probability

Q
`

X : ψpX1β0q P p0.1, 0.9q
˘

is high,

then recovering estimates of the model parameters from Ln,C is nearly impossible, unless the sample size is

very large.

5.1.2 JMLE: Likelihood & score equations

If the validation sample is available, then a natural approach is to consider the joint likelihood function

L1,npβ,θq, given in (2.1). Following earlier calculations, the estimating equations for pβ,θq will be,

B

Bβ
n´1lnpβ,θq “ fn ¨ Pn1

h1,βpY,Xq ` p1´ fnq ¨ Pn2
h2,β,θprY ,Xq “ 0,

B

Bθ1
n´1lnpβ,θq “ fn ¨ Pn1

«

p1´ Y qprY ´ θ1q

θ1p1´ θ1q

ff

` p1´ fnq ¨ Pn2

«

 

1´ ψpX1βq
(

¨ trY ´ h3,β,θpXqu

h3,β,θpXq ¨ t1´ h3,β,θpXqu

ff

“ 0,

B

Bθ2
n´1lnpβ,θq “ fn ¨ Pn1

«

Y p1´ rY ´ θ2q

θ2p1´ θ2q

ff

´ p1´ fnq ¨ Pn2

«

ψpX1βq ¨ trY ´ h3,β,θpXqu

h3,β,θpXq ¨ t1´ h3,β,θpXqu

ff

“ 0.
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(5.3)

Let us denote the joint maximum likelihood estimates as
`

pβn,J ,
pθn,J

˘

. Note that (2.1) has two components

representing the contributions of the validation and non-validation data to the likelihood, respectively. If

ψpx1β0q P p0.1, 0.9q, the non-identifiability problem discussed in the context of (5.2) will still be present, but

plausibly to a lesser extent, especially when the validation sample size is small.

Further, note that the first and second components of the joint log-likelihood mentioned above, are sums of

n1, and n2 i.i.d. random variables, respectively. But the random variables in the two sums are not identically

distributed. The first involves the random vector pY,Xq, and the second, prY ,Xq. Since, mintn1, n2u Ñ 8,

none of the two sums can be neglected asymptotically. Consequently, the log-likelihood cannot be written

as a sum of i.i.d. random variables, even asymptotically, and hence, the classical asymptotic results on

maximum likelihood estimation can not be used. There are other difficulties too, in dealing with the score

functions obtained in (5.3). First, the restrictions on the parameter space of Θ (cf. assumption (A2)), and

the non-compactness of the parameter space for β0, make the study of the joint uniform convergence of the

score functions (over β and θ) difficult. Second, one has to show that, the limiting score functions have

an unique and well-separated zero at pβ0,θ0q. The techniques, used in proving the asymptotic results for

PMLE, cannot be used for JMLE. Developing an asymptotic theory for the JMLE seems to be difficult.
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5.1.3 A comparison between PMLE, CMLE, JMLE and naive logistic regression

In order to provide a clear motivation for using pseudo-likelihood, we design a simulation study. We choose,

p “ 2 with independent covariates X1 „ Np0, 1q and X2 „ Np0, σ2q, where σ2 will be chosen later on. We

fix, β0 “ p1, 2q and θ0 “ p0.1, 0.3q. Given any η P p0, 1q, we choose σ2 “ σ2pηq, such that

η “ Q
`

ψpX1β0q P p0.1, 0.9q
˘

“ Q
`

0.1 ă ψ
`

X1 ` 2X2

˘

ă 0.9
˘

“ Q
`

´ log 9 ă X1 ` 2X2 ă log 9
˘

.

This leads to,

σ2pηq “
1

4
¨

˜

`

log 9
˘2

`

Φ´1
`

1`η
2

˘˘2 ´ 1

¸

, (5.4)

where, Φ´1 denote the standard normal quantile function. In order to make sure that σ2pηq ą 0, we need

to ensure that, η P p0, 0.97q. By changing η, and consequently σ2pηq, we could control the probability of

ψpX1β0q lying inside p0.1, 0.9q. Higher is the value of η, lower is the chance of getting extreme observations

(i.e., observations whose ψpX1β0q values are near 0 or 1) in a sample and more exacerbated would be the

effect of non-identifiability. The primary goal of this study is to investigate the above phenomena.

In the simulation study, besides PMLE, CMLE and JMLE, we have also included naive logistic regression

based estimator of β0, denoted by pβNL, which is obtained on the basis of tprYi,Xiq : 1 ď i ď nu ignoring

the misclassification errors. The sample size for the simulation study is fixed at n “ 300, with n1 “ 60 and

n2 “ 240. Notice that, for computation of CMLE, and pβNL, we consider only the values of prY ,Xq for the

entire sample.

In Table 1, we present the results of the simulation study. The simulation set-up is described at the top

of the table. For simplicity of presentation, we report the average bias and mean-squared error (MSE) of

different likelihood estimators of pβ1,0, θ1,0q using 250 simulated data-sets. For naive logistic regression it is

for β1,0 only.

Results from Table 1 clearly show that PMLE of β1,0 has the best performance in terms of MSE. The same

conclusion can be drawn from the frequency plots in Figures 2 and 3. For estimating θ1,0, PMLE is superior

to others both in terms of bias and MSE. As expected, the CMLE estimators’ performance is miserable in

terms of both bias and MSE. In fact, often the score equations fail to yield stable solutions. Unless possibly

the sample size is very large (Hausman et al. (1998) considered n “ 5000), the non-identifiability problem

persists. Moreover, the estimator pθ1,C takes negative values and values greater than one (cf. Figure 1).

Similar problem also arises, but to a lesser extent, for joint likelihood based estimator pθ1,J , as seen from the

frequency plots in Figures 1. Evidently, the joint likelihood estimate of θ could very well be nonsensical.

However, PMLE does not suffer from this drawback and seems to perform better than the joint likelihood

estimator at least for moderately large sample sizes which is often the case in many real-life applications. The

naive logistic regression based estimator pβ1,NL suffers from serious underestimation and has larger MSE than

PMLE or JMLE. Overall, PMLE based estimates seem to be the best choice among alternative likelihood

based procedures.
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Finally, in terms of computational speed, PMLE takes the least time to converge followed by the JMLE,

which is, of course, considerably slower. The CMLE is the worst, and converges very slowly. As expected,

often, the solutions converge to non-nonsensical values because of the non-identifiability problem.

Table 1: Average bias and (MSE) (in parenthesis below) comparison of estimates obtained using

JMLE
`

pβ1,J , pθ1,J

˘

, PMLE
`

pβ1,n, pθ1,n

˘

, CMLE
`

pβ1,C , pθ1,C

˘

and naive logistic regression pβ1,NL. Also

shown are the different values of η and σpηq “
a

VarpX2q (cf. (5.4)). Here, n “ 300 and n1 “ 60.

The true parameter values are β1,0 “ 1 and θ1,0 “ 0.1.

Bias and (MSE)

Estimates of β1,0 Estimates of θ1,0

η σpηq pβ1,J pβ1,n pβ1,C pβ1,NL
pθ1,J pθ1,n pθ1,C

0.6 1.21 -0.0152 0.0761 914.74 -0.6270 -0.0415 0.0094 444.1

(0.1829) (0.1487) (1.53ˆ108) (0.4116) (0.0135) (0.0026) (5.35ˆ1011)

0.7 0.935 -0.0162 0.0767 13.6 -0.584 -0.0442 0.0115 3.05ˆ104

(0.1682) (0.1361) (5.74ˆ106) (0.3604) (0.0131) (0.0029) (2.24ˆ1011)

0.8 0.696 -0.0169 0.0294 474.0 -0.538 -0.0305 0.0127 -3.30ˆ104

(0.1020) (0.0881) (3ˆ108) (0.306) (0.01) (0.0026) (1.38ˆ1012)

0.9 0.443 -0.0154 0.0178 -1084.05 -0.5167 -0.0231 0.0113 1.26ˆ105

(0.102) (0.0842) (2.47ˆ108) (0.285) (0.0093) (0.0029) (1.2ˆ1012)

5.2 Inference: Asymptotic versus bootstrap

In this section, we design simulation studies to compare the performances of the penalized likelihood based

bootstrap percentile intervals of the regression parameters, with the corresponding intervals based on the

asymptotic distribution of the PMLE of β0. For evaluating the performances, we compute the empirical

coverage and average length of each such interval. We consider two regression models for the simulation

studies, one with three covariates and the other with nine covariates. The latter is considered to demonstrate

that the PMLE based inference is computationally feasible even with a reasonable number of covariates. In

the following we discuss the results.

5.2.1 Simulation study: Model with three covariates

We consider the following model (cf. Hausman et al. (1998)),

P0

`

Y “ 1
ˇ

ˇpX2, X3, X4q “ px2, x3, x4q
˘

“ ψ pβ1,0 ` β2,0x2 ` β3,0x3 ` β4,0x4q , for all px2, x3, x4q. (5.5)
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Figure 1: Frequency plots in the first and second rows show the distributions of pθ1,J , pθ1,n and pθ1,C at η “ 0.6

and η “ 0.9, respectively. Here, n “ 300, n1 “ 60 and the frequency plots were based on 250 simulations.

Blue vertical dotted line shows the true value θ1,0 “ 0.1. Both pθ1,J and pθ1,C can lead to negative estimates.

The covariates X2, X3 and X4 are independent, with X2 „ Log-normalp0, 1q´e1{2, X3 „ Bernoullip1{3q´1{3

and X4 „ Uniformp0, 1q ´ 1{2. All covariates are centered. We study three different models:

(a) β0 “
`

β1,0, β2,0, β3,0, β4,0

˘

“
`

0, 0.7, 1.5,´0.6
˘1

, θ0 “ p0.1, 0.3q
1
.

(b) Same choice of β0 as in model (a), with θ0 “ p0.1, 0.1q
1
.

(c) β0 “
`

´ 1, 0.7, 1.5,´0.6
˘1

and θ0 is same as in model (a).

Models (a) and (c) differ only with respect to the intercept term, while models (a) and (b) with respect to

the misclassification probabilities only.
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Figure 2: Frequency plots showing distributions of various estimators: JMLE pβ1,J , PMLE pβ1,n, CMLE pβ1,C

and NL pβ1,NL at η “ 0.6. Here, n “ 300 and n1 “ 60. Blue vertical dotted line shows the true value

β1,0 “ 1. JMLE has slightly larger variability than PMLE, CMLE is the worst and NL has underestimation

and higher variability.

For each of the three models considered above, we consider three different sample sizes n P t300, 600, 1000u,

and also three different validation sample fractions fn P t0.1, 0.2, 0.3u. We compute the empirical coverage

probabilities and the average lengths of the bootstrap percentile interval, and the asymptotic confidence

intervals for the parameters βj,0, j “ 1, 2, 3, 4, for each of these models. The bootstrap percentile intervals

are obtained from (3.4). The asymptotic confidence intervals are obtained from (2.13) by plugging in the

estimated values of β0 and θ0, and replacing the expectation with respect to the unknown distribution

Qpxq of X “ pX2, X3, X4q by the same with respect to the empirical version of Qpxq in the expression for

the asymptotic covariance matrix. Finally, the limiting validation sampling fraction f is replaced by fn.

The empirical coverage probabilities, and the average lengths are computed on the basis of 250 simulated
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Figure 3: Frequency plots showing distributions of various estimators: JMLE pβ1,J , PMLE pβ1,n, CMLE pβ1,C

and NL pβ1,NL at η “ 0.9. Here, n “ 300 and n1 “ 60. Blue vertical dotted line shows the true value

β1,0 “ 1. JMLE has slightly larger variability than PMLE, CMLE is the worst and NL has underestimation

and higher variability.

data-sets. Tables 2, 3 and 4 show the results for n “ 300, 600 and 1000, respectively.

In Table 2, with n “ 300, we notice that for fn “ 0.2 and 0.3, the asymptotic and bootstrap methods have

comparable empirical coverages, although the bootstrap intervals have slightly larger average length. The

average length decreases as fn increases. In case fn “ 0.1, the bootstrap based intervals have substantially

larger average length, compared to the asymptotic intervals. This happens when the validation sample size

n1 is very small. The primary reason is, the appearance of a bad bootstrap validation sample. It leads to

bad estimates of θ0 and β0. A few such estimates influence the bootstrap percentiles, and hence lead to

wider CI’s obtained from (3.4).
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Asymptotic CI’s are also not exempt from such aberrations, if n1 is very small. The lengths of asymptotic

CI’s for components of β0 in model (c) with n1 “ 30, shown in Table 2 reveal this phenomenon, although

to a lesser extent than that of the bootstrap CI’s. Note, however, that the average lengths of asymptotic

CI’s are based on 250 simulated data-sets while the bootstrap based CI’s are based on B “ 700 bootstrap

samples from each data-set. Therefore, if the original validation sample Xn1
is bad, the chances of obtaining

a worse bootstrap sample pXn1
is higher. This magnifies the problem for the bootstrap case. In worst cases,

obtaining even 50 or more extremely large estimates of a single component of
p

pβn out of a total of 700

iterations can have a huge influence on the corresponding bootstrap 2.5% and 97.5% percentiles. However,

this issue disappears if n1 is slightly increased. Comparing the same figures for n “ 600 and n “ 1000 in

Tables 3 and 4, we see a dramatic improvement over the earlier case even when fn “ 0.1.

Our simulations suggest that the phenomenon of unstable parameter estimates and large widths of

bootstrap CI’s is dependent on the validation sample size n1 and not on the actual validation sampling

fraction fn. We find that n1 « 50 or more to be a safe choice for obtaining reliable bootstrap based

estimates, irrespective of the total sample size n. It could be achieved either by increasing n for a fixed fn,

or by increasing fn for a fixed n. In fact, for n “ 300 and f “ 0.2 and f “ 0.3, except for a few cases, the

widths of bootstrap based CI’s are only in between 5 - 20 % larger their asymptotic counterparts, and the

situation improves further when n increases.

The good performance of the asymptotic CI’s is not surprising, since the asymptotic covariance matrix

has been estimated by using the exact expression in (2.13), and each term has been painstakingly computed.

Also, the expectation with respect to the empirical distribution of the covariates is a good approximation to

the true distribution Qpxq for n “ 300 or more. But, exact computation of the asymptotic covariance matrix

may not be easy to implement in practice as is evident from the complicated expressions of the matrices

involved in (2.14), and specially if p is large. Hence, for moderately large n1 and n, clearly the bootstrap is

a preferable method for inference on β0 from the point of view of implementation.

5.3 Model with a large number of covariates

Here we consider a model with p “ 9 covariates, including an intercept term with a mix of continuous, discrete

and categorical covariates. The covariates tX2, . . . , X9u are independent, with X2 „ Log-normalp0, 1q´e1{2,

X3 „ Bernoullip1{3q´1{3, X4 „ Uniformp0, 1q´1{2, pX5, X6q „ N2p0, 0, 1, 1, 0.6q, X7 „ Poissonp3q´3, X8 „

χ2
2´2 andX9 „ p3{5q¨Np´1, 1q`p2{5q¨Np4, 2q´1. We choose, β0 “

`

´ 1, 0.7, 1.5,´0.6, 1,´0.75,´2,´1.5, 1q
1

with n “ 1000. Table 5 presents the empirical coverages and average lengths. The observed patterns are

similar to that of Tables 3 and 4.
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Table 2: Empirical coverage probabilities and average lengths (in parenthesis below)

for 95% confidence intervals for βj,0, j “ 1, 2, 3, 4, in models (a), (b) and (c), with

sample size n “ 300.

n1 “ 30 n1 “ 60 n1 “ 90

Model Coefficient Asymp. Boot. Asymp. Boot. Asymp. Boot.

(a) β1,0 0.976 0.98 0.984 0.96 0.976 0.968

(2.235) (15.529) (1.389) (1.427) (1.06) (1.037)

β2,0 0.972 0.956 0.944 0.936 0.96 0.944

(1.396) (33.836) (0.945) (1.07) (0.795) (0.871)

β3,0 0.98 0.98 0.976 0.98 0.964 0.98

(2.953) (44.891) (2.021) (2.381) (1.708) (1.811)

β4,0 0.996 0.996 0.984 0.996 0.976 0.988

(3.607) (13.536) (2.901) (3.19) (2.605) (2.783)

(b) β1,0 0.964 0.992 0.968 0.992 0.964 0.98

(1.537) (4.855) (1.055) (1.062) (0.87) (0.856)

β2,0 0.96 0.96 0.944 0.94 0.944 0.936

(1.025) (10.015) (0.759) (0.854) (0.672) (0.739)

β3,0 0.984 0.984 0.976 0.988 0.948 0.972

(2.147) (13.547) (1.614) (1.749) (1.444) (1.516)

β4,0 0.988 0.992 0.984 0.992 0.98 0.992

(2.734) (10.466) (2.389) (2.563) (2.244) (2.357)

(c) β1,0 0.992 1 0.992 0.984 0.988 0.972

(74.772) (561.488) (2.359) (4.62) (1.61) (1.557)

β2,0 0.964 0.908 0.968 0.952 0.972 0.948

(47.69) (202.541) (1.072) (3.328) (0.824) (1.11)

β3,0 0.972 0.968 0.976 0.98 0.976 0.976

(218.372) (629.814) (2.69) (4.968) (2.084) (2.582)

β4,0 0.996 0.996 0.968 0.992 0.96 0.988

(77.727) (363.567) (3.49) (8.212) (3.05) (3.977)

5.4 Real data analysis

In this section we consider a data set obtained from a household literacy survey conducted across four Indian

states, and apply our methodology for obtaining confidence intervals for the parameters of interest. For a

detailed discussion about the survey we refer to Kothari and Bandyopadhyay (2011). One of the goals of the

survey was to compare the literacy rate obtained from the data collected through indirect responses, which

are subject to errors of misclassification, with the literacy rate obtained from the data collected through

direct responses, which can be considered as gold-standard. Data on 7409 individuals within the age group

15-45 were collected. Literacy was judged directly by evaluating each individual through written/oral tests,
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Table 3: Empirical coverage probabilities and average lengths (in parenthesis below)

for 95% confidence intervals for βj,0, j “ 1, 2, 3, 4, in models (a), (b) and (c), with

sample size n “ 600.

n1 “ 60 n1 “ 120 n1 “ 180

Model Coefficient Asymp. Boot. Asymp. Boot. Asymp. Boot.

