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VARIATIONS OF ERDŐS- SELFRIDGE
SUPERELLIPTIC CURVES AND THEIR RATIONAL

POINTS

PRANABESH DAS, SHANTA LAISHRAM AND N. SARADHA

Abstract. For the superelliptic curves of the form

(x + 1) · · · (x + i− 1)(x + i + 1) · · · (x + k) = y`

with k ≥ 3 and ` ≥ 2, a prime, for some values of i in the range

2 ≤ i ≤ k, we bound ` < e3
k

, as in a recent paper of Bennett and
Siksek.

1. Introduction

Let x ∈ Q and k ≥ 2 be an integer. For any integer n ≥ 1, let P (n)
denote the greatest prime factor of n and take P (1) = 1. Put

∆0 = (x+ 1) · · · (x+ k)

and for 1 ≤ i ≤ k, let

∆i = (x+ 1) · · · (x+ i− 1)(x+ i+ 1) · · · (x+ k).

In a recent paper, Bennett and Siksek [2] considered rational solutions
of

(1) ∆0 = y`

in x and y with ` ≥ 2, a prime. They showed that if (1) holds, then

(2) ` ≤ e3
k

.

This can be considered as a rational analogue to the Schinzel-Tijdeman
theorem on integral solutions to the superelliptic equation f(x) = yl

where f(x) is a polynomial. In this paper, we extend the result of
Bennett and Siksek to the equation

∆i = y`, 1 ≤ i ≤ k.
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Note that ∆1 = y` and ∆k = y` are equations similar to (1) with k
replaced by k − 1 and so (2) holds for these equations. Hence we will
consider

(3) ∆i = y`, 2 ≤ i ≤ k − 1.

Let

(4) θ =


π(k−1

2
) + 1 if k is odd

π(k
2
) if k is even and k

2
is prime

π(k
2
) + 1 if k is even and k

2
is not prime.

Let 2 = p1 < p2 < · · · denote the sequence of all primes. Then pθ is
the least prime ≥ k/2. We show the following result.

Theorem 1.1. Let equation (3) be valid with 2 ≤ i ≤ k − pθ or pθ <
i < k. Then (2) holds.

When k = 2q where q is a prime, we have pθ = q. Thus we get the
following corollary.

Corollary 1.2. Let equation (3) be valid with k = 2q where q is a
prime. Then (2) holds.

Write ∆i = Ni/Di with gcd(Ni, Di) = 1. The proof of Theorem
1.1 depends on the fact that P (Ni) ≥ k/2. On the other hand, when
k/3 < P (Ni) < k/2 and k small, we can show using combinatorial
arguments that ` < k. More precisely, we have

Theorem 1.3. Suppose (3) holds with 9 ≤ k ≤ 26 and P (Ni) < pθ.
Then ` ≤ k − 1.

From the works of Sander [10], Lakhal and Sander [7], Bennett et
al [1] and Győry et al [5], we know that all the rational solutions of
(1) can be determined for k ≤ 34. Here we completely solve k = 3 and
remove the condition on P (Ni) in Theorem 1.3 for 4 ≤ k ≤ 8.

Theorem 1.4. Suppose (3) holds. Then

` ≤ k − 1 for 4 ≤ k ≤ 8.

Further, if k = 3, then ` = 2 and all the rational solutions are given by

i = 2, (x, y) ∈
{(

(r2 − 2s2)2

4r2s2
− 1,±(r4 − 4s4)

4r2s2

)}
i = 2, (x, y) ∈

{(
8r2s2

(r2 − s2)2
− 1,±4rs(r2 + s2)

(r2 − s2)2

)}
where r, s are co-prime integers r > s > 0 of opposite parity.
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As a consequence of the above two theorems, we are able to remove
the restriction on i in Theorem 1.1 for small values of k.

Corollary 1.5. Let equation (3) be valid with 3 ≤ k ≤ 26. Then (2)
holds.

By the remarkable result of Erdős and Selfridge [4], it is known
that (1) has no integral solutions. Since their result in 1975, several
variations of the equation have been considered and integral solutions
were investigated. Further, rational solutions to (1) leads to finding
perfect powers in certain products in arithmetic progression (see (6)
below). We refer to the survey articles of Shorey [13] and [14] for
various results in this direction.

2. Preliminaries

While proving Theorems 1.1,1.3 and 1.4, we may assume that ` is a
prime and

(5) ` > k − 1.

Write x = n
s

and y = m
t
,m 6= 0 with s, t positive integers and gcd(n, s) =

gcd(m, t) = 1. Then (3) becomes

(n+ s) · · · (n+ (i− 1)s)(n+ (i+ 1)s) · · · (n+ ks) =
sk−1m`

t`
.