(a) β1,0 0.964 0.956 0.952 0.956 0.956 0.952

(1.525) (1.502) (0.944) (0.902) (0.731) (0.7)

β2,0 0.956 0.952 0.94 0.956 0.948 0.948

(0.906) (0.935) (0.643) (0.67) (0.549) (0.567)

β3,0 0.992 0.984 0.964 0.964 0.96 0.968

(1.929) (1.978) (1.364) (1.353) (1.174) (1.187)

β4,0 0.992 0.992 0.98 0.996 0.976 0.984

(2.335) (2.506) (1.958) (2.035) (1.789) (1.841)

(b) β1,0 0.936 0.98 0.956 0.972 0.96 0.96

(1.008) (1.231) (0.72) (0.702) (0.608) (0.586)

β2,0 0.948 0.948 0.932 0.936 0.92 0.924

(0.627) (1.183) (0.508) (0.537) (0.467) (0.485)

β3,0 0.98 0.984 0.956 0.972 0.94 0.96

(1.349) (2.098) (1.09) (1.113) (1.003) (1.025)

β4,0 0.968 0.988 0.968 0.976 0.972 0.98

(1.79) (2.795) (1.635) (1.685) (1.566) (1.61)

(c) β1,0 0.996 0.976 0.996 0.96 0.988 0.92

(4.063) (148.595) (1.63) (1.125) (1.115) (0.778)

β2,0 0.972 0.96 0.968 0.952 0.98 0.96

(2.557) (104.463) (0.719) (0.705) (0.564) (0.542)

β3,0 0.98 0.944 0.984 0.98 0.992 0.98

(3.387) (62.804) (1.819) (1.675) (1.428) (1.329)

β4,0 0.976 0.992 0.968 0.972 0.948 0.952

(3.79) (24.522) (2.284) (2.505) (2.058) (2.125)

and the responses were, literate pY “ 1q or illiterate pY “ 0q. The indirect responses were obtained from

the head of the family, who reported on the literacy status prY q of each member of the family, with rY “ 1 if

the member was considered literate and rY “ 0, otherwise. The latter method is used in Indian census for

collecting literacy data. Since the chances of misclassifying a literate person pY “ 1q as an illiterate by the

head of the family prY “ 0q is zero, this type of misclassification is ignored. For each individual, his/her age

X was also recorded and we treat it as a covariate.

Complete information on the triplet, pY, rY ,Xq was available for 7409 individuals and based on this, we

found θ1,0 “ PprY “ 1 | Y “ 0q “ 0.177. For our data-analysis, we selected a random sample of size n “ 740
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Table 4: Empirical coverage probabilities and average lengths (in parenthesis

below) for 95% confidence intervals for βj,0, j “ 1, 2, 3, 4, in models (a), (b) and

(c), with sample size n “ 1000.

n1 “ 100 n1 “ 200 n1 “ 300

Model Coefficient Asymp. Boot. Asymp. Boot. Asymp. Boot.

(a) β1,0 0.964 0.956 0.956 0.964 0.976 0.96

(1.103) (1.084) (0.724) (0.683) (0.563) (0.532)

β2,0 0.956 0.964 0.952 0.932 0.944 0.932

(0.641) (0.632) (0.484) (0.484) (0.418) (0.42)

β3,0 0.984 0.972 0.952 0.952 0.948 0.944

(1.385) (1.293) (1.041) (1.009) (0.901) (0.893)

β4,0 0.98 0.98 0.984 0.98 0.98 0.988

(1.681) (1.74) (1.488) (1.519) (1.372) (1.402)

(b) β1,0 0.948 0.98 0.968 0.972 0.964 0.964

(0.768) (0.774) (0.554) (0.538) (0.465) (0.446)

β2,0 0.968 0.984 0.952 0.96 0.932 0.948

(0.463) (0.488) (0.387) (0.402) (0.355) (0.365)

β3,0 0.976 0.968 0.972 0.98 0.964 0.968

(1.005) (1.008) (0.832) (0.834) (0.765) (0.774)

β4,0 0.964 0.972 0.964 0.964 0.964 0.968

(1.341) (1.381) (1.251) (1.272) (1.197) (1.217)

(c) β1,0 0.988 0.944 0.988 0.928 1 0.932

(2.373) (3.126) (1.282) (0.769) (0.869) (0.594)

β2,0 0.976 0.928 0.98 0.956 0.976 0.968

(0.921) (2.42) (0.549) (0.475) (0.427) (0.401)

β3,0 0.976 0.924 0.988 0.964 0.98 0.972

(2.371) (4.048) (1.408) (1.146) (1.095) (0.995)

β4,0 0.964 0.968 0.964 0.96 0.96 0.952

(2.143) (5.082) (1.746) (1.767) (1.578) (1.605)

from the complete set (about 10% of the available number of observations), out of which the first n1 “ 148

observations were treated as the validation sample. This leads to a validation sample fraction f « 0.2. After

including an intercept term in the logistic regression model, we have

P0

`

Y “ 1 | X “ x
˘

“
1

1` expt´β1,0 ´ β2,0 ¨ xu
, x P R.

Based on complete information over 7409 individuals, the true parameter values were found to be, pβ1,0, β2,0q “
`

1.66,´0.0623
˘

. However, usually such detailed information would be unavailable. Using the validation sam-

ple, we found pθ1,n “ 0.137. The pseudo-likelihood based estimates using the sample of size n “ 740 are,

pβ1,n “ 2.37 and pβ2,n “ ´0.0761, and the corresponding bootstrap percentile 95% confidence intervals are,
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Table 5: Empirical coverage probabilities and average lengths (in parenthesis below) for 95% confidence inter-

vals for βj,0, j “ 1, . . . , 9, with sample size n “ 1000.

Covariatesa and associated coefficients

Intercept Log-Normal Bernoulli Uniform BVN.1b BVN.2b Poisson χ2
2 Mixturec

Method n1 β1,0 β2,0 β3,0 β4,0 β5,0 β6,0 β7,0 β8,0 β9,0

Asymp. 100 0.98 0.948 0.952 0.972 0.948 0.952 0.956 0.96 0.96

(3.407) (1.718) (3.528) (5.14) (2.514) (2.424) (4.431) (3.38) (2.167)

200 0.988 0.956 0.976 0.948 0.96 0.972 0.948 0.956 0.968

(1.456) (0.664) (1.87) (2.682) (1.164) (1.084) (1.443) (1.153) (0.734)

300 0.984 0.948 0.96 0.948 0.96 0.952 0.96 0.944 0.956

(1.095) (0.559) (1.644) (2.437) (1.011) (0.959) (1.129) (0.919) (0.578)

Boot. 100 0.976 0.932 0.968 0.992 0.944 0.956 0.944 0.948 0.944

(7.641) (5.391) (10.58) (9.795) (7.143) (6.394) (15.206) (11.569) (7.536)

200 0.968 0.96 0.988 0.988 0.972 0.976 0.936 0.952 0.968

(1.448) (0.888) (2.335) (3.316) (1.467) (1.362) (1.949) (1.547) (0.989)

300 0.972 0.956 0.984 0.988 0.972 0.972 0.916 0.928 0.952

(1.099) (0.678) (1.902) (2.805) (1.181) (1.114) (1.379) (1.114) (0.699)

a All covariates are centered.

b BVN.1 and BVN.2 denotes covariates X5 and X6 respectively, where pX5, X6q „ N2p0, 0, 1, 1, 0.65q.

c Corresponds to X9 „ p3{5q ¨Np´1, 1q ` p2{5q ¨Np4, 2q ´ 1.

p1.752, 2.961q and p´0.09573, ´ 0.05529q respectively. The CI for the intercept coefficient does not contain

β1,0, but the CI for the slope parameter β2,0 contains the true value. Also, the CI for β2,0 indicates that,

plausibly with increase in age, the chances of a person being literate decreases, which is true in general for

the Indian populace.

6 Concluding remarks

In this article, we propose a pseudo likelihood based approach to the estimation of parameters of a regres-

sion model that assumes a logistic link and incorporates misclassification probabilities of binary responses

as parameters. Under a minimal set of assumptions, the consistency and asymptotic normality of the re-

sulting estimators are proved. To the best of our knowledge, this is possibly the only paper in the existing

literature, that provides a rigorous asymptotic theory for likelihood based inference for such models. Also,

the asymptotic theory developed here is comprehensive enough to deal with differential classification errors.
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For drawing inference on the model parameters we propose a bootstrap method supported by its distri-

butional consistency. The method avoids direct estimation of asymptotic variance of the estimators. This

helps in making the implementation of the methodology easier for practitioners in real-life situations. The

bootstrap distributional consistency result is new to the literature of pseudo-likelihood based estimation. No

result is available to handle bootstrap consistency in this set up. Some of the techniques used in proving the

bootstrap consistency result are novel, and could possibly be used to prove bootstrap consistency in similar

problems.

The extensive numerical studies presented here clearly show the superiority of the proposed pseudo-

likelihood based estimation procedure over the other commonly used likelihood based methods for the es-

timation of the model parameters. In this context, it should be mentioned that no asymptotic theory is

available for the joint maximum likelihood estimators (JMLE) , and developing such a theory, at this point,

seems to be a formidable problem.

Finally, it should be noted that the proposed methodology is applicable for binary regression with a

logistic link only. It is an open problem to develop a similar theory for binary regression with arbitrary, but

known link functions.

7 Proofs of main results

Throughout the proofs many convergence in probability statements involving the p-dimensional functions

h1,β or h2,β,θ (cf. (2.3)) have been proved by showing that those convergence in probability statements

hold for each component of h1,β or h2,β,θ. This is possible since p is fixed. Without loss of generality,

we have studied the first component of these p dimensional functions and for simplicity, we have used the

same notation to denote the first components of h1,β or h2,β,θ. On some occasions, the same notational

convention has been used for the p-dimensional functions, Znpβq, Zn,ipβq, Zpβq and Zipβq, (cf. (2.6) and

(2.8)) for i “ 1, 2. Whenever this has been done while proving a result, we have noted that in the proof.

The cases where these functions are treated as p-dimensional functions will be obvious from the context of

the concerned statements. In case of the with-intercept model (2.9), under the modified assumption (A3:),

the same results can be proved by studying the second or other components of h1,β or h2,β,θ, by following

exactly same arguments as in the without intercept case, as shown in the proofs below. Hence, separate

proofs for the with-intercept case are not shown.

7.1 Proofs of Theorems 2.2 and 3.2

Proof of Theorem 2.2(i). Consider the first components of h1,β, h2,β,θ, Znpβq, Zn,ipβq, Zpβq and Zipβq, for

i “ 1, 2, and denote them by the same symbols. Using assumptions (A3) and (A4) along with Lemma 8.7
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and (8.1) we can write,

sup
βPRp

|Znpβq ´ Zpβq|

ď fn ¨ sup
β
|Zn,1pβq ´ Z1pβq| ` p1´ fnq ¨ sup

β
|Zn,2pβq ´ Z2pβq| ` |fn ´ f | ¨ sup

β

ˇ

ˇP0h1,β

ˇ

ˇ

` |fn ´ f | ¨ sup
β

ˇ

ˇP0h2,β,θ0

ˇ

ˇ

ď oP˚0
p1q ` oP˚0

p1q ` |fn ´ f | ¨ 2E|X1| ` |fn ´ f | ¨M0 ¨E|X1| “ oP˚0
p1q ` op1q “ oP˚0

p1q.

Extending this argument to all p components we obtain, supβ }Znpβq ´ Zpβq} “ oP˚0
p1q. From (2.7) we

have, Znppβnq “ oP˚0
p1q. Combining these facts with Lemma 8.3 and using Theorem 2.10 of Kosorok (2008)

leads to the proof.

Proof of Theorem 2.2(ii). We verify the conditions of Theorem 2.11 of Kosorok (2008) to complete the proof.

Note that, from Lemma 8.3 we have Zpβ0q “ 0, from (2.7) it follows that
?
nZnppβnq “ oP˚0

p1q and from

Theorem 2.2(i) it follows that }pβn´β0} “ oP˚0
p1q. From Lemma 8.10 we obtain the stochastic equicontinuity

condition,
›

›

?
n
`

Zn ´ Z
˘`

pβn ´ β0

˘
›

› “ oP˚0

`

1 `
?
n}pβn ´ β0}

˘

. Also, as per assumption (A5), 9Zpβ0q (cf.

(8.41)) is nonsingular. It remains to study the limit distribution of
?
n
`

Znpβ0q´Zpβ0q
˘

. Using the definition

of h1,β (cf. (2.3)) and Wi’s (cf. (7.6)), we define the pp` 3q dimensional i.i.d. random vectors Ti’s as,

Ti “

¨

˝

T
p1q
i

T
p2q
i

˛

‚, with
T
p1q
i “ h1,β0

pYi,Xiq ´E0h1,β0
pY1,X1q,

T
p2q
i “ Wi ´E0W1,

,

.

-

i “ 1, . . . , n1. (7.1)

Note that, E0Ti “ 0 and Var0pTiq “ Σ, which is computed in (8.37). Using assumption (A3) and the CLT

for i.i.d. random vectors,
?
n1 ¨ sTn1

d
Ñ T “

`

Tp1q,Tp2q
˘1
„ Np`3

`

0,Σ
˘

. Based on the definition of the Ti’s

we can write,

?
n ¨ pZnpβ0q ´ Zpβ0qq

“
a

fn ¨Gn1
h1,β0

`
a

1´ fn ¨Gn2

`

h2,β0,
pθn
´ h2,β0,θ0

˘

`
a

1´ fn ¨Gn2
h2,β0,θ0

`
a

1´ fn ¨
?
n2 ¨

´

P0h2,β0,
pθn
´P0h2,β0,θ0

¯

` op1q

” A1,n `A2,n `A3,n `A4,n ` op1q

“
a

fn ¨
?
n1 ¨ sT

p1q
n1
`A2,n `A3,n `A4,n ` op1q. (7.2)

Note that A3,n is independent of A1,n and A4,n. Consider the function f̄ : Θ ÞÑ P0h2,β0,θ, defined in Lemma

8.8(ii) and its total derivative map A0 evaluated at θ “ θ0, shown in (8.40). Note that A0 is a pˆ 2 matrix

and recall the definitions of φ (cf. (7.8)) and B0 (cf. (2.10)). We can use Lemma 2.1 and the Delta method
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(cf. Theorem 3.1 of van der Vaart (1998)) repeatedly to carry out the following simplification:

A4,n “
a

1´ fn ¨
?
n2

”

P0h2,β0,
pθn
´P0h2,β0,θ0

ı

“
a

1´ fn ¨
?
n2

”

f̄ppθnq ´ f̄pθ0q

ı

“
a

1´ fn ¨
?
n2

”

A0ppθn ´ θ0q ` oP˚0
p}pθn ´ θ0}q

ı

“ A0 ¨
1´ fn
?
fn

¨
?
n1

`

φpĎWn1
q ´ φpE0W1q

˘

` oP˚0
p1q

“
1´ fn
?
fn

¨
`

A0B0

˘?
n1 ¨ sT

p2q
n1
` oP˚0

p1q, (here, A0B0 is a pˆ 3 matrix).

Let Ip denote the p dimensional identity matrix. Following the above steps we have,

A1,n `A4,n “

´

?
fn ¨ Ip

1´fn?
fn
¨
`

A0B0

˘

¯

¨

˝

?
n1 ¨ sT

p1q
n1

?
n1 ¨ sT

p2q
n1

˛

‚` oP˚0
p1q

d
Ñ

´

?
f ¨ Ip

1´f
?
f
¨
`

A0B0

˘

¯

¨

˝

Tp1q

Tp2q

˛

‚.

Using assumption (A3) and the CLT for i.i.d. random vectors,

A3,n “
a

1´ fn ¨Gn2
h2,β0,θ0

“
a

1´ fn ¨
?
n2

˜

1

n2

n
ÿ

i“n1`1

h2,β0,θ0
prYi,Xiq ´E0h2,β0,θ0

prYi,Xiq

¸

d
Ñ

a

1´ f ¨Np p0,Γq ,

with Γ being defined as in (8.38). Further, using Lemma 8.6,

}A2,n} ď
a

1´ fn ¨ sup
β

›

›Gn2

`

h2,β,pθn
´ h2,β,θ0

˘
›

› “ oP˚0
p1q.

Since T and the Np
`

0,Γq random vectors can be considered as independent, it follows that

?
npZnpβ0q ´ Zpβ0qq

d
Ñ U ”

a

f ¨Tp1q `
1´ f
?
f
¨
`

A0B0

˘

¨Tp2q `
a

1´ f ¨Np p0,Γq , (7.3)

where, U „ Np p0,Σ0q with Σ0 given by (2.14). This completes the verification of required conditions in

Theorem 2.11 of Kosorok (2008), and it implies that,

?
nppβn ´ β0q

d
Ñ ´

´

9Zpβ0q

¯´1

U
d
“ Np

ˆ

0,
“

9Zpβ0q
‰´1

Σ0

´

“

9Zpβ0q
‰´1

¯1
˙

,

as stated in (2.13).

Proof of Theorem 3.2(i). Let us consider the first components of h1,β, h2,β,θ, Znpβq, Zn,ipβq, Zpβq and

Zipβq, for i “ 1, 2, and denote them by the same symbols. Define the classes of functions, G1 “ th1,β : β P Rpu
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and G2 “ th2,β,θ0
: β P Rpu. Following the arguments used in the proof of Theorem 2.2, we have

sup
β

ˇ

ˇ pZnpβq ´ Zpβq
ˇ

ˇ

ď sup
β

ˇ

ˇfn ¨ pPn1
h1,β ` p1´ fnq ¨ pPn2

h
2,β,

p

pθn
´ fn ¨P0h1,β ´ p1´ fnq ¨P0h2,β,θ0

ˇ

ˇ

` |fn ´ f | ¨ sup
β

ˇ

ˇP0h1,β

ˇ

ˇ` |fn ´ f | ¨ sup
β

ˇ

ˇP0h2,β,θ0

ˇ

ˇ

ď fn ¨ sup
β

ˇ

ˇ

`

pPn1
´P0

˘

h1,β

ˇ

ˇ` p1´ fnq ¨ sup
β

ˇ

ˇ

ˇ

pPn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ

` p1´ fnq ¨ sup
β

ˇ

ˇ

`

pPn2
´P0

˘

h2,β,θ0

ˇ

ˇ` op1q

” E1,n ` E2,n ` E3,n ` op1q. (7.4)

Consider E1,n in (7.4). We can express, pPn1
´P0 “ n´1

1

řn1

i“1Mn1,i ¨
`

δpYi,Xiq ´P0

˘

. Note that, the (scaled)

multinomial weights tn´1
1 Mn1,i : 1 ď i ď n1u are non-negative and exchangeable random variables and

independent of Xn1
. Further, n´1

1

řn1

i“1Mn1,i “ 1 and max
 

|n´1
1 Mn1,i| : 1 ď i ď n1

(

“ oPM
p1q, due to the

following argument: for each i P t1, . . . , n1u, Mn1,i „ Bin
`

n1, n
´1
1

˘ d
“
řn1

i“1 Un1,i, where, tUn1,i : 1 ď i ď n1u

are i.i.d. Bernoulli
`

n´1
1

˘

. Fix any ε P p0, 1s. Then, there exists some n1 P N, such that n´1
1 ă mintε, 1{2u,

which implies, 0 ă ε ´ E
`

Un1,1

˘

“ ε ´ n´1
1 ă 1 ´ n´1

1 . We can apply Hoeffding’s inequality (Proposition

A.6.1 of van der Vaart and Wellner (1996)), to obtain

PM

ˆ

max
1ďiďn1

|Mn1,i|

n1
ě ε

˙

ď n1 ¨PM pMn1,1 ě n1εq

“ n1 ¨P
`

sUn1 ´E
`

Un1,1

˘

ě ε´E
`

Un1,1

˘˘

ď n1 ¨ exp

"

´

ˆ

n1ε
2 `

1

n1
´ 2ε

˙

¨
n1

n1 ´ 2
¨ log pn1 ´ 1q

*

« n1 ¨ exp
 `

´n1ε
2 ` 2ε

˘

¨ log n1

(

, (for large enough n1)

“ n1`2ε´n1ε
2

1 Ñ 0, as n1 Ñ8.

Since, G1 is a Glivenko Cantelli (GC) class (from Lemma 8.7(i)), using Lemma 3.6.16 of van der Vaart

and Wellner (1996) it follows that E1,n “ oP˚M
p1q in P˚0 -probability. Following the same arguments we can

show that E3,n “ oP˚M
p1q in P˚0 -probability, since G2 is a GC class (from Lemma 8.7(ii)) and the weights

tn´1
2 Mn2,i : 1 ď i ď n2u satisfy the required assumptions.

Now consider E2,n. From Lemma 3.1(ii) and Lemma 8.11 we know that, }
p

pθn ´ θ0} “ oP˚M
p1q in P˚0 -

probability. This implies (using Lemma 8.18), there exists a sequence εn Ó 0, such that P˚M
`

}
p

pθn ´ θ0} ą

εn
˘

“ oP˚0
p1q. Consider the events, An “

“

}
p

pθn ´ θ0} ď εn
‰

, n ě 1. Since εn Ó 0, there exists some n0 P N,

such that, tθ : }θ ´ θ0} ď εnu Ă Θ for all n ě n0. On the set An, using (8.6) we obtain,

sup
β

ˇ

ˇpPn2

`

h
2,β,

p

pθn
´ h2,β,θ0

˘
ˇ

ˇ ď K0 ¨ εn ¨

˜

1

n2

n
ÿ

i“n1`1

| pXi,1| ´E|X1|

¸

`K0 ¨ εn ¨E|X1|.
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Fix any η ą 0. Since ε Ó 0, assumption (A3) implies that for large enough n we must have, 2K0 ¨εn ¨E|X1| ă η.

Also,
`

n´1
2

ř

i |
pX1,i| ´E|X1|

˘

“ oP˚M
p1q in P˚0 probability, under assumption (A3). Hence,

P˚M

˜

sup
β

ˇ

ˇpPn2

`

h
2,β,

p

pθn
´ h2,β,θ0

˘
ˇ

ˇ ą η

¸

ď P˚M

˜

K0 ¨ εn ¨

˜

1

n2

n
ÿ

i“n1`1

| pXi,1| ´E|X1|

¸

`K0 ¨ εn ¨E|X1| ą η, }
p

pθn ´ θ0} ď εn

¸

` oP˚0
p1q

ď P˚M

˜

n2
´1

n
ÿ

i“n1`1

| pXi,1| ´E|X1| ą
η

2εn ¨K0

¸

`P˚M

´

K0 ¨ εn ¨E|X1| ą
η

2

¯

` oP˚0
p1q

“ oP˚0
p1q ` 0 “ oP˚0

p1q.

Extending this argument to all components we get, supt}Znpβq ´ Zpβq} : β P Rpu “ oP˚M
p1q in P˚0 -

probability. The proof follows by using Theorem 13.1 of Kosorok (2008) along with Lemma 8.3.

Proof of Theorem 3.2(ii). Following the definition of Ti’s in (7.1), define their bootstrap versions and denote

them by tpTi : 1 ď i ď n1u, where pTi “
`

pT
p1q
i , pT

p2q
i

˘1

. Following same arguments as in the proof of Theorem

2.2(ii), using Lemma 3.1(ii) and Lemma 8.11, we can write

a

1´ fn ¨
?
n2 ¨P0

´

h
2,β0,

p

pθn
´ h2,β0,θ0

¯

“
1´ fn
?
fn

¨
`

A0B0

˘

¨
?
n1 ¨

s

pT
p2q

n1
` oP˚M

p1q.

This implies,

a

1´ fn ¨
?
n2 ¨P0

´

h
2,β0,

p

pθn
´ h2,β0,

pθn

¯

“
1´ fn
?
fn

¨
`

A0B0

˘

¨
?
n1 ¨

ˆ

s

pT
p2q

n1
´ sTp2qn1

˙

` oP˚M
p1q. (7.5)

Following Lemma (8.15) and Lemma 8.16 we can write,

?
n

ˆ

Zp
p

pβnq ´ Zpβ0q

˙

“
?
n ¨ 9Zpβ0q

ˆ

p

pβn ´ β0

˙

` oP˚M

ˆ

?
n ¨

›

›

p

pβn ´ β0

›

›

˙

“
?
n ¨ 9Zpβ0q

ˆ

p

pβn ´ β0

˙

` oP˚M
p1q,

and the proof of Theorem 2.2(ii) essentially shows that,

?
n
´

Zppβnq ´ Zpβ0q

¯

“
?
n ¨ 9Zpβ0q

´

pβn ´ β0

¯

` oP˚0

´?
n ¨

›

›pβn ´ β0

›

›

¯

“
?
n ¨ 9Zpβ0q

´

pβn ´ β0

¯

` oP˚0
p1q,

because,
?
n ¨ }pβn ´ β0} “ OP˚0

p1q. Hence subtracting the above two equations, using (8.26), using the
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second equation in (7.5) and using the limiting distribution of the bootstrap random vectors pTi’s, we obtain

?
n ¨

ˆ

Zp
p

pβnq ´ Zp
pβnq

˙

“ 9Zpβ0q ¨
?
n

ˆ

p

pβn ´
pβn

˙

` oP˚M
p1q ` oP˚0

p1q

“ ´
?
n ¨

´

pZnpβ0q ´ Znpβ0q

¯

` oP˚M
p1q

“ ´

”

a

fn ¨ pGn1
h1,β0

`
a

1´ fn ¨
?
n2 ¨P0

´

h
2,β0,

p

pθn
´ h2,β0,

pθn

¯

`
a

1´ fn ¨ pGn2
h2,β0,θ0

ı

` oP˚M
p1q

“ ´

´

?
fn ¨ Ip

1´fn?
fn
¨
`

A0B0

˘

¯

¨

˚

˚

˝

?
n1 ¨

ˆ

s

pT
p1q

n1
´ sT

p1q
n1

˙

?
n1 ¨

ˆ

s

pT
p2q

n1
´ sT

p2q
n1

˙

˛

‹

‹

‚

´
a

1´ fn ¨
1
?
n2

n
ÿ

i“n1`1

"

h2,β0,θ0

ˆ

p

rYi, pXi

˙

´ h2,β0,θ0

´

rYi,Xi

¯

*

` oP˚M
p1q

d
Ñ ´U, conditionally in outer probability P˚0 ,

where, U is defined in (7.3). This follows because,
?
n1

´

s

pTn1
´ sTn1

¯

converges to the same limiting distri-

bution as
?
n1

`

sTn1
´E0T1

˘

, conditionally in probability P0 (cf. Theorem 23.4 of van der Vaart (1998)).

Also, for the same reason pGn2
h2,β0,θ0

has the same limiting distribution as the term A3,n in the proof of

Theorem 2.2(ii). Hence,
?
n

ˆ

p

pβn ´
pβn

˙

d
Ñ ´

´

9Zpβ0q

¯´1

U, conditionally in outer probability P˚0 .

Proof of Corollary 3.3. The proof follows by using Lemma 21.2 of van der Vaart (1998) and Theorem 3.2.

We omit the details.

Proof of Corollary 3.4. The proof proceeds in the same manner as that of Corollary 3.3, by noting that: (i)

the gradient of πpβq is non-zero at β “ β0 and (ii)
?
n
`

πppβnq ´ πpβ0q
˘

and
?
n
`

πp
p

pβnq ´ πppβnq
˘

converge

to the same limiting normal distribution.

7.2 Proofs of Lemmas 2.1 and 3.1

Proof of Lemma 2.1. For each i.i.d. triplet tpYi, rYi,Xiq : 1 ď i ď n1u, define the random variables,

V1,i “ 1prYi “ 0, Yi “ 0q, V2,i “ 1prYi “ 0, Yi “ 1q,

V3,i “ 1prYi “ 1, Yi “ 0q, V4,i “ 1prYi “ 1, Yi “ 1q and

Wi “
`

V1,i, V2,i, V3,i

˘1
,

,

/

/

/

.

/

/

/

-

for all i “ 1, . . . , n1. (7.6)

Write, πk,0 “ E0Vk,1, for k “ 1, 2, 3, 4. It is easily seen that,

`

π1,0, π2,0, π3,0, π4,0

˘1
“
`

p1´ θ1,0qp1´ a0q, θ2,0a0, θ1,0p1´ a0q, p1´ θ2,0qa0

˘1
, (7.7)

where, a0 has been defined in (2.10). Since a0 P p0, 1q and θk,0 are bounded away from 0 and 1, this

implies πk,0 P p0, 1q for all k, and satisfy the relations, π1,0 ` π3,0 “ p1 ´ a0q and π2,0 ` π4,0 “ a0. Note
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that, tWi : 1 ď i ď n1u are i.i.d. random vectors with E0

`

Wi

˘

“ p1´ a0 ´ π3,0, π2,0, π3,0q
1

and it can be

shown that Var0pWiq “ Σ2,2 (cf. (2.11)). Using the multivariate CLT for i.i.d. random vectors we obtain,
?
n1

`

ĎWn1
´E0W1

˘ d
Ñ N3 p0,Σ2,2q. Following the definition of pθn in (2.2), we can express

pθ1,n “
sV3,n1

` p2n1q
´1

sV1,n1 `
sV3,n1 ` n

´1
1

and pθ2,n “
sV2,n1

` p2n1q
´1

1´ sV1,n1 ´
sV3,n1 ` n

´1
1

.

Define the mapping

φ “ pφ1, φ2q : R3 ÞÑ R2, where
φ1px, y, zq “ z{px` zq,

φ2px, y, zq “ y{p1´ x´ zq

,

.

-

. (7.8)

Based on the map φ described above, define the random quantities

rθn “
`

rθ1,n, rθ2,n

˘1
, with rθk,n “ φk

`

sV1,n1
, sV2,n1

, sV3,n1

˘

, for k “ 1, 2, and n ě 1. (7.9)

Then, it is possible to express

?
n1

´

pθ1,n ´ rθ1,n

¯

“
1

2
?
n1
¨

sV1,n1
´ sV3,n1

`

sV1,n1 `
sV3,n1 ` n

´1
1

˘

¨
`

sV1,n1 `
sV3,n1

˘ .

Using the WLLN for i.i.d. means and since a0 P p0, 1q, we can claim

sV1,n1
´ sV3,n1

`

sV1,n1 `
sV3,n1 ` n

´1
1

˘

¨
`

sV1,n1 `
sV3,n1

˘

P0
Ñ

1´ a0 ´ 2π3,0
`

1´ a0

˘2 P p0,8q,

and as a result,
?
n1

´

pθ1,n ´ rθ1,n

¯

“ oP0

`

n
´1{2
1

˘

. Similarly, we can show that,
?
n1

´

pθ2,n ´ rθ2,n

¯

“ oP0

`

n
´1{2
1

˘

.

Hence, in order to study the asymptotic distribution of
?
n1

`

pθn´θ0

˘

, it is enough to study the asymptotic dis-

tribution of
?
n1

`

rθn´θ0

˘

, where rθn “
`

rθ1,n, rθ2,n

˘1
. From (7.7) it follows that θk,0 “ φk

`

EV1,1,EV2,1,EV3,1

˘

,

for k “ 1, 2. The matrix of partial derivatives of φ will be

Bpx, y, zq ”

¨

˝

B
Bxφ1

B
Byφ1

B
Bzφ1

B
Bxφ2

B
Byφ2

B
Bzφ2

˛

‚“

¨

˝

´ z
px`zq2

0 x
px`zq2

y
p1´x´zq2

1
1´x´z

y
p1´x´zq2

˛

‚.

It follows that, B
`

E0W1

˘

“ B
`

1 ´ a0 ´ π3,0, π2,0, π3,0

˘

“ B0, which is defined in (2.10). Following the

stated assumptions, it is easy to check that each element of Bpx, y, zq exists in a neighbourhood of E0W1

and is continuous at E0W1. The proof follows by using the Delta method (cf. Theorem 3.1 of van der Vaart

(1998)) along with the asymptotic normality of ĎWn1
.

Proof of Lemma 3.1. Using the bootstrapped validation sample pXn1 , we define the bootstrap version of Vk,i’s

and Wi’s (cf. (7.6)) as,

 

pVk,i : k “ 1, 2, 3, 4
(

and xWi “
`

pV1,i, pV2,i, pV3,i

˘1
, for all i “ 1, . . . , n1.

Conditional on Xn1 , the xWi’s are i.i.d. and can be considered as a with replacement sample from the

finite set of random vectors tWi : i “ 1, . . . , n1u. Also, from the proof of Lemma 2.1, E0Wi “ 0 and
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Var0pWiq “ Σ2,2. Hence, using Theorem 23.4 of van der Vaart (1998) it follows that,

1
?
n1

n1
ÿ

i“1

´

xWi ´ ĎWn1

¯

d
Ñ N3

`

0, Σ2,2

˘

conditionally almost surely pP0q, (7.10)

where Σ2,2 is defined in (2.11). Now we handle two statements of Lemma 3.1 separately.

(i) This proof of this part follows from retracing the arguments used in the proof of Lemma 2.1, applied to

the bootstrapped random vectors txWi : i “ 1, . . . , n1u, using (7.10) above, using the fact that the map

φ in (7.8) is continuously differentiable in a neighbourhood of E0W1 and by applying the continuous

mapping theorem for bootstrapped random variables (cf. Theorem 23.5 of van der Vaart (1998)).

(ii) Following the proof of Lemma 2.1, it is enough to study the limiting distribution of
?
n1

`

r

rθn´θ0

˘

, where
r

rθn is the bootstrap version of rθn, defined in (7.9). This follows because }
Ď

xWn1
´E0pW1q} “ oPr˚p1q.

Write, ı “
?
´1 and consider any fixed tp‰ 0q P R2. Define, σ2ptq “ t1B0Σ2,2B

1
0t and the random

variables,

pRnptq “

?
n1

ˆ

t1
r

rθn ´ t1rθn

˙

σptq
and Rnptq “

?
n1

´

t1rθn ´ t1θ0

¯

σptq
, n ě 1.

Write, χp¨q “ characteristic function of Np0, 1q. From Lemma 2.1 and (7.10), it follows that for any

fixed u P R,

ˇ

ˇ

ˇ
E0

´

eı¨uRnptq
¯

´ χpuq
ˇ

ˇ

ˇ
“ op1q and

ˇ

ˇ

ˇ
EM

´

eı¨u
pRnptq

¯

´ χpuq
ˇ

ˇ

ˇ
“ oP0

p1q. (7.11)

Note that,
`

σptq
˘´1

¨
?
n1

`

t1
r

rθn ´ t1θ0

˘

“ pRnptq ` Rnptq. Since the characteristic function of any

random variable is bounded, we can use the second assertion in (7.11) to claim that,

2 ě
ˇ

ˇ

ˇ
eı¨uRnptq ¨

!

EM

´

eı¨u
pRnptq

¯

´ χpuq
)
ˇ

ˇ

ˇ
“ oP0

p1q. (7.12)

Fix any ε ą 0 and define the sets,

An “
”
ˇ

ˇ

ˇ
eı¨uRnptq ¨

!

EM

´

eı¨u
pRnptq

¯

´ χpuq
)
ˇ

ˇ

ˇ
ą ε

ı

, n ě 1.

Following (7.12), there exists some n0 “ n0pεq P N, such that P0pAnq ă ε, for all n ě n0. Thus, using

Fubini’s theorem for product measures we have

Er

ˆ

exp

"

ı ¨ u ¨
`

σptq
˘´1

¨
?
n1

ˆ

t1
r

rθn ´ t1θ0

˙*˙

“ Er
”

eı¨upRnptq`
pRnptqq

ı

“ E0

”´

eı¨uRnptq
¯

¨

!

EM

´

eı¨u
pRnptq

¯

´ χpuq
)

¨ t1pAcnq ` 1pAnqu
ı

` χpuq ¨E0

´

eı¨uRnptq
¯

. (7.13)

Consider the first term on the right side of (7.13). We can write,

E0

”´

eı¨uRnptq
¯

¨

!

EM

´

eı¨u
pRnptq

¯

´ χpuq
)

¨ t1pAcnq ` 1pAnqu
ı

ď ε` 2 ¨P0pAnq ď ε` 2ε “ 3ε,
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whenever, n ě n0. From the first assertion in (7.11) it follows that, χpuq ¨ E0

`

eı¨uRnptq
˘

Ñ
`

χpuq
˘2

.

Combining both parts, we can conclude that,

Er

ˆ

exp

"

ı ¨ u ¨
`

σptq
˘´1

¨
?
n1

ˆ

t1
r

rθn ´ t1θ0

˙*˙

Ñ e´u
2

, for any fixed u P R.

The right side above corresponds to the characteristic function of Np0, 2q. By the uniqueness theorem

for characteristic functions, the Cramer-Wold device and Slutsky’s theorem we can claim that

?
n1

ˆ

r

rθn ´ θ0

˙

d
Ñ N2

`

0, 2B0Σ2,2B
1
0

˘

,

where the convergence is understood in terms of the product probability Pr. Combining this with
?
n1

`

p

pθn ´
r

rθn
˘

“ oPr˚p1q, completes the proof.
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8 Appendix

We follow the same notational convention, as stated in the beginning of Section 7.

8.1 Auxiliary lemmas required for proving Theorem 2.2

We begin with a simple upper bound which will be used throughout the proofs.

Lemma 8.1. Under assumption (A2), the following inequality holds:

4 ď
1

h3,β,θpxq ¨ t1´ h3,β,θpxqu
ăM0 ”

1

max
i“1,2

δip1´ δiq
ă 8, for all x,β P Rp and θ P Θ. (8.1)

Proof of Lemma 8.1. From the expression of h3,β,θpxq (cf. (2.3)), it can be seen as a convex combination of θ1

and p1´θ2q, for any x,β and θ. Hence, h3,β,θpxq P pθ1, 1´θ2q or p1´θ2, θ1q, depending on which probability

is larger. Note that, p1 ´ θ2q ‰ θ1, due to assumption (A2)(ii). In case θ1 ă p1 ´ θ2q, using assumption

(A2)(i) we must have, δ1 ă θ1 ă p1´θ2q ă p1´ δ1q. And if, p1´θ2q ă θ1, then p1´ δ2q ă p1´θ2q ă θ1 ă δ2.

Combining both cases we have,

1

4
ě h3,β,θpxq ¨ t1´ h3,β,θpxqu ą max

i“1,2
δip1´ δiq ą 0, for all x, β and θ P Θ,

from which (8.1) follows.

The following result shown in Lemma 8.2 shows the uniqueness and well-separability of β0 as a root

of the equation Z1pβq “ 0, under both without and with intercept models in (1.1) and (2.9) separately

to illustrate some fine issues related to identifiability of the logistic regression model. For the rest of the

article, it is enough to consider (1.1) for all calculations. In case (2.9) is considered, we will simply substitute

X1 “ 1 with probability 1 and assume that the conditions in assumption (A3:) hold. Lemma 8.3 shows the

uniqueness and well-separability of β0 as a root of the equation Zpβq “ 0, using Lemma 8.2.

Lemma 8.2. The result is stated separately for the without and with intercept models.

(i) Consider the model (1.1), without an intercept term. Suppose, assumptions (A1) and (A3) holds.

Then, Z1pβq (cf. (2.8)) has an unique zero at β “ β0 and the unique zero at β0 is well-separated in

the following sense,

inf
β:}β´β0}ěδ

}Z1pβq} ą 0, for all δ ą 0.

(ii) Consider the model (2.9), with an intercept term. Suppose, assumptions (A1) and (A3:) holds. Then,

the statement about Z1pβq in part (i) above holds in this case.

Proof of Lemma 8.2. We begin by proving the without intercept case.
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(i) In this case, the first component X1 of the p-dimensional covariate vector X is assumed to be a non-

degenerate component. When the underlying regression coefficient is β, then pY,Xq has joint density

pβpy,xq “ tψpx
1βqu

y 
1´ ψpx1βq

(1´y
, y P t0, 1u, x P Rp,

with respect to the product measure µ “ ν ˆ Q, with ν being the counting measure on t0, 1u and Q

denoting the marginal of X. Also, the family of densities tpβ : β P Rpu is identifiable. If not, then for

some β1 ‰ β2 P Rp, we will have pβ1
“ pβ2

, a.e. µ. Using y “ 0 and 1, we obtain

Q
`

ψpX1β1q “ ψpX1β2q
˘

“ 1 ñ Q
`

pβ1 ´ β2q
1
X “ 0

˘

“ 1,

ñ Q pX P some pp´ 1q dimensional subspace of Rpq “ 1,

However, under assumption (A3) this is impossible and hence, β1 “ β2, which implies identifiability.

For each β, define the expected log-likelihood as M1pβq “ P0 log pβpY,Xq, where P0 is the distribution

corresponding to the density pβ0
. Using assumption (A3) and the DCT (dominated convergence

theorem), it is easy to check that the gradient of M1pβq, denoted by ∇M1pβq, exists at all β and

∇M1pβq “ Z1pβq (cf. (2.8)). Extending the same argument it follows that all second order partial

derivatives of M1pβq will exist at every β with,

B2M1pβq

BβiBβj
“ ´

ż

xixjψpx
1βqt1´ ψpx1βqu dQpxq, for all i, j.

Consider any u ‰ 0 P Rp. Then,
p
ÿ

i“1

p
ÿ

j“1

uiuj ¨
B2M1pβq

BβiBβj

“ ´

ż

ψpx1βqt1´ ψpx1βqu ¨
`

u1x
˘2
dQpxq

“ ´

ż

u1x“0

ψpx1βqt1´ ψpx1βqu ¨
`

u1x
˘2
dQpxq ´

ż

u1x‰0

ψpx1βqt1´ ψpx1βqu ¨
`

u1x
˘2
dQpxq ă 0,

since, Q ptx : u1x “ 0uq ă 1 using assumption (A3) and ψpx1βqt1´ ψpx1βqu ă 0, for all x,β P Rp. As

a result, the Hessian of M1pβq is strictly negative definite at each β P Rp, which implies β ÞÑ M1pβq

is strictly concave. A strictly concave function has an unique point of maxima and in this case, due to

the identifiability of the family tpβ : β P Rpu it follows from Lemma 5.35 of van der Vaart (1998) that

the unique point of maxima of M1pβq is at the true parameter β0. Obviously, ∇M1pβ0q “ Z1pβ0q “ 0.

If possible, assume that there exists some β1 ‰ β0, such that ∇M1pβ1q “ Z1pβ1q “ 0. But due to the

strict concavity of M1pβq, this implies β1 will be an unique maxima of M1, which is not possible as per

the above argument. Hence β0 is the unique zero of Z1pβq which proves the first part of the statement.

To prove the second part of the statement we use Lemma 8.17, using the fact that M1 : Rp ÞÑ R is

strictly concave, with an unique maxima at β0. This completes the proof.

(ii) In case an intercept term is included in the model, X “
`

1, X2, . . . , Xp

˘1
and

P0

`

Y “ 1|pX2, . . . , Xpq “ px2, . . . , xpq
˘

“ ψ
`

β1,0 `

p
ÿ

j“2

βj,0xj
˘

,
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where, β1,0 is the intercept term and β0 “
`

β1,0, β2,0, . . . , βp,0
˘1

. Note that we can re-write,

β1,0 `

p
ÿ

j“2

βj,0 ¨ xj “ β1,0 `

p
ÿ

j“2

βj,0 ¨EXj `

p
ÿ

j“2

βj,0 ¨ pxj ´EXjq “ rβ1,0 `

p
ÿ

j“2

βj,0 ¨ pxj ´EXjq ,

where, rβ1,0 “ β1,0 `
řp
j“2 βj,0 ¨EXj . Any of these two representations of the same model can be used

and due to assumption (A3:), both these representations are equivalent. Similar to the no-intercept

case, consider densities corresponding to two models pβp1q and pβp2q , which satisfy pβp1q “ pβp2q , a.e.

µ, where, βpiq “
`

β
piq
1 , . . . , β

piq
p

˘1

, i “ 1, 2. Following earlier arguments, we can claim that

Q

˜

p
ÿ

j“2

´

β
p1q
j ´ β

p2q
j

¯

Xj “ ´

´

β
p1q
1 ´ β

p2q
1

¯

¸

“ 1,

where, Q is the joint distribution of
`

X2, . . . , Xp

˘1
. If possible, assume that,

`

β
p1q
2 , . . . , β

p1q
p

˘1

‰
`

β
p2q
2 , . . . , β

p2q
p

˘1

. Then, using similar arguments as earlier applied to the vector
`

X2, . . . , Xp

˘1
, we

can conclude that pX2, . . . , Xpq
1

is supported on a pp ´ 2q dimensional hyperplane. This hyperplane

does not (does) pass through the origin if
´

β
p1q
1 ´ β

p2q
1

¯

is not equal (equal) to zero. This implies lin-

ear dependence among the pp´ 1q components of pX2, . . . , Xpq
1
, which contradicts assumption (A3:).

Hence the only possibility is,
`

β
p1q
2 , . . . , β

p1q
p

˘1

‰
`

β
p2q
2 , . . . , β

p2q
p

˘1

, which immediately implies β
p1q
1 “ β

p2q
1 .

Thus, βp1q “ βp2q and the class of models with intercept is identifiable. The remaining part of the

proof follows the same arguments as in the without intercept case.

Lemma 8.3. Suppose, assumptions (A1)-(A4) hold. Then, Zpβq (cf. (2.8)) has an unique zero at β “ β0

and

0 “ }Zpβ0q} ă inf
β:}β´β0}ěδ

}Zpβq}, for all δ ą 0.

Proof of Lemma 8.3. The proof relies on Lemma 8.2. Using (2.8), we have

Zpβq “ E

„

X ¨ tψpX1β0q ´ ψpX
1βqu ¨

"

f ` p1´ fq ¨ p1´ θ1,0 ´ θ2,0q
2
¨

ψpX1βqt1´ ψpX1βqu

h3,β,θ0pXqt1´ h3,β,θ0pXqu

*

.

Obviously, Zpβ0q “ 0. Since ψpuq ¨ t1´ ψpuqu P p0, 1{4s, for all u P R, using (8.1) we obtain

f ă f ` p1´ fq ¨ p1´ θ1,0 ´ θ2,0q
2
¨

ψpx1βqt1´ ψpx1βqu

h3,β,θ0
pxqt1´ h3,β,θ0

pxqu
ď f `

p1´ fq ¨ p1´ θ1,0 ´ θ2,0q
2
¨M0

4
,

for all x and β. Write, C1 “ f and C2 “ f ` p1´ fq ¨ p1´ θ1,0 ´ θ2,0q
2
¨M0{4. Note that, 0 ă C1 ă C2, due

to assumption (A4). As a result we have a componentwise inequality, for all β

C1 ¨ Z1pβq “ C1 ¨E
“

X ¨ tψpX1β0q ´ ψpX
1βqu

‰

ă Zpβq ă C2 ¨E
“

X ¨ tψpX1β0q ´ ψpX
1βqu

‰

“ C2 ¨ Z1pβq,
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From Lemma 8.2, we know that Z1pβq has an unique zero at β “ β0. Hence, for all other β1 ‰ β0, there

will be a component j P t1, . . . , pu, such that Z1,jpβ1q ‰ 0 (and either it will be negative or positive). Using

the above componentwise inequality, we must have

C1 ¨ Z1,jpβ1q ă Zjpβ1q ă C2 ¨ Z1,jpβ1q.

Since C1, C2 ą 0, so Zjpβ1q ‰ 0 and has the same sign as Z1,jpβ1q. As a result, we have showed that Zpβq

must have an unique zero at β “ β0. Now, using the componentwise upper and lower bounds on Zpβq, we

have

C1 ¨ }Z1pβq} ă }Zpβq} ă C2 ¨ }Z1pβq}.

Now using part (i) of Lemma 8.2, it is easy to see that

0 “ }Zpβ0q} “ }Z1pβ0q} ă inf
β:}β´β0}ěδ

}Z1pβq} ă
1

C1
¨ inf
β:}β´β0}ěδ

}Zpβq},

ñ 0 “ }Zpβ0q} ă inf
β:}β´β0}ěδ

}Zpβq}, for all δ ą 0.

This completes the proof.

Throughout the proofs, we will be dealing with the estimating functions h1,β and h2,β,θ0
(cf. (2.3)).

Lemma 8.4 states that these classes are P0-Donsker classes.

Lemma 8.4. Suppose, assumptions (A1) - (A3) hold. Then,

(i) th1,β : β P Rpu is P0-Donsker.

(ii) th2,β,θ0 : β P Rpu is P0-Donsker.

Proof of Lemma 8.4. We prove each part separately.

(i) Consider the class tgβpxq “ x1β : β P Rpu. By referring to the standard orthonormal basis tej : 1 ď

j ď pu of Rp, we can write

gβpxq “
p
ÿ

i“1

βixi “
p
ÿ

i“1

βi ¨
`

x1ej
˘

,

for all β “
`

β1, . . . , βp
˘1

and x “ px1, . . . , xpq
1
P Rp. Hence, tgβpxq “ x1β : β P Rpu is generated by

linear combinations of the finite set
 

gej pxq : 1 ď j ď p
(

Ă tgβpxq “ x1β : β P Rpu. This implies,

tgβpxq “ x1β : β P Rpu is a Vapnik-Chervonenkis (VC) class of functions, with VC dimension ď pp`2q.

Also, the logistic link function, ψ : R ÞÑ r0, 1s defined as ψpuq “
`

1` expt´uu
˘´1

, is monotone on

R. This leads to the representation,
 

ψβpxq “ ψpx1βq : β P Rp
(

“
 

ψ
`

gβpxq
˘

: β P Rp
(

. Hence,

tψβpxq : β P Rpu will be a VC class. Finally,

th1,β : β P Rpu “ tx ¨ y ´ x ¨ ψβpxq : β P Rpu “ x ¨ y ´ x ¨ tψβpxq : β P Rpu.

Since, py,xq ÞÑ x ¨ y and py,xq ÞÑ x, are two fixed functions defined on the sample space, it follows

that th1,β : β P Rpu is also a VC class. Now, consider the countable subclass, th1,β : β P Qpu,
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where Q denotes the set of rationals. Since Qp is dense in Rp, hence for any β P Rp, there will exist

a sequence tβm : m ě 1u P Qp, such that h1,βpy,xq “ limmÑ8 h1,βmpy,xq, for all py,xq. Thus,

th1,β : β P Rpu will be a pointwise measurable class. Finally, note that due to assumption (A3), the

jth component of h1,βpy,xq is bounded by the envelope function 2|xj | P L2pP0q, for all j P t1, . . . , pu.

Thus, th1,β : β P Rpu has the envelope function 2 ¨maxtE|Xj | : 1 ď j ď pu ¨1pˆ1 P L2pP0q. Combining

all steps we conclude that th1,β : β P Rpu is a P0-Donsker class.

(ii) In order to show that the class of p-dimensional functions th2,β,θ0
: β P Rpu is P0-Donsker, it is enough

to show that classes corresponding to each component of h2,β,θ0
pry,xq will be Donsker. Without loss

of generality, consider the first component of h2,β,θ0
pry,xq and define the class of functions,

G1 “

"

gβpry,xq “
p1´ θ1,0 ´ θ2,0q ¨ ψpx

1βq ¨ t1´ ψpx1βqu ¨ try ´ h3,β,θ0
pxqu

h3,β,θ0
pxq ¨ t1´ h3,β,θ0

pxqu
: β P Rp

*

.

From the proof of part (i) above, we know tψpx1βq : β P Rpu is a VC class and the constants θ1,0 and

p1´ θ1,0´ θ2,0q can be considered as fixed functions on the sample space. Hence, th3,β,θ0
pxq : β P Rpu

will be a VC class. Since u ÞÑ 1{u is monotone for positive u, the class
 

h´1
3,β,θ0

pxq : β P Rp
(

will be a VC class. Following the proof of Lemma 8.1, without loss of generality we assume that,

h3,β,θ0
pxq P pδ1, 1´δ1q (similar argument applies if the range is p1´δ2, δ2q). Hence the constant δ´1

1 is an

envelope function for this class. Similar arguments show that the class
 `

1´ h3,β,θ0
pry,xq

˘´1
: β P Rp

(

will also be VC with envelope function p1´ δ1q
´1

. Also, the classes tp1´θ1,0´θ2,0q ¨ψpx
1βq : β P Rpu,

t1 ´ ψpx1βq : β P Rpu and try ´ h3,β,θ0
pxq : β P Rpu will be VC, following usual VC preservation

properties, and will have envelope functions 2, 1 and 2 respectively. It is known that any VC class

has a bounded uniform entropy integral (BUEI) with respect to any envelope function for that class.

Also products of individual BUEI classes will be BUEI with envelope function equal to the product of

envelope functions of individual classes (cf. Theorem 9.15 of Kosorok (2008)). Hence, the class G1 which

is a subset of the product of these above mentioned classes will also be BUEI with envelope function

G1pry,xq “ 4
`

δ1 ¨ p1´ δ1q
˘´1

. Also define the trivial class G2 “ tx1u, consisting of only one function

pry,xq ÞÑ x1. For any g “ gβ P G1 and g2 P G2, define the map φ : G1 ˆ G2 ÞÑ R as, φpgβ, g2q “ gβ ¨ g2.

Due to the trivial nature of G2, we have

ˇ

ˇφpgβ1
, g2q ´ φpgβ2

, g2q
ˇ

ˇ

2
“ |x1|

2
¨
ˇ

ˇgβ1
pry,xq ´ gβ2

pry,xq
ˇ

ˇ

2
` 0 ¨

ˇ

ˇg2pry,xq ´ g2pry,xq
ˇ

ˇ

2

“ L2
1pry,xq ¨

ˇ

ˇgβ1
pry,xq ´ gβ2

pry,xq
ˇ

ˇ

2¨α1
` L2

2pry,xq ¨
ˇ

ˇg2pry,xq ´ g2pry,xq
ˇ

ˇ

2¨α2
,

where, L1pry,xq “ |x1|, L2pry,xq “ 0, α1 “ 1 and α2 “ 1. This satisfies equation (2.10.19) of van der

Vaart and Wellner (1996) and shows that the map φ is Lipschitz of orders p1, 1q. Since L2pry,xq “ 0,

we can neglect the second Lipschitz order. Since the class G1 is BUEI with envelope function G1, hence

the uniform entropy integral

ż δ

0

sup
R

c

logN
´

ε ¨ }G1}R,2,G1, L2pRq
¯

dε ă 8, for any δ ą 0,
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where the supremum is over probability measures R on the sample space with }G1}R,2 ą 0 and

Npε,G1, L2pRqq are the associated covering numbers. The corresponding covering number of the trivial

class G2 “ tx1u will be equal to 1, for any ε ą 0 and as a result the uniform entropy integral for G2 will

be finite for all δ ą 0. Also, P0|X1|
2 ¨G2

1p
rY ,Xq ă 8, under assumption (A3) and the class φpG1,G2q

can be shown as pointwise measurable by considering the subclass of G1 indexed by all β P Qp. Now,

using Theorem 2.10.20 of van der Vaart and Wellner (1996), we can claim that

φpG1,G2q “ tfirst component of h2,β,θ0 : β P Rpu

will be P0-Donsker. Using the same argument for remaining components of h2,β,θ0
we can complete

the proof.

Lemma 8.5. Suppose, assumptions (A1)-(A4) hold. Then, for any fixed u0 P R2,

sup
βPRp

›

›

›
Gn2

´

h
2,β,θ0`n

´1{2
2 u0

´ h2,β,θ0

¯
›

›

›
“ oP˚0

p1q.

Proof of Lemma 8.5. It will be enough to show the convergence of each component of h2,β,θ separately and

without loss of generality we consider the first component, which is denoted by the same symbol. Define the

classes of functions:

Gn “
!

h
2,β,θ0`n

´1{2
2 u0

´ h2,β,θ0 : β P Rp
)

, n ě 1. (8.2)

We use Lemma 2.2 of van der Vaart and Wellner (2007), which provides sufficient conditions to ensure that,

supgPGn |Gn2
g| “ oP˚0

p1q. These sufficient conditions are essentially the following:

(C.1) supgPGn P0g
2 Ñ 0 as nÑ8.

(C.2) The class Gn is pointwise measurable with envelope function Gn and satisfies Jpδn,Gn, L2q Ñ 0 as

δn Ó 0, where,

Jpδ,Gn, L2q “

ż δ

0

sup
R

c

logN
´

ε}Gn}R,2,Gn, L2pRq
¯

dε.

(C.3) The envelope functions tGn : n ě 1u, used in part (C.2) above, satisfy the Lindeberg condition:

P0G
2
n “ Op1q and P0G

2
n1pGn ą ε

?
nq Ñ 0 for all ε ą 0.

These three conditions are verified below.

Verification of (C.1): Define, Dk

`

h2,β,θ

˘

, k “ 1, 2, as the partial derivative of h2,β,θ with respect to

θk, k “ 1, 2. We can show that, for all θ P Θ and any β P Rp,

D1ph2,β,θqpry,xq

“ ´ x1 ¨
ψpx1βqt1´ ψpx1βqu ¨ try ´ h3,β,θpxqu

h3,β,θpxqt1´ h3,β,θpxqu
¨

„

1`
p1´ θ1 ´ θ2q ¨ t1´ ψpx

1βqu ¨ try ´ h3,β,θpxqu

h3,β,θpxqt1´ h3,β,θpxqu



,

(8.3)

50



and

D2ph2,β,θqpry,xq

“ ´ x1 ¨
ψpx1βqt1´ ψpx1βqu ¨ try ´ h3,β,θpxqu

h3,β,θpxqt1´ h3,β,θpxqu
¨

„

1´
p1´ θ1 ´ θ2q ¨ t1´ ψpx

1βqu ¨ try ´ h3,β,θpxqu

h3,β,θpxqt1´ h3,β,θpxqu



.

(8.4)

Combining (8.1) with (8.3) and (8.4), it follows that for k “ 1, 2,

sup
β

sup
θPΘ

ˇ

ˇDkph2,β,θqpry,xq
ˇ

ˇ ď |x1| ¨
M0

4
¨ 2 ¨ r1` 2 ¨ 1 ¨ 2 ¨M0s ď K0|x1|, for all pry,xq, (8.5)

where, K0 “ 5M2
0 {2. Consider a non-random sequence θn satisfying }θn ´ θ0} Ñ 0. Since θ P Θ and

Θ is open (cf. assumption (A2)), there exists some n0 P N, such that θn P Θ for all n ě n0. For any

fixed β, there exists sequences tanu, tbnu P p0, 1q (obtained from using the Mean-value theorem around

θ0), such that

|h2,β,θnpry,xq ´ h2,β,θ0pry,xq|

“ |θ1,n ´ θ1,0| ¨
ˇ

ˇD1

`

h2,β,an¨θn`p1´anq¨θ0

˘

pry,xq
ˇ

ˇ` |θ2,n ´ θ2,0| ¨
ˇ

ˇD2

`

h2,β,bn¨θn`p1´bnq¨θ0

˘

pry,xq
ˇ

ˇ

ď

2
ÿ

k“1

|θk,n ´ θk,0| ¨K0|x1|, (8.6)

following (8.5). For any u0 P R2, θn “ θ0 ` n
´1{2
2 u0 Ñ θ0. Using (8.6), for large enough n and for all

pry,xq, we have

sup
βPRp

ˇ

ˇh
2,β,θ0`n

´1{2
2 u0

pry,xq ´ h2,β,θ0
pry,xq

ˇ

ˇ ď n
´1{2
2 ¨K0}u0} ¨ |x1| ” rGnpry,xq.

Then, rGn can be considered as a particular envelope function for the class Gn. Due to assumption

(A3),

sup
gPGn

P0g
2 ď P0

rG2
n “

K2
0 ¨ }u0}

2

n2
¨E|X1|

2
Ñ 0, as nÑ8,

which verifies (C.1).

Before verifying (C.2), the following remarks are essential. A class of functions F has a bounded uniform

entropy integral (BUEI) with respect to a envelope function F (cf. Section 9.1.2 of Kosorok (2008) for

details), if Jp1,F , L2q ă 8. Any VC class of functions F will be BUEI with respect to any choice of

envelope function for F . For a sequence of VC classes of functions tFn : n ě 1u the main goal will be to

study the VC dimensions V pFnq and show that it remains constant whenever n is large enough. This will

ensure that for large enough n, Jp1,Fn, L2q remains finite and bounded by a constant and in that case,

Jpδn,Fn, L2q Ñ 0 for any δn Ó 0.

Verification of (C.2): For any u0 P R2 define the classes of functions:

Gn,1 “
!

h
2,β,θ0`n

´1{2
2 u0

: β P Rp
)

and Gn,2 “ th2,β,θ0
: β P Rpu, n ě 1.
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Then, Gn Ă Gn,1 ´ Gn,2. We will study the properties of the class Gn,1 by considering it’s individual

components as separate function classes.

Consider the classes of functions, Fn,1 “
 

x1 ¨ ψpx
1βq : β P Rp

(

, n ě 1. Although this class is not

dependent on n, but we will use this notation for ease of explanation. Following arguments given in the

proof of Lemma 8.4(i), each Fn,1 will be a VC class with VC dimension independent of n. Hence, Fn,1
will be BUEI with respect to the envelope function Fn,1pxq “ |x1|. This leads to J

`

1,Fn,1, L2

˘

ď C1,

for some C1 P p0,8q, for all n. For same reasons, the classes Fn,2 “ t1´ ψpx1βq : β P Rpu, n ě 1, will

BUEI with envelope function Fn,2pxq “ 2, for all n. Hence, J
`

1,Fn,2, L2

˘

ď C2, for some C2 P p0,8q,

for all n.

Now, consider the classes Fn,3 “
!

ry ´ h
3,β,θ0`n

´1{2
2 u0

pxq : β P Rp
)

, n ě 1. Define the class of functions,

Gn,3 ”
!

 

1´ θ1,0 ´ θ2,0 ´ n
´1{2
2 pu1,0 ` u2,0q

(

¨ ψβpxq : β P Rp
)

, n ě 1.

Due to assumption (A2)(ii) and since u0 P R2 is fixed, there exists some n0 “ n0pu0q P N, such that

sign
`

1´ θ1,0 ´ θ2,0 ´ n
´1{2
2 pu1,0 ` u2,0q

˘

“ sign p1´ θ1,0 ´ θ2,0q , for all n ě n0.

Using the arguments given in the proof of Lemma 9.9 (vi) of Kosorok (2008), it can be seen that the

VC dimension of tp1´ θ1,0 ´ θ2,0q ¨ ψβpxq : β P Rpu, will be same as the VC dimension of Gn,3 for all

n ě n0. The proof of Lemma 9.9 (v) of Kosorok (2008) shows that the VC dimension of

th
3,β,θ0`n

´1{2
2 u0

pxq : β P Rpu

“

!

`

θ1,0 ` n
´1{2
2 u1,0

˘

`
 

1´ θ1,0 ´ θ2,0 ´ n
´1{2
2 pu1,0 ` u2,0q

(

¨ ψβpxq : β P Rp
)

, n ě n0,

will be same as the VC dimension of Gn,3 for n ě n0. This shows that the VC dimension of Fn,3 remains

constant for all n ě n0 and it will be BUEI with respect to the envelope function Fn,3pry,xq “ 2. As a

result, J
`

1,Fn,3, L2

˘

ď C3, for some C3 P p0,8q, for all n ě n0.

The above statement about Fn,3 and the arguments used in the proof of Lemma 8.4(ii) imply that,

Fn,4 ”
!

 

h
3,β,θ0`n

´1{2
2 u0

pxq
(´1

: β P Rp
)

will be a VC class with a constant VC dimension for all

n ě n0, and BUEI with envelope function Fn,4pxq “ 1{δ1 (or p1´ δ2q
´1

). So, J
`

1,Fn,4, L2

˘

ď C4,

for some constant C4 P p0,8q, for all n ě n0. Using the same reasoning, it follows that Fn,5 “
!

 

1´ h
3,β,θ0`n

´1{2
2 u0

pxq
(´1

: β P Rp
)

will be BUEI with envelope function Fn,5pxq “ 1{p1 ´ δ1q (or

δ´1
2 ) and J

`

1,Fn,5, L2

˘

ď C5, for some constant C5 P p0,8q, for all n ě n0.

Since products of individual BUEI classes are BUEI with envelope function equal to the product of

individual envelope functions (cf. Theorem 9.15 of Kosorok (2008)), it follows that
Ś5

i“1 Fn,i will be

BUEI with envelope functions,

Gn,1pry,xq ”
4|x1|

δ1p1´ δ1q
, for all n ě n0. (8.7)
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Since Gn,1 Ă
Ś5

i“1 Fn,i, the covering numbers satisfy, Npε,Gn,1, L2pRqq ď Npε,ˆ5
i“1Fn,i, L2pRqq, for

all ε ą 0 and as a result, Gn,1 will be BUEI with envelope function Gn,1, for all n ě n0. Hence,

Jp1,Gn,1, L2q “

ż 1

0

sup
R

c

logN
´

ε}Gn,1}R,2,Gn,1, L2pRq
¯

dε ď
5
ÿ

i“1

Ci P p0,8q, for all n ě n0.

A similar arguments shows that the above statement holds if Gn,1 is replaced by Gn,2. As a result the

class, Gn Ă Gn,1 ´ Gn,2, will be BUEI with envelope function 2 ¨Gn,1, using Lemma 9.14 (part (iii)) of

Kosorok (2008). Hence, Jp1,Gn, L2q ď 2 ¨
ř5
i“1 Ci ă 8, for all n ě n0. Using DCT, J

`

δn,Gn, L2

˘

Ñ 0,

for any δn Ó 0. The class Gn will be pointwise measurable by considering the countable subclass indexed

over all β P Qp. This verifies part (C.2), with envelope function Gn “ 2 ¨Gn,1.

Verification of (C.3): The envelope function Gn defined above is of the form Gnpry,xq “ K2 ¨ |x1|,

for some K2 P p0,8q. Using assumption (A3) we obtain,

P0G
2
n “ K2

2 ¨P0|X1|
2
“ Op1q and P0G

2
n ¨ 1pGn ą ε

?
nq “ K2

2 ¨P0X
2
1 ¨ 1

ˆ

|X1| ą
ε
?
n

K2

˙

Ñ 0,

for all ε ą 0.

Hence all the three sufficient conditions required by Lemma 2.2 of van der Vaart and Wellner (2007) are

verified. This completes the proof for the first component of h2,β,θ and similar arguments can be used for

the other components. Combining all parts we complete the proof.

Lemma 8.6. Suppose, assumptions (A1)-(A4) hold. Then,

sup
βPRp

›

›Gn2

`

h2,β,pθn
´ h2,β,θ0

˘
›

› “ oP˚0
p1q.

Proof of Lemma 8.6. It will be enough to show that the above convergence result is true for the first compo-

nent of h2,β,θ. We will denote the first component of h2,β,θ by the same symbol. Note that, due to Lemma

2.1 and assumption (A4),
?
n2 ¨ ppθn ´ θ0q converges in distribution to a tight limiting (normal) random

variable, which takes values in the σ-compact set R2. Consider any fixed u0 P R2, β P Rp and a δ ą 0.

Following Theorem 2.3 of van der Vaart and Wellner (2007), define the class of functions,

Fnpβ,u0, δq “
!

h
2,β,θ0`n

´1{2
2 u

pry,xq ´ h
2,β,θ0`n

´1{2
2 u0

pry,xq : u P R2, }u´ u0} ă δ
)

. (8.8)

Let, u “
`

u1, u2

˘1
,u0 “

`

u1,0, u2,0

˘1
P R2. Using (8.5) and (8.6) we can write,

sup
}u´u0}ăδ

ˇ

ˇh
2,β,θ0`n

´1{2
2 u

pry,xq ´ h
2,β,θ0`n

´1{2
2 u0

pry,xq
ˇ

ˇ ď
K1δ
?
n2
¨ |x1| ” Fnpβ,u0, δqpry,xq, (8.9)

for some constant K1 P p0,8q. The function Fnpβ,u0, δq can be considered as a particular envelope function

for the class Fnpβ,u0, δq. Following (8.9) and using assumption (A3), we can apply the CLT for i.i.d. random

variables to obtain,

sup
βPRp

ˇ

ˇGn2Fnpβ,u0, δq
ˇ

ˇ “
K1δ
?
n2
¨

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n2

n1`n2
ÿ

i“n1`1

p|X1,i| ´E|X1|q

ˇ

ˇ

ˇ

ˇ

ˇ

“
K1δ
?
n2
¨OP˚0

p1q “ oP˚0
p1q. (8.10)

53



Finally, note that if δn Ñ 0, then due to assumption (A3),

?
n2 ¨P0Fnpβ,u0, δnq “ K1δn ¨E|X1| Ñ 0. (8.11)

This is true uniformly for all β P Rp and for all u0 P A, where A is any compact set in R2. Thus, Conditions

(ii) and (iii) of Theorem 2.3 of van der Vaart and Wellner (2007) are verified. Condition (i) of Theorem 2.3

of van der Vaart and Wellner (2007) is verified in Lemma 8.5. The remaining components can be handled

similarly to complete the proof.

Lemma 8.7. Recall the definitions of Zn,1, Zn,2, Z1 and Z2 provided in (2.6) and (2.8). Suppose, assump-

tions (A1)-(A4) hold. Then,

(i) supt}Zn,1pβq ´ Z1pβq} : β P Rpu “ oP˚0
p1q.

(ii) supt}Zn,2pβq ´ Z2pβq} : β P Rpu “ oP˚0
p1q.

Proof of Lemma 8.7. We will split the proof into two parts.

(i) Note that,

sup
βPRp

}Zn,1pβq ´ Z1pβq} “ sup
βPRp

›

›

`

Pn1
´P0

˘

h1,β

›

›.

The proof now follows from Lemma 8.4(i) and by noting that any P0-Donsker class will be a GC class.

(ii) Define the p-dimensional process,
 

rZn,2pβq “ Pn2h2,β,θ0 : β P Rp
(

. Note that,

sup
βPRp

} rZn,2pβq ´ Z2pβq} “ sup
βPRp

›

›

`

Pn2
´P0

˘

h2,β,θ0

›

› “ oP˚0
p1q,

using Lemma 8.4(ii). Also,

sup
βPRp

›

›Zn,2pβq ´ rZn,2pβq
›

› “ sup
βPRp

›

›

›
Pn2

´

h2,β,pθn
´ h2,β,θ0

¯
›

›

›

ď sup
βPRp

›

›

›

`

Pn2 ´P0

˘`

h2,β,pθn
´ h2,β,θ0

˘

›

›

›
` sup

βPRp

›

›

›
P0

`

h2,β,pθn
´ h2,β,θ0

˘

›

›

›

“
1
?
n2
¨ oP˚0

p1q ` sup
β

›

›

›
P0

`

h2,β,pθn
´ h2,β,θ0

˘

›

›

›
, (8.12)

which follows from Lemma 8.6. In order to handle the last term of (8.12), consider the first component

of the p-dimensional function h2,β,θ and denote it by the same symbol. For any θ P Θ, define the

function, gpθq ” supβ

ˇ

ˇP0

`

h2,β,θ ´ h2,β,θ0

˘
ˇ

ˇ. Note that, gpθ0q “ 0. For any nonrandom sequence

θn “ pθ1,n, θ2,nq
1
Ñ θ0, using (8.6) it follows gpθnq Ñ 0. Hence, g : Θ ÞÑ R is continuous at θ “ θ0.

Now using Lemma 2.1 and continuous mapping theorem, it follows that gppθnq “ oP˚0
p1q. Applying the

same argument over other components shows that the last term of (8.12) is oP˚0
p1q. Combining this

with other convergence statements given above completes the proof.
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Lemma 8.8. Suppose, assumptions (A1)-(A3) hold. Then, the following results are true.

(i) Consider the first component of h2,β,θ and denote it by the same symbol. Define the map, f : RpˆΘ ÞÑ

R as, fpβ,θq “ P0h2,β,θ. Let gipβ,θq denote the partial derivative of fpβ,θq with respect to θi, i “ 1, 2.

Then, gipβ,θq exists, is continuous everywhere and can be obtained by interchanging the integration

and differentiation symbols:

gipβ,θq “

ż
ˆ

B

Bθi
h2,β,θ

˙

dP0, i “ 1, 2.

The result holds if any other component of h2,β,θ is used in defining fpβ,θq.

(ii) Now, use the original definition of h2,β,θ as a p-dimensional function from (2.3). Define the map,

f̄ : Θ ÞÑ Rp as, f̄pθq “ P0h2,β0,θ. For any θ P Θ, the total derivative of f̄pθq is Aθ : Θ ÞÑ Rp, a pˆ 2

matrix, with the
`

i, j
˘

-th element being Aθpi, jq “ partial derivative of the i-th component of f̄pθq with

respect to θj, i “ 1, . . . , p and j “ 1, 2.

Proof of Lemma 8.8. We will prove each part separately.

(i) Consider any β P Rp and any θ “ pθ1, θ2q P Θ. Consider a real valued sequence thn : n ě 1u satisfying

hn Ñ 0. Write, θn “ pθ1 ` hn, θ2q, n ě 1. As because Θ is an open set the partial derivative of h2,β,θ,

with respect to θ1 exists at each θ P Θ, with rh2,β,θnpry,xq ´ h2,β,θpry,xqs {hn Ñ D1ph2,β,θqpry,xq, for

all pry,xq (cf. (8.3)). Following (8.5), D1ph2,β,θq P L1pP0q. Hence, we can use the DCT to claim that

g1pβ,θq “ lim
nÑ8

fpβ,θnq ´ fpβ,θq

hn

“

ż
ˆ

lim
nÑ8

1

hn
rh2,β,θnpry,xq ´ h2,β,θpry,xqs

˙

dP0pry,xq

“

ż

D1ph2,β,θqpry,xq dP0pry,xq “

ż
ˆ

B

Bθ1
h2,β,θpry,xq

˙

dP0pry,xq.

This proves the existence of the partial derivatives g1pβ,θq and also shows that they can be obtained

by interchanging the differentiation and integration symbols. Now consider any sequence tpβn,θnq :

n ě 1u P Rp ˆ Θ, such that }βn ´ β} Ñ 0 and }θn ´ θ} Ñ 0, where, pβ,θq P Rp ˆ Θ. For any fixed

choice of pry,xq, the map pβ,θq ÞÑ D1ph2,β,θqpry,xq (cf. (8.3)) is continuous everywhere. Hence, for any

pry,xq, D1ph2,βn,θnqpry,xq Ñ D1ph2,β,θqpry,xq. Combining this with (8.5) and applying the DCT along

with assumption (A3) leads to,

lim
nÑ8

g1pβn,θnq “ lim
nÑ8

ż

D1ph2,βn,θnqpry,xq dP0pry,xq “

ż

D1ph2,β,θqpry,xq dP0pry,xq “ g1pβ,θq.

This proves the continuity of g1pβ,θq for all
`

β,θ
˘

P Rp ˆΘ. A similar argument works for g2pβ,θq.

(ii) A sufficient condition for the existence of the total derivative map Aθ requires the following: the partial

derivatives exists for all θ and are continuous in θ (cf. Chapter 3 of van der Vaart (1998)). Following

the proof of part (a) given above, this claim follows by keeping β fixed at β0 and carrying the same

arguments. The elements of Aθ are given in (8.39).
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Remark 8.9. Lemma 8.10 is a stochastic equicontinuity result about the process
?
npZn ´ Zq, required for

proving asymptotic normality of pβn and uses the consistency property of pβn (cf. Theorem 2.2(i)). However,

the proof of consistency does not require Lemma 8.10 and is based on separate arguments, only requiring

Lemma’s 8.3 and 8.7.

Lemma 8.10. Suppose, assumptions (A1)-(A4). Then,

›

›

?
n
`

Zn ´ Z
˘`

pβn ´ β0

˘
›

› “ oP˚0

`

1`
?
n}pβn ´ β0}

˘

.

Proof of Lemma 8.10. It will be enough to prove,
›

›

?
n
`

Zn ´Z
˘`

pβn ´ β0

˘
›

› “ oP˚0
p1q. Using (2.8) and (2.6)

we can write,

?
npZn ´ Zqppβn ´ β0q

“
a

fn ¨Gn1

`

h1,pβn
´ h1,β0

˘

`
a

1´ fn ¨
?
n2 ¨

“

Zn,2ppβnq ´ Z2ppβnq ´ Zn,2pβ0q ` Z2pβ0q
‰

`
?
npfn ´ fqP0

`

h1,pβn
´ h1,β0

˘

´
?
npfn ´ fq

”

Z2ppβnq ´ Z2pβ0q

ı

” B1,n `B2,n `B3,n `B4,n. (8.13)

Note that the right side of (8.13) is p-dimensional. It is enough to show convergence of each component

separately. Without loss of generality consider the first component of each term on the right side of (8.13).

Also, denote the first component of h1,β and h2,β,θ by the same symbols. Consider any non-random sequence

tβn : n ě 1u satisfying }βn ´ β0} Ñ 0. For each fixed py,xq, due to continuity of β ÞÑ h1,β, |h1,βnpy,xq ´

h1,β0
py,xq| Ñ 0. Using assumption (A3) we have, |h1,βnpy,xq ´ h1,β0

py,xq|
2
ď 8}x}

2
P L2pP0q, for all n ě 1

and all py,xq. Define the map, β ÞÑ gpβq “ P0|h1,β ´ h1,β0
|
2
. We can now apply the DCT to obtain,

lim
nÑ8

gpβnq “ lim
nÑ8

ż

|h1,βn ´ h1,β0
|
2
dP0 “

ż

lim
nÑ8

ˇ

ˇh1,βn ´ h1,β0

ˇ

ˇ

2
dP0 “ 0.

Since gpβ0q “ 0, hence gpβq is continuous at β “ β0. Using consistency of pβn (cf. Theorem 2.2(i)) and

the continuous mapping theorem, we obtain gppβnq “ oP˚0
p1q. Using the Donsker property shown in Lemma

8.4(i) and applying Lemma 19.24 of van der Vaart (1998) it follows that, B1,n “ oP˚0
p1q. Note that, B2,n

can be expressed as

B2,n “
a

1´ fn ¨
?
n2 ¨

”

Pn2h2,pβn,
pθn
´P0h2,pβn,θ0

´ Pn2h2,β0,
pθn
`P0h2,β0,θ0

ı

. (8.14)

Replacing pθn in (8.14) by θ0, define

rB2,n “
a

1´ fn ¨
?
n2 ¨

”

Pn2
h2,pβn,θ0

´P0h2,pβn,θ0
´ Pn2

h2,β0,θ0
`P0h2,β0,θ0

ı

“
a

1´ fn ¨Gn2

´

h2,pβn,θ0
´ h2,β0,θ0

¯

, (8.15)
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Then, it can be shown that

|B2,n ´ rB2,n| ď 2 ¨
a

1´ fn ¨ sup
β

ˇ

ˇ

ˇ
Gn2

´

h2,β,pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ

`
a

1´ fn ¨
?
n2 ¨

ˇ

ˇ

ˇ
P0

´

h2,pβn,
pθn
´ h2,pβn,θ0

´ h2,β0,
pθn
` h2,β0,θ0

¯
ˇ

ˇ

ˇ

” C1,n ` C2,n.

Due to Lemma 8.6, C1,n “ oP˚0
p1q. Note that, for any sequence of non-random constants tan : n ě 1u P p0, 1q,

the sequence, an ¨pθn`p1´anq ¨θ0
P˚0
ÝÑ θ0, using Lemma 2.1. Using Lemma 8.8(i) and Mean-Value theorem,

we can write,

C2,n “
a

1´ fn

ˆ
?
n2

`

pθn ´ θ0

˘1

¨

˝

g1

`

pβn, a1,n
pθn ` p1´ a1,nqθ0

˘

´ g1

`

β0, a2,n
pθn ` p1´ a2,nqθ0

˘

g2

`

pβn, b1,n
pθn ` p1´ b1,nqθ0

˘

´ g2

`

β0, b2,n
pθn ` p1´ b2,nqθ0

˘

˛

‚, (8.16)

for some sequences taj,nu, tbj,nu P p0, 1q, for j “ 1, 2, and gj , j “ 1, 2, are the partial derivative functions

defined in Lemma 8.8(i). Using Lemma 2.1, Theorem 2.2(i), Lemma 8.8(i) and the continuous mapping

theorem, we obtain,

g1

`

pβn, a1,n
pθn ` p1´ a1,nqθ0

˘ P˚0
ÝÑ g1pβ0,θ0q,

g1

`

β0, a2,n
pθn ` p1´ a2,nqθ0

˘ P˚0
ÝÑ g1pβ0,θ0q.

This implies, g1

`

pβn, a1,n
pθn ` p1 ´ a1,nqθ0

˘

´ g1

`

β0, a2,n
pθn ` p1 ´ a2,nqθ0

˘

“ oP˚0
p1q. For same reasons,

g2

`

pβn, b1,n
pθn ` p1´ b1,nqθ0

˘

´ g2

`

β0, b2,n
pθn ` p1´ b2,nqθ0

˘

“ oP˚0
p1q. Applying Lemma 2.1, we get C2,n “

OP˚0
p1q ¨ oP˚0

p1q “ oP˚0
p1q, which implies |B2,n ´ rB2,n| “ oP˚0

p1q. Note that, th2,β,θ0 : β P Rpu is a Donsker

class, following Lemma 8.4(ii). So we can apply the same arguments as in the case of B1,n to show that

P0

`

h2,pβn,θ0
´ h2,β0,θ0

˘2
“ oP˚0

p1q. Using Lemma 19.24 of van der Vaart (1998) it follows that rB2,n “ oP˚0
p1q

and hence B2,n “ oP˚0
p1q.

Finally, due to assumption (A3) and the DCT, β ÞÑ P0h1,β is continuous everywhere. Applying the

continuous mapping theorem, P0h1,pβn
´ P0h1,β0

“ oP˚0
p1q and by assumption (A4),

?
n|fn ´ f | “ op1q.

Hence, B3,n “ oP˚0
p1q. Similarly, using Lemma 8.8(i) and the stated assumptions we can claim that,

β ÞÑ P0h2,β,θ0
will be continuous at all β P Rp. Similar arguments imply B4,n “ oP˚0

p1q. Combining the

results above shows that the right side (8.13) is oP˚0
p1q. Applying this over all p components separately

shows that
›

›

?
npZn ´ Zq

`

pβn ´ β0

˘
›

› “ oP˚0
p1q. This completes the proof.

8.2 Auxiliary lemmas required for proving Theorem 3.2

We begin with a result which describes the inter-relations among the different probability orders and will

frequently be used in the proofs. Extensions to Lemma 8.11 can be found in Lemma 3 of Cheng and
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Huang (2010). Further details on outer modes of convergence can be found in van der Vaart and Wellner

(1996). Consider any class of measurable (vector valued) functions H. For any measure R, we define,

}R}H ” suphPH }Rh}.

Lemma 8.11. Consider a sequence of functions t∆n : n ě 1u.

(a) Suppose, ∆n “ oPr˚p1q. Then, ∆n “ oP˚M
p1q in P˚0 -probability.

(b) Suppose, t∆n : n ě 1u is a sequence of functions defined only the first product probability space
`

X8,A8,P80
˘

and ∆n “ oP˚0
p1q. Then, ∆n “ oPr˚p1q and ∆n “ oP˚M

p1q in P˚0 -probability.

(c) Suppose, ∆n “ OPr˚p1q. Then, ∆n “ OP˚M
p1q in P˚0 -probability.

Proof of Lemma 8.11. We consider the three parts separately.

(a) Fix any ε, η ą 0. Then, using Markov’s inequality and Fubini’s theorem for product measures (cf.

Lemma 1.2.6 of van der Vaart and Wellner (1996)),

P˚0 pP
˚
M p|∆n| ą εq ą ηq ď

1

η
¨E˚0 rP

˚
M p|∆n| ą εqs ď

1

η
¨Er˚1p|∆n| ą εq “

1

η
¨Pr˚ p|∆n| ą εq Ñ 0,

by definition of outer convergence in probability in Pr. This completes the proof.

(b) In this case,

Pr˚ p|∆n| ą εq “ Prp|∆n| ą εq
˚
“ P0p|∆n| ą εq

˚
“ P˚0 p|∆n| ą εq Ñ 0, as nÑ8.

Since ∆n depends only the product space
`

X8,A8,P80
˘

so the outer majorant with respect to Pr is

same as the outer majorant with respect to P80 (cf. page 10 of van der Vaart and Wellner (1996)).

Since, ∆n “ oPr˚p1q, we can apply part (a) above to obtain, ∆n “ oP˚M
p1q in P˚0 -probability. In case,

∆n “ OP˚0
p1q, the a very similar argument implies that ∆n “ OPr˚p1q.

(c) For any δ ą 0 and M ą 0, we can write

P˚0 pP
˚
M p|∆n| ąMq ą δq ď

1

δ
¨E˚0 E˚M1 p|∆n| ąMq ď

1

δ
¨Er˚1 p|∆n| ąMq ď

1

δ
¨ δε “ ε,

provided we choose M “ Mpε, δq and n ě n0pε, δq, such that Pr˚ p|∆n| ąMpε, δqq ă δε, for all

n ě n0pε, δq. The latter condition will be true, because ∆n “ OPr˚p1q. This completes the proof.

Remark 8.12. Lemma’s 8.13, 8.14, 8.15 and 8.16 are needed for studying the asymptotic distribution of

the bootstrapped PMLE
p

pβn and uses consistency of
p

pβn. The proof of bootstrap consistency of
p

pβn is not

dependent on these lemmas.

Lemma 8.13. Suppose, assumptions (A1)-(A4) holds. Then,
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(i) Gn1

´

h
1,
p

pβn
´ h1,β0

¯

“ oP˚M
p1q in P˚0 -probability.

(ii) Gn2

´

h
2,
p

pβn,θ0

´ h2,β0,θ0

¯

“ oP˚M
p1q in P˚0 -probability.

(iii) sup
!

Gn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯

: β P Rp
)

“ oP˚M
p1q in P˚0 -probability.

Proof of Lemma 8.13. We will prove each part separately.

(i) Without loss of generality consider the first component of h1,β and denote it by the same symbol. For

any f, g P L2pP0q, define the semi-metric ρ2pf, gq ” pVarP0
pf ´ gqq

1{2
. Note that, h1,β P L2pP0q for

all β. We claim that there exists a sequence δn Ó 0, such that

P˚M

ˆ
ż

ˇ

ˇh
1,
p

pβn
´ h1,β0

ˇ

ˇ

r
dP0 ą δn

˙

“ oP˚0
p1q, for r “ 1, 2. (8.17)

The conclusion for r “ 2 in (8.17) follows from consistency of
p

pβn in Theorem 3.2(i), the arguments

used in handling the term B1,n in (8.13) and finally using Lemma 8.18. The case of r “ 1 follows from

the case of r “ 2 (or it can be proved directly). It now follows that there exists a sequence δn Ó 0, such

that

P˚M

´

ρ2

´

h
1,
p

pβn
, h1,β0

¯

ą δn

¯

“ oP˚0
p1q. (8.18)

Based on the above chosen sequence tδn : n ě 1u, define the classes of functions

Hn “
 

h1,β ´ h1,β0
: ρ2

`

h1,β, h1,β0

˘

ď δn
(

, n ě 1. (8.19)

Following Lemma 8.4(i), it is known that th1,β : β P Rpu is a Donsker class. Applying Corollary

2.3.12 of van der Vaart and Wellner (1996), it follows that, }Gn1
}Hn

“ oP˚0
p1q, which in turn implies,

}Gn1
}Hn

“ oP˚M
p1q in P˚0 -probability, using Lemma 8.11. Fix any ε ą 0. Then,

P˚M

´
ˇ

ˇ

ˇ
Gn1

´

h
1,
p

pβn
´ h1,β0

¯
ˇ

ˇ

ˇ
ą ε

¯

ď P˚M

´
ˇ

ˇ

ˇ
Gn1

´

h
1,
p

pβn
´ h1,β0

¯
ˇ

ˇ

ˇ
ą ε, ρ2

´

h
1,
p

pβn
, h1,β0

¯

ď δn

¯

`P˚M

´

ρ2

´

h
1,
p

pβn
, h1,β0

¯

ą δn

¯

ď P˚M

´

}Gn1
}Hn

ą ε, ρ2

´

h
1,
p

pβn
, h1,β0

¯

ď δn

¯

` oP˚0
p1q

ď P˚M
`

}Gn1
}Hn

ą ε
˘

` oP˚0
p1q “ oP˚0

p1q.

We can apply this argument to all other components of h1,β separately to complete the proof.

(ii) The proof proceeds in exactly the same manner as part (i) above and using Lemma 8.4(ii), which states

that th2,β,θ0 : β P Rpu Ă L2pP0q, is a Donsker class.

(iii) Using Lemma 3.1(ii) and assumption (A4), we know
?
n2 ¨

`

p

pθn ´ θ0

˘

converges to a tight limiting

distribution (with respect to Pr), hence we can apply Lemma 8.6 (with all probability statements
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understood in terms of Pr). Thus, for any ε ą 0,

Pr˚

˜

sup
β

›

›

›
Gn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
›

›

›
ą ε

¸

“ op1q.

Applying Lemma 8.11 completes the proof.

Lemma 8.14. Suppose, assumptions (A1)-(A4) holds. Then,

(i) pGn1

´

h
1,
p

pβn
´ h1,β0

¯

“ oP˚M
p1q in P˚0 -probability.

(ii) sup
!

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯

: β P Rp
)

“ oP˚M
p1q in P˚0 -probability.

(iii) sup
!

pGn2

´

h2,β,pθn
´ h2,β,θ0

¯

: β P Rp
)

“ oP˚M
p1q in P˚0 -probability.

Proof of Lemma 8.14. We will prove each part separately. As earlier, we will work with the first components

of h1,β and h2,β,θ and denote them by the same symbol.

(i) Note that, pGn1
remains unchanged if h1,β is re-centered at h1,β ´ P0h1,β. Hence, for the rest of the

proof of part (i), we will work with the re-centered versions and assume that P0h1,β “ 0 for all β.

Following Markov’s inequality, it will be enough to show E˚M

ˇ

ˇ

ˇ

pGn1

´

h
1,
p

pβn
´ h1,β0

¯
ˇ

ˇ

ˇ
“ oP˚0

p1q. Note

that, the class Hn defined in (8.19) is not affected, since the ρ2 semi-metric uses centered versions of

h1,β. Fix any ε ą 0. Following (8.18) we can write,

P˚0

´

E˚M

ˇ

ˇ

ˇ

pGn1

´

h
1,
p

pβn
´ h1,β0

¯
ˇ

ˇ

ˇ
ą ε

¯

ď P˚0

´

E˚M

ˇ

ˇ

ˇ

pGn1

´

h
1,
p

pβn
´ h1,β0

¯
ˇ

ˇ

ˇ
ą ε, ρ2

´

h
1,
p

pβn
, h1,β0

¯

ď δn

¯

` oP˚0
p1q

ď P˚0

´

E˚M
›

›pGn1

›

›

Hn
ą ε

¯

` oP˚0
p1q ď

1

ε
¨E˚0

´

E˚M
›

›pGn1

›

›

Hn

¯

` oP˚0
p1q.

Since, th1,β : β P Rpu is a Donsker class, we can use the arguments given in the proof of Theorem 9.3

of Dudley (2014) (cf. pg 344) to conclude that

lim sup
nÑ8

E˚0

´

EM

›

›pGn1

›

›

Hn

¯

“ 0.

(ii) We will adapt the proof of Theorem 2.3 of van der Vaart and Wellner (2007) in this case. For any δ ą 0

and any compact set K, define Kδ “
 

y P R2 : dpy,Kq ă δ
(

, where dpy,Kq “ inftdpy,xq : x P Ku

and d denotes the Euclidean distance in R2. Since K is compact, for any δ ą 0 there exists finitely

many points tu1, . . . ,upu P K, with p “ ppδq such that K Ă
Ťp
i“1B

`

ui, δ{2
˘

, where Bpu, δq denotes

an open ball of radius δ around the point u P R2. Hence, Kδ Ă
Ťp
i“1B

`

ui, δ
˘

. Note that,

"

?
n2

`

p

pθn ´ θ0

˘

P Kδ{2

*

ñ

p
ď

i“1

"

p

pθn P B
`

θ0 ` n
´1{2
2 ui, δ

˘

*

.
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Fix any η ą 0. Then, for any δ ą 0,

P˚M

˜

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η

¸

ď P˚M

˜

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η,

?
n2

`

p

pθn ´ θ0

˘

P Kδ{2

¸

`P˚M

ˆ

?
n2

`

p

pθn ´ θ0

˘

R Kδ{2

˙

ď P˚M

˜

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η,

?
n2

`

p

pθn ´ θ0

˘

P Kδ{2

¸

`P˚M

ˆ

?
n2

`

p

pθn ´ θ0

˘

R K

˙

. (8.20)

From Lemma 3.1(iii), it follows
?
n2

ˆ

p

pθn ´ θ0

˙

“ OPr˚p1q. Fix any arbitrary ε1, ε2 ą 0. Then,

following Lemma 8.11, there exists a compact set Kε1,ε2 and an integer n0 “ n0pε1, ε2q, such that

P˚0

ˆ

P˚M

ˆ

?
n2

`

p

pθn ´ θ0

˘

R Kε1,ε2

˙

ą ε2

˙

ď ε1, for all n ě n0. (8.21)

Use this choice of K “ Kε1,ε2 in the right side of (8.20). Following the proof of Theorem 2.3 of van der

Vaart and Wellner (2007) and using the same choice of Fnpβ,u0, δq (cf. (8.9)), the first term on the

right side of (8.20) with K “ Kε1,ε2 , can be written as

P˚M

˜

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η,

?
n2

ˆ

p

pθn ´ θ0

˙

P Kδ{2
ε1,ε2

¸

ď P˚M

˜

sup
β

max
1ďiďp

ˇ

ˇ

ˇ

pGn2
Fn

`

β,ui, δ
˘

ˇ

ˇ

ˇ
ą η{3

¸

`P˚M

˜

2 sup
β

sup
u0PKε1,ε2

?
n2 ¨ Pn2

Fn
`

β,u0, δ
˘

ą η{3

¸

`P˚M

˜

sup
β

max
1ďiďp

ˇ

ˇ

ˇ

pGn2

´

h
2,β,θ0`n

´1{2
2 ui

´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η{3

¸

” L1,n ` L2,n ` L3,n. (8.22)

Consider the first term of (8.22). Since δ ą 0 is a fixed quantity and ε1, ε2 are arbitrary but fixed

positive constants, hence p “ ppδq is finite. Due to finiteness of p, showing L1,n “ oP˚0
p1q, is equivalent

to showing that supβ

ˇ

ˇ

ˇ

pGn2
Fn

`

β,u0, δ
˘

ˇ

ˇ

ˇ
“ oP˚M

p1q in P˚0 -probability for any fixed u0 P R2. Following

(8.10), we can write

sup
β

ˇ

ˇ

ˇ

pGn2Fn
`

β,u0, δ
˘

ˇ

ˇ

ˇ
“ K1 ¨ δ ¨

ˇ

ˇ

ˇ

´

pPn2 ´ Pn2

¯

|x1|

ˇ

ˇ

ˇ

“ K1 ¨ δ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

1

n2

n
ÿ

i“n1`1

´

ˇ

ˇ pX1,i

ˇ

ˇ´E|X1|

¯

´
1

n2

n
ÿ

i“n1`1

p|X1,i| ´E|X1|q

ˇ

ˇ

ˇ

ˇ

ˇ

.

Under the stated assumptions, n2
´1

řn
i“n1`1

`
ˇ

ˇ pX1,i

ˇ

ˇ ´ E|X1|
˘

“ oP˚M
p1q in P˚0 -probability. Also by

Lemma 8.11, n´1
2

řn
i“n1`1 p|X1,i| ´E|X1|q “ oP˚0

p1q “ oPr˚p1q “ oP˚M
p1q in P˚0 -probability.

Now, consider the second term of (8.22). The definition of Fn
`

β,u0, δ
˘

in (8.9) shows that it is

independent of β and u0. Hence, for any δn Ñ 0, using the WLLN, assumption (A3) and (8.11) we
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have,

sup
βPRp

sup
uPR2

?
n2 ¨ Pn2Fn

`

β,u0, δn
˘

“ K1δn ¨

˜

n´1
2

n
ÿ

i“n1`1

ˇ

ˇX1,i

ˇ

ˇ

¸

“ oP˚0
p1q.

Hence, L2,n “ oP˚0
p1q.

Finally, consider the third term of (8.22). Due to finiteness of p, it enough to show that for any

u0 P R2,
›

›pGn2

›

›

Gn
“ oP˚M

p1q in P˚0 -probability, where, Gn is defined in (8.2). Let tNi : i ě n1` 1u be a

sequence of i.i.d. Poissonp1q random variables, independent of tprYi,Xiq : i ě n1 ` 1u and defined on a

different probability space. Let E˚ denote the outer expectation with respect to the product probability

measure corresponding to the product space
`

X8,A8,P80
˘

ˆ the probability space of Ni’s. Following

the arguments given in Dudley (2014) (Lemma 9.12 and pg. 344), we can write

E˚0 E˚M

´

›

›pGn2

›

›

Gn

¯

“ n
´1{2
2 ¨E˚0 E˚M

¨

˝

›

›

›

›

›

n
ÿ

i“n1`1

´

δ
p
p

rYi, pXiq
´ Pn2

¯

›

›

›

›

›

Gn

˛

‚

ď n
´1{2
2 ¨

e

e´ 1
¨E˚

›

›

›

›

›

n
ÿ

i“n1`1

pNi ´ 1q ¨
´

δ
p rYi,Xiq

´ Pn2

¯

›

›

›

›

›

Gn

ď n
´1{2
2 ¨

e

e´ 1
¨E˚

›

›

›

›

›

n
ÿ

i“n1`1

pNi ´ 1q ¨ δ
p rYi,Xiq

›

›

›

›

›

Gn

`
e

e´ 1
¨E˚0

›

›Pn2

›

›

Gn

“ n
´1{2
2 ¨

e

e´ 1
¨E˚

›

›

›

›

›

n
ÿ

i“n1`1

pNi ´ 1q ¨ δ
p rYi,Xiq

›

›

›

›

›

Gn

`
e

e´ 1
¨E˚0

›

›n
´1{2
2 ¨Gn2 `P0

›

›

Gn

ď n
´1{2
2 ¨

e

e´ 1
¨E˚

›

›

›

›

›

n
ÿ

i“n1`1

pNi ´ 1q ¨ δ
p rYi,Xiq

›

›

›

›

›

Gn

` n
´1{2
2 ¨

e

e´ 1
¨E˚0

›

›Gn2

›

›

Gn
`

e

e´ 1
¨
›

›P0

›

›

Gn

” P1,n ` P2,n ` P3,n. (8.23)

We will handle each term of (8.23) separately.

Starting with the third term of (8.23), note that for large enough n2 and fixed u0 “
`

u1,0, u2,0

˘1
,

θ0 ` n
´1{2
2 u0 P Θ. Following (8.1) and (8.5) we can write, for some constant K0 P p0,8q,

P3,n ď

2
ÿ

k“1

|uk,0|
?
n2

¨K0 ¨E|X1| Ñ 0,

due to assumption (A3).

Next, consider the second term of (8.23). Note that, as per the proof of Lemma 8.5, for any δ ą 0,

there exists some n0 P N, such that supgPGn P0g
2 ď δ2, for all n ě n0. Now we can apply the sufficient

conditions stated in the proof Lemma 8.5 and arguments given in Theorem 6.16 of van der Vaart (2002)

(pg. 405) to show that E˚0 }Gn2
}Gn Ñ 0. Hence, P2,n Ñ 0.

Finally, consider the first term of (8.23). Define i.i.d. Radamacher random variables tεi : i ě 1u on a

different factor of a probability space, which are independent of tNi : i ě 1u and tprYi,Xiq : i ě 1u and
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denote the outer expectation with respect to the product measure of tεi : i ě 1u and tprYi,Xiq : i ě

n1 ` 1u as1 E˚. In order to handle P1,n, for convenience of notation we re-index the indices, so that

the index set is t1, . . . , n2u instead of tn1 ` 1, . . . , n1 ` n2u. Firstly,

P1,n “ n´1{2
¨ E˚

›

›

›

›

›

n
ÿ

i“n1`1

pNi ´ 1q ¨ δ
p rYi,Xiq

›

›

›

›

›

Gn

ď n
´1{2
2 ¨E˚

›

›

›

›

›

n2
ÿ

i“1

pNi ´ 1q ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

` n
´1{2
2 ¨E

ˇ

ˇ

ˇ

ˇ

ˇ

n2
ÿ

i“1

pNi ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

¨ }P0}Gn

ď n
´1{2
2 ¨E˚

›

›

›

›

›

n2
ÿ

i“1

pNi ´ 1q ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

`

2
ÿ

k“1

|uk,0|
?
n2

¨K0 ¨E|X1|.

The second term in the right side converges to zero for any fixed u0. Note that tNi ´ 1 : i ě 1u

are centered i.i.d. random variables, independent of tprYi,Xiq : i ě 1u. Define, }pN1 ´ 1q}2,1 “
ş8

0

a

Pp|N1 ´ 1| ą tq dt. Also,
!

δ
p rYi,Xiq

´P0 : 1 ď i ď n2

)

are i.i.d. stochastic processes with finite

expectation over Gn, hence

E˚0
›

›δ
p rYi,Xiq

´P0

›

›

Gn

“ E˚0 sup
β

ˇ

ˇ

ˇ
h

2,β,θ0`n
´1{2
2 u0

prYi,Xiq ´ h2,β,θ0
prYi,Xiq

ˇ

ˇ

ˇ
` }P0}Gn ď

2K0}u0}
?
n2

¨E|X1| ă 8,

whenever n is large enough, for any fixed u0 (cf. (8.5)). Now, E|N1 ´ 1|
r
ă 8, for all r ą 2. Hence,

}pN1 ´ 1q}2,1 ă 8. Also, E|N1 ´ 1|
2
ă 8, implies, E

`

max1ďiďn2 |Ni ´ 1|{
?
n2

˘

Ñ 0. Then we can

apply the Multiplier inequality given in Lemma 2.9.1 of van der Vaart and Wellner (1996) to obtain,

E˚

›

›

›

›

›

1
?
n2

n2
ÿ

i“1

pNi ´ 1q ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

ď 2pn0 ´ 1q ¨E˚0
›

›δ
p rYi,Xiq

´P0

›

›

Gn
¨E

ˆ

max1ďiďn2
|Ni ´ 1|

?
n2

˙

` 2
?

2}pN1 ´ 1q}2,1 ¨ max
n0ďkďn2

E˚

›

›

›

›

›

1
?
k

k
ÿ

i“n0

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

ď
4pn0 ´ 1qK0}u0}

?
n2

¨E

ˆ

max1ďiďn2 |Ni ´ 1|
?
n2

˙

` 2
?

2}pN1 ´ 1q}2,1 ¨ max
n0ďkďn2

E˚

›

›

›

›

›

1
?
k

k
ÿ

i“1

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

. (8.24)

Following earlier arguments, for any sequence n0 Ñ 8, satisfying, n0{
?
n2 Ñ 0, the first term on the

1We have used the same notation to denote outer expectation with respect to the probability measure corresponding to the

product space of tprYi,Xiq : i ě n1` 1u and tNi : i ě n1` 1u, but this will not create any confusion as the context will be clear

each time.
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right side of (8.24) converges to zero as n2 Ñ8. And

max
n0ďkďn2

E˚

›

›

›

›

›

1
?
k

k
ÿ

i“n0

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

ď max
n0ďkďn2

E˚

›

›

›

›

›

1
?
k

k
ÿ

i“1

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

`E˚

›

›

›

›

›

1
?
n0

n0
ÿ

i“1

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

. (8.25)

For any integer m, using Lemma 2.3.6 of van der Vaart and Wellner (1996), we can remove the

Radamacher random variables, and obtain

E˚

›

›

›

›

›

1
?
m

m
ÿ

i“1

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

ď 2 ¨E˚0

›

›

›

›

›

1
?
m

m
ÿ

i“1

`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

“ 2 ¨E˚0
›

›Gm}Gn ,

where, Gm is the analogue of Gn2 , based on the i.i.d. sample tprYi,Xiq : 1 ď i ď mu. Now, use m “ n0

and let n0 Ñ8. It can be verified that the sufficient conditions for Lemma 8.5 continue to hold if we

replace Gn2 by Gn0 in the statement of Lemma 8.5. Following the arguments used in handling P2,n and

removing the Radamacher random variables in the above manner, we can claim that E˚0 }Gn0}Gn Ñ 0.

In order to handle the first term on the right side of (8.25), firstly note that

max
n0ďkďn2

E˚

›

›

›

›

›

1
?
k

k
ÿ

i“1

εi ¨
`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

ď max
n0ďkďn2

2 ¨E˚0

›

›

›

›

›

1
?
k

k
ÿ

i“1

`

δ
p rYi,Xiq

´P0

˘

›

›

›

›

›

Gn

.

Also note that, for any real valued sequence tbn : n ě 1u satisfying |bn| Ñ 0, it follows that maxt|bj | :

m1 ď j ď m2u Ñ 0, provided m1 Ñ 8. So, it will be enough to show that E˚0 }Gn2}Gn Ñ 0, which

itself follows from the arguments used in handling P2,n. Since n0 Ñ8, the first term in the right side

of (8.25) converges to zero. Thus the right side of (8.24) converges to zero. Hence, P1,n Ñ 0.

Combining all these steps and going back to (8.23), we conclude that E˚0 E˚M

´

›

›pGn2

›

›

Gn

¯

Ñ 0, which

implies for any η ą 0, P˚M
`
›

›pGn2

›

›

Gn
ą η

˘

“ oP˚0
p1q. Thus,

P˚M

˜

sup
β

max
1ďiďp

ˇ

ˇ

ˇ

pGn2

´

h
2,β,θ0`n

´1{2
2 ui

´ h2,β,θ0

¯
ˇ

ˇ

ˇ
ą η{3

¸

“ oP˚0
p1q.

By Lemma 8.18, there will exist some sequence δn Ó 0, such that L1,n and L3,n (cf. (8.22)) are oP˚0
p1q,

with the fixed δ replaced by δn. Choose this sequence δn in L2,n. Hence the left side of (8.22) satisfies

P˚M

˜

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯ˇ

ˇ

ˇ
ą η,

?
n2

`

p

pθn ´ θ0

˘

P Kδn{2
ε1,ε2

¸

“ oP˚0
p1q.

Combining this with (8.20), (8.21) and since ε1, ε2 ą 0, are arbitrary, we can conclude that

sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
“ oP˚M

p1q, in P˚0 -probability.

(iii) In this case, from Theorem 2.1
?
n2

`

pθn´ θ0

˘

“ OP˚0
p1q and hence OPr˚p1q. The remaining argument

can be carried out along the same lines as done in part (ii) above. We skip the details.
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Lemma 8.15. Suppose, assumptions (A1)-(A4) hold. Then,

?
n

ˆ

Zp
p

pβnq ´ Zp
pβnq

˙

`
?
n ¨

´

pZnpβ0q ´ Znpβ0q

¯

“ oP˚M
p1q in P˚0 -probability. (8.26)

Proof of Lemma 8.15. Recall the definitions of pZnpβq, Znpβq and Zpβq from (3.2), (2.6) and (2.8) respec-

tively. Then, we can write

?
n

ˆ

Zp
p

pβnq ´ Zp
pβnq

˙

`
?
n
´

pZnpβ0q ´ Znpβ0q

¯

“

„

?
n pZnp

p

pβnq ´
?
nZnppβnq



`
?
n pZn ´ Zq

`

pβn ´ β0

˘

`
?
n pZn ´ Zq

`

p

pβn ´ β0

˘

´
?
n
´

pZn ´ Zn

¯

ˆ

p

pβn ´ β0

˙

” F1,n ` F2,n ` F3,n ´ F4,n. (8.27)

We will work with the first components of h1,β and h2,β,θ and denote them by the same symbols. Consider

the first components of each term of (8.27) separately. Since
p

pβn is defined to be an exact zero of pZnpβq,

hence
?
n ¨ pZnp

p

pβnq “ oPr˚p1q, trivially. Similarly,
?
n ¨ Znppβnq “ oP˚0

p1q. From Lemma 8.11 it now follows

that,

F1,n “ oPr˚p1q ` oP˚0
p1q “ oPr˚p1q ` oPr˚p1q “ oPr˚p1q “ oP˚M

p1q in P˚0 -probability.

Also, from Lemma 8.10 and Lemma 8.11 we obtain,

F2,n “
?
n ¨ pZn ´ Zq

`

pβn ´ β0

˘

“ oP˚0
p1q “ oPr˚p1q “ oP˚M

p1q in P˚0 -probability.

In order to study F3,n, we will re-trace the arguments of Lemma 8.10, with some important modifications.

Following (8.13), we can write,

F3,n “
?
n ¨ pZn ´ Zq

`

p

pβn ´ β0

˘

“
a

fn ¨Gn1

`

h
1,
p

pβn
´ h1,β0

˘

`
a

1´ fn ¨
?
n2 ¨

“

Zn,2p
p

pβnq ´ Z2p
p

pβnq ´ Zn,2pβ0q ` Z2pβ0q
‰

`
?
n ¨ pfn ´ fq ¨P0

`

h
1,
p

pβn
´ h1,β0

˘

´
?
n ¨ pfn ´ fq ¨

„

Z2p
p

pβnq ´ Z2pβ0q



” H1,n `H2,n `H3,n `H4,n. (8.28)

We consider each term in the right side of (8.28) separately. From Lemma 8.13(i) it follows that H1,n “

oP˚M
p1q in P˚0 -probability. Next, following (8.14) and (8.15) write,

H2,n “
a

1´ fn ¨
?
n2 ¨

”

Pn2h2,
p

pβn,
pθn
´P0h

2,
p

pβn,θ0

´ Pn2h2,β0,
pθn
`P0h2,β0,θ0

ı

,

rH2,n “
a

1´ fn ¨
?
n2 ¨

”

Pn2
h

2,
p

pβn,θ0

´P0h
2,
p

pβn,θ0

´ Pn2h2,β0,θ0 `P0h2,β0,θ0

ı

“
a

1´ fn ¨Gn2

´

h
2,
p

pβn,θ0

´ h2,β0,θ0

¯

,
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From Lemma 8.13(ii) it follows that rH2,n “ oP˚M
p1q in P˚0 -probability. Also,

|H2,n ´ rH2,n| ď 2 ¨
a

1´ fn ¨ sup
βPRp

ˇ

ˇ

ˇ

ˇ

Gn2

´

h2,β,pθn
´ h2,β,θ0

¯

ˇ

ˇ

ˇ

ˇ

`
a

1´ fn ¨
?
n2 ¨

ˇ

ˇ

ˇ
P0

´

h
2,
p

pβn,
pθn
´ h

2,
p

pβn,θ0

´ h2,β0,
pθn
` h2,β0,θ0

¯
ˇ

ˇ

ˇ
.

From Lemma 8.6 and Lemma 8.11,

2 ¨
a

1´ fn ¨ sup
βPRp

ˇ

ˇ

ˇ

ˇ

Gn2

´

h2,β,pθn
´ h2,β,θ0

¯

ˇ

ˇ

ˇ

ˇ

“ oP˚M
p1q in P˚0 -probability.

Also, from Lemma 2.1 and Lemma 8.11 it follows that, }pθn ´ θ0} “ oP˚M
p1q in P˚0 -probability. Combining

this with Theorem 3.2(i) we obtain, }
p

pβn ´ β0} ` }
pθn ´ θ0} “ oP˚M

p1q in P˚0 -probability. Following the

approach used in handling the term C2,n in the proof of Lemma 8.10 and using the continuous mapping

theorem repeatedly, we obtain

a

1´ fn ¨
?
n2 ¨

ˇ

ˇ

ˇ
P0h

2,
p

pβn,
pθn
´P0h

2,
p

pβn,θ0

´

´

P0h2,β0,
pθn
´P0h2,β0,θ0

¯ˇ

ˇ

ˇ
“ oP˚M

p1q,

in P˚0 -probability. Hence,
ˇ

ˇH2,n ´ rH2,n

ˇ

ˇ “ oP˚M
p1q in P˚0 -probability, which implies H2,n “ oP˚M

p1q in P˚0 -

probability. Finally, mimicking the arguments used for the third and fourth terms in the proof of Lemma 8.10

and applying the continuous mapping theorem for bootstrapped random variables, we obtain Hj,n “ oP˚M
p1q

in P˚0 -probability, for j “ 3, 4. Applying the same arguments to all p components of h1,β and h2,β,θ, we can

conclude F3,n “ oP˚M
p1q in P˚0 -probability (cf. (8.28)). Now, consider the term F4,n in (8.27). Then,

F4,n “
?
n ¨

„

pZn
`

p

pβn
˘

´ Zn
`

p

pβn
˘

´ pZnpβ0q ` Znpβ0q



“
a

fn ¨ pGn1

´

h
1,
p

pβn
´ h1,β0

¯

`
?
n ¨ p1´ fnq ¨

”

pPn2
h

2,
p

pβn,
p

pθn
´ Pn2

h
2,
p

pβn,
pθn
´ pPn2

h
2,β0,

p

pθn
` Pn2

h2,β0,
pθn

ı

” I1,n ` I2,n. (8.29)

From Lemma 8.14(i) it follows that I1,n “ oP˚M
p1q in P˚0 -probability. Define the new term,

rI2,n “
?
n ¨ p1´ fnq ¨

”

pPn2
h

2,
p

pβn,
pθn
´ Pn2

h
2,
p

pβn,
pθn
´ pPn2

h2,β0,
pθn
` Pn2

h2,β0,
pθn

ı

“
a

1´ fn ¨ pGn2

´

h
2,
p

pβn,
pθn
´ h2,β0,

pθn

¯

. (8.30)

Then, after some algebra it can be shown that

|I2,n ´ rI2,n|

ď 2 ¨
a

1´ fn ¨ sup
β

ˇ

ˇ

ˇ

pGn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
` 2 ¨

a

1´ fn ¨ sup
β

ˇ

ˇ

ˇ

pGn2

´

h2,β,pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ

` 2 ¨
a

1´ fn ¨ sup
β

ˇ

ˇ

ˇ
Gn2

´

h
2,β,

p

pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ
` 2 ¨

a

1´ fn ¨ sup
β

ˇ

ˇ

ˇ
Gn2

´

h2,β,pθn
´ h2,β,θ0

¯
ˇ

ˇ

ˇ

`
a

1´ fn ¨
?
n2 ¨

ˇ

ˇ

ˇ

ˇ

P0

´

h
2,
p

pβn,
p

pθn
´ h

2,
p

pβn,
pθn
´ h

2,β0,
p

pθn
` h2,β0,

pθn

¯

ˇ

ˇ

ˇ

ˇ

” J1,n ` J2,n ` J3,n ` J4,n ` J5,n. (8.31)
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Consider each term of (8.31) separately. Using Lemma 8.14 it follows that, J1,n “ oP˚M
p1q and J2,n “ oP˚M

p1q

in P˚0 -probability. Next, note that
?
n2

`

p

pθn´θ0

˘

converges to a tight limiting distribution under the product

probability measure Pr. Hence, the proof of Lemma 8.6 holds in this case, without any changes except that

all probability statements are understood in terms of Pr instead of P0. We skip the details about verification

of the conditions. Hence, J3,n “ oPr˚p1q which implies, J3,n “ oP˚M
p1q in P˚0 -probability. From Lemma

8.6 and Lemma 8.11, it follows that J4,n “ oP˚M
p1q in P˚0 -probability. We can use the arguments used to

handle the term C2,n (cf. (8.16)) in Lemma 8.10 along with the fact that
?
n2

`

p

pθn ´ pθn
˘

“ OPr˚p1q and

}
p

pβn ´ β0} “ oP˚M
p1q in P˚0 -probability. We skip the details. Hence, J5,n “ oP˚M

p1q in P˚0 -probability.

Combining all parts in the right side of (8.31), we obtain |I2,n´ rI2,n| “ oP˚M
p1q in P˚0 -probability. Also from

(8.30),

|rI2,n| “
a

1´ fn ¨
ˇ

ˇ

ˇ

pGn2

´

h
2,
p

pβn,
pθn
´ h2,β0,

pθn

¯
ˇ

ˇ

ˇ
ď J2,n `

a

1´ fn ¨
ˇ

ˇ

ˇ

pGn2

´

h
2,
p

pβn,θ0

´ h2,β0,θ0

¯
ˇ

ˇ

ˇ
, cf. (8.31).

We already know that J2,n “ oP˚M
p1q in P˚0 -probability. The second term can be shown to be oP˚M

p1q in

P˚0 -probability, by exactly following the argument given in the proof of Lemma 8.13(i) and by noting that

th2,β,θ0 : β P Rpu is a Donsker class. Hence, rI2,n “ oP˚M
p1q in P˚0 -probability. Combining all steps and from

(8.29) we obtain, F4,n “ oP˚M
p1q in P˚0 -probability. Following the argument separately for all p components

in the right side of (8.27) completes completes the proof.

Lemma 8.16. Suppose, assumptions (A1)-(A5) hold. Then,

?
n ¨

›

›

p

pβn ´ β0

›

› “ OP˚M
p1q, in P˚0 -probability.

Proof of Lemma 8.16. Note that Zpβ0q “ 0 and pZnp
p

pβnq “ 0. Recall the decomposition obtained in (8.27).

Then, we can write

?
n
`

Zp
p

pβnq ´ Zpβ0q
˘

“
?
nZp

p

pβnq “
?
n pZ ´ Znq p

p

pβnq `
?
n
`

Zn ´ pZn
˘

p
p

pβnq `
?
n pZnp

p

pβnq

“
?
n pZ ´ Znq

`

p

pβn ´ β0

˘

`
?
n
`

Zn ´ pZn
˘`

p

pβn ´ β0

˘

`
?
n pZ ´ Znq pβ0q `

?
n
`

Zn ´ pZn
˘

pβ0q

`
?
n pZnp

p

pβnq

” ´ F3,n ´ F4,n ´Q1,n ´Q2,n `Q3,n, (8.32)

where, F3,n and F4,n have been defined earlier in (8.27). Consider each term in the right side of (8.32)

separately. Following the proof of Lemma 8.15, it follows that F3,n and F4,n are oP˚M
p1q in P˚0 -probability.

Also, Q3,n “ 0, by definition of
p

pβn (cf. (3.3)). Finally, after some manipulations it can be shown that

Q1,n `Q2,n

“
a

fn ¨ pGn1h1,β0
`
a

1´ fn ¨ pGn2h2,β0,θ0 `
a

1´ fn ¨ pGn2

´

h
2,β0,

p

pθn
´ h2,β0,θ0

¯

´
a

1´ fn ¨Gn2

´

h2,β0,
pθn
´ h2,β0,θ0

¯

`
a

1´ fn ¨Gn2

´

h
2,β0,

p

pθn
´ h2,β0,θ0

¯

`
a

fn ¨Gn1h1,β0
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`
a

1´ fn ¨Gn2

´

h2,β0,
pθn
´ h2,β0,θ0

¯

`
a

1´ fn ¨Gn2
h2,β0,θ0

`
a

1´ fn ¨
?
n2 ¨P0

´

h
2,β0,

p

pθn
´ h2,β0,θ0

¯

`
?
npfn ´ fq ¨P0

`

h1,β0
´ h2,β0,θ0

˘

. (8.33)

Since th1,β : β P Rpu is a Donsker class (cf. Lemma 8.4(i)), hence pGn1
h1,β0

“ OP˚M
p1q in P˚0 -probability, by

Theorem 3.6.1 of van der Vaart and Wellner (1996). A similar argument shows that, pGn2
h2,β0,θ0

“ OP˚M
p1q

in P˚0 -probability, since th2,β,θ0
: β P Rpu is Donsker. Also, using the Delta method, Lemma 3.1 and the

methods used in the proof of Theorem 2.2 we can claim that

?
n2 ¨P0

´

h
2,β0,

p

pθn
´ h2,β0,θ0

¯

“ OP˚M
p1q, in P˚0 -probability.

Following the proof of Theorem 2.2,
?
npfn ´ fq ¨ P0

`

h1,β0
´ h2,β0,θ0

˘

“ op1q. Since th1,β : β P Rpu and

th2,β,θ0
: β P Rpu are Donsker, hence Gn1

h1,β0
and Gn2

h2,β0,θ0
are OPr˚p1q. The remaining terms in the

right side of (8.33) are oP˚M
p1q in P˚0 -probability, using Lemma’s 8.13 and 8.14. So, Q1,n `Q2,n “ OP˚M

p1q

in P˚0 -probability. Therefore, continuing from (8.32) and applying triangle inequality we obtain,

›

›

›

›

?
n

ˆ

Zp
p

pβnq ´ Zpβ0q

˙
›

›

›

›

´ }Q1,n `Q2,n} ď }F3,n} ` }F4,n} ` }Q3,n}

“ oP˚M
p1q ` oP˚M

p1q ` oPr˚p1q “ oP˚M

ˆ

1`
?
n ¨

›

›

p

pβn ´ β0

›

›

˙

.

because a oP˚M
p1q term is obviously a oP˚M

`

1 `
?
n ¨

›

›

p

pβn ´ β0

›

›

˘

term in P˚0 -probability. Since Zpβq is

differentiable at β0 and the derivative is nonsingular (cf. assumption (A5)), we can write for some c ą 0,

?
n ¨

›

›

p

pβn ´ β0

›

› ¨

´

c` oP˚M
p1q

¯

ď
?
n

›

›

›

›

ˆ

Zp
p

pβnq ´ Zpβ0q

˙
›

›

›

›

ď }Q1,n `Q2,n} ` oP˚M

ˆ

1`
?
n ¨

›

›

p

pβn ´ β0

›

›

˙

“ OP˚M
p1q ` oP˚M

ˆ

1`
?
n ¨

›

›

p

pβn ´ β0

›

›

˙

.

This implies
?
n ¨

›

›

p

pβn ´ β0

›

› “ OP˚M
p1q in P˚0 -probability.

8.3 Two useful mathematical results

The result in Lemma 8.17 describes an useful property of the gradient vector of a strictly concave function

with domain Rp. This result has been used in the proof of Lemma 8.2 to show the well-separated condition

for the unique root of Z1pβq. Lemma 8.18 is a simple result about sequences indexed by two indices and has

been used in the proofs of Lemma 8.13, Lemma 8.14 and Theorem 3.2(i). The symbol } ¨ } is used to denote

the Euclidean norm in Rp.

Lemma 8.17. Suppose, f : Rp ÞÑ R is a strictly concave function which is differentiable at all points and

has an unique maxima at some x0 P Rp. Denote the gradient of f at a point x by ∇fpxq. Then, the following
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strict inequalities hold:

fpx0q ą sup
x:}x´x0}ěδ

fpxq,

0 “ }∇fpx0q} ă inf
x:}x´x0}ěδ

}∇fpxq},

,

/

/

.

/

/

-

, for all δ ą 0. (8.34)

Proof of Lemma 8.17. We complete the proof in separate parts.

(i) Consider any x P Rp (with x ‰ x0) and the line passing segment joining x0 and x. Any point on the

interior of this line segment can be represented as, ypλq “ λx ` p1 ´ λqx0, for some λ P p0, 1q. Since

x0 is the unique maxima and f is strictly concave on this line segment, we must have

fpx0q ą fpypλqq ą fpxq, for all λ P p0, 1q.

Now, for any δ ą 0, define the sets Gδ “ tx : }x´ x0} “ δu. We claim that,

sup
xPGδ1

fpxq ą sup
xPGδ2

fpxq, for any 0 ă δ1 ă δ2. (8.35)

If possible, assume that the claim is false and the strict inequality in (8.35) fails for some pair of

values, pδ1, δ2q with δ1 ă δ2. Note that Gδi are compact. Then, as f is continuous, there exists a point

xδi P Gδi , such that fpxδiq “ supxPGδi
fpxq, i “ 1, 2. As per our assumption we have, fpxδ1q ď fpxδ2q.

Join the points x0 and xδ2 by a line segment which intersects Gδ1 (which is the inner circle) at some

interior point (on the line) x1 P Gδ1 . By strict concavity of f over this line segment, we have

fpxδ2q ă fpx1q ď fpxδ1q,

which contradicts our assumption and as a result (8.35) holds. For any δ ą 0,

sup
x:}x´x0}ěδ

fpxq “ sup

#

fpxq : x P
ď

ηěδ

Gδ

+

“ sup
xPGδ

fpxq “ fpxδq,

for some xδ P Gδ. Now, draw a line segment through the points x0 and xδ. Since }xδ´x0} “ δ ą 0, we

can use strict concavity to claim that, fpxδq ă fpx0q. This completes the proof of the first statement.

(ii) Note that ∇fpxq “
`

D1fpxq, . . . , Dpfpxq
˘1

, where Djfpxq denotes the j-th partial derivative of f at

the point x. Also, Djfpxq is the directional derivative of f at the point x in the direction of ej ,

where ej denotes the j-th unit vector in Rp. Finally note that, for a strictly concave and differentiable

function f , }∇fpxq} “ 0, if and only if x is a global maxima of f .

Consider the line segment through x0 in the direction e1. Define the function, gx0
ptq “ fpx0 ` te1q,

t P R. It is easily seen that t ÞÑ gx0
ptq is strictly concave and also differentiable (since f is differentiable
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everywhere). Fix any δ ą 0. Using the proof of part (i) above, we know there exists a point xδ on Gδ

such that,

fpx0q ą fpxδq “ sup
xPGδ

fpxq ě fpx0 ` δe1q, since, x0 ` δe1 P Gδ,

ñ 0 ă cδ ” fpx0q ´ fpxδq ď fpx0q ´ fpx0 ` δe1q “ gx0
p0q ´ gxpδq,

ñ 0 ă cδ ď p0´ δq ¨ g
1
x0
pθδq “ D1fpx0 ` θδe1q, using the Mean Value Theorem, for some θ P p0, 1q,

ñ 0 ă
|cδ|

|δ|
ď |D1fpx0 ` θδe1q| ď }∇fpx0 ` θδe1q}. (8.36)

Note that, }x0 ´
`

x0 ` θδe1

˘

} “ θδ. Hence,

0 ă
|cδ|

|δ|
ď inf

x:}x´x0}ěθδ
}∇fpxq} ď inf

x:}x´x0}ěδ
}∇fpxq}.

This completes the proof.

Lemma 8.18 (A result on sequences). Suppose tan,k : n ě 1, k ě 1u is a sequence of non-negative real

numbers such that, for each fixed k ě 1, limnÑ8 an,k “ 0. Then, there exists a sequence tkn : n ě 1u such

that limnÑ8 an,kn “ 0.

Proof of Lemma 8.18. The proof can be found in Lahiri (2003) (pg. 78).

8.4 Detailed expressions for matrices used in Theorem 2.2 and Lemma 8.8

We provide detailed expressions of the matrices used in the statement of Theorem 2.2 and Lemma 8.8. Note

that E0, Var0 and cov0 denote expectation, variance and covariance under P0. In case of the with intercept

model (2.9), computation of the matrices shown below can be carried out by replacing x1 with 1.

Define, Σ “ Var0pT1q “
`

σi,j : 1 ď i, j ď p`3
˘

, where T1 is defined in (7.1). Note that, Σ2,2 “ Var0pT
p2qq

has been found in (2.11). The remaining components of Σ are, Σ1,1 “ Var0pT
p1qq and Σ1,2 “ Σ12,1 “

cov0pT
p1q,Tp2qq. It is easy to obtain the following expressions,

σi,j “

ż

xixj ¨ ψpx
1β0qt1´ ψpx

1β0qu dQpxq, for all j “ 1, . . . , p,

σi,p`1 “ ´ p1´ θ1,0q ¨

ż

xiψpx
1β0qt1´ ψpx

1β0qu dQpxq,

σi,p`2 “ θ2,0 ¨

ż

xiψpx
1β0qt1´ ψpx

1β0qu dQpxq, and

σi,p`3 “ ´ θ1,0

ż

xiψpx
1β0qt1´ ψpx

1β0qu dQpxq.

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

@ i “ 1, . . . , p. (8.37)

Next, write Γ “ Var0

`

h2,β0,θ0
prY ,Xq

˘

“
`

Γi,j : 1 ď i, j ď pq
˘

(cf. (2.3)). The expression for Γi,j is,

Γi,j “ p1´ θ1,0 ´ θ2,0q
2
ż

xixj ¨
rψpx1β0qt1´ ψpx

1β0qus
2

h3,β0,θ0
pxq ¨ p1´ h3,β0,θ0

pxqq
dQpxq, for all 1 ď i, j ď p. (8.38)

70



The pˆ 2 matrix Aθ “
`

Aθpi, jq : 1 ď i ď p, 1 ď j ď 2
˘

is the total derivative map of f̄pθq “ P0h2,β0,θ (cf.

Lemma 8.8(ii)) with respect to θ. Also, A0 is the value of Aθ at θ “ θ0, and is used in Theorem 2.2(ii). To

simplify the expression, define

uθpry,xq ”
t1´ ψpx1β0qu ¨ try ´ h3,β0,θpxqu

h3,β0,θpxq ¨ t1´ h3,β0,θpxqu
, for all pry,xq and all θ P Θ.

Then, for all i “ 1, . . . , p and j “ 1, 2, elements of Aθ can be expressed as,

Aθpi, jq “ ´

ż

xi ¨ ψpx
1β0q ¨ uθpry,xq ¨

”

1` p´1q
j`1

¨ p1´ θ1 ´ θ2q ¨ uθpry,xq
ı

dP0pry,xq. (8.39)

In case θ “ θ0, E0prY |X “ xq “ h3,β0,θ0pxq, which implies E0

`

uβ0,θ0p
rY ,Xq|X “ x

˘

“ 0. Hence,

Var0

`

rY |X “ x
˘

“ h3,β0,θ0pxq ¨ t1´ h3,β0,θ0pxqu. After simplification, the expression for elements of A0 will

be,

A0pi, jq “ p´1q
j
¨ p1´ θ1,0 ´ θ2,0q ¨

ż

xi ¨
ψpx1β0q ¨

 

1´ ψpx1β0q
(2

h3,β0,θ0pxqt1´ h3,β0,θ0pxqu
dQpxq, for all pi, jq. (8.40)

Write, 9Zpβ0q “
`

9Zpβ0qpi,jq : 1 ď i, j ď p
˘

. It can be checked that,

9Zpβ0qpi,jq “ ´ f ¨

ż

xixj ¨ ψpx
1β0qt1´ ψpx

1β0qu dQpxq

´ p1´ fq ¨ p1´ θ1,0 ´ θ2,0q
2
¨

ż

xixj ¨

`

ψpx1β0qt1´ ψpx
1β0qu

˘2

h3,β0,θ0
pxqt1´ h3,β0,θ0

pxqu
dQpxq. (8.41)
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