Since the left hand side is an integer and gcd(n, s) = gcd(m, t) = 1, we
get sk−1 = t`. As ` is a prime > k− 1, there is a positive integer d such
that s = d` and t = dk−1. Thus (3) gives rise to the equation

(6) (n+ d`) · · · (n+ (i− 1)d`)(n+ (i+ 1)d`) · · · (n+ kd`) = m`

with gcd(n, d) = 1. We denote by ∆
(0)
i the product on the left hand

side of (6) and put

∆
(0)
i,1 = (n+d`) · · · (n+(i−1)d`); ∆

(0)
i,2 = (n+(i+1)d`) · · · (n+(k−1)d`).

An empty product is taken as equal to 1. Further we can write each
term

n+ jd` = ajx
`
j, 1 ≤ j ≤ k, j 6= i

with P (aj) < k and aj − ` th power free. We use the notation

a
(i)
j = aj if the role of i is necessary. Equation (6), when d` is re-

placed by any common difference D has been the subject of study
in the papers [11] and [12]. This is an equation dealing with per-
fect powers in a product with terms in arithmetic progression and one
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term missing. It has been shown in [11] and [12] that such an equa-
tion with D > 1 implies that there exists a prime ≡ 1(mod `) di-
viding D. In particular this implies that if a rational solution (x, y)
exists for (1), then the denominators of x and y exceed (2`)` and

(2`)k−1, respectively. Note that (a
(i)
1 , · · · , a

(i)
i−1, a

(i)
i+1, · · · , a

(i)
k ) of ∆i and

(a
(k−i)
1 , · · · , a(k−i)k−i−1, a

(k−i)
k−i+1, · · · , a

(k−i)
k ) of ∆k−i are mirror images of each

other. In other words,

(a
(k−i)
1 , · · · , a(k−i)k−i−1, a

(k−i)
k−i+1, · · · , a

(k−i)
k ) = (a

(i)
k , · · · , a

(i)
i+1, a

(i)
i−1, · · · , a

(i)
1 ).

Hence it is enough to consider (6) with 1 < i ≤ dk
2
e which we assume

from now onwards. Here for any x ≥ 0, dxe denotes the least integer
≥ x.

3. Lemmas

As in [2] it is clear that one needs to derive a suitable ternary form
from (6). Towards this we prove the following lemma which is similar
to Lemma 2.1 of [2].

Lemma 3.1. Let k ≥ 9. Suppose (3) has a rational point (x, y) with

y 6= 0. Let p be a prime dividing at most two terms in ∆
(0)
i . Then there

are non-zero integers a, b, c, u, v, w satisfyinng

au` + bv` + cw` = 0

such that

(1) a, b, c are `-th power free integers
(2) P (abc) ≤ k
(3) p - abc
(4) p divides precisely one of u, v, w.

Proof. Note that p ≥ 3 since k ≥ 9. Suppose p|d. Then p - (n+ jd`) for
any 1 ≤ j ≤ k, j 6= i since gcd(n, d) = 1. Then the equations

n+ 2d` − (n+ d`) = d` if i 6= 2;n+ d` − (n+ 3d`) = −2d` if i = 2

satisfies (1)-(4) of the lemma.

Let p - d. Suppose p divides only one term of ∆
(0)
i , say, n+ jd`. Then

p occurs to an `-th power in this term. Hence p - aj and p|xj. Form
equations as follows.

n+jd`−(n+(j−1)d`) = d` if i ≤ j−2; n+jd`−(n+(j+1)d`) = −d` if i ≥ j+2;

n+jd`−(n+(j−2)d`) = 2d` if i = j−1; n+jd`−(n+(j+2)d`) = −2d` if i = j+1.

These equations satisfy (1)-(4) of the lemma.
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Suppose p divides exactly two terms n+ jd` and n+ (j+ p)d`. Form
an equation as follows:

(7) (n+jd`)(n+(j+p)d`)−(n+(j+1)d`)(n+(j+p−1)d`) = −(p−1)d2`

if i 6∈ {j + 1, j + p − 1}. This satisfies (1)-(4) of the lemma. Thus we
need to consider i ∈ {j + 1, j + p− 1}. For p ≥ 5, we take

(n+jd`)(n+(j+p)d`)−(n+(j+2)d`)(n+(j+p−2)d`) = −2(p−2)d2`

which satisfies (1)-(4) of the lemma. Let p = 3. Since p divides exactly
two terms, k ≤ 11 and further the deleted term n + id` is divisible by
3. Then 3|(i− j) contradicting i ∈ {j + 1, j + 2}. �

From Lemma 3.1 and the discussions in the Proof of Theorem 1 of
[2], we obtain the following lemma as an easy consequence.

Lemma 3.2. Let k ≥ 9. Suppose (3) has a rational point (x, y) with

y 6= 0. Let p ≤ k be a prime dividing at most two terms in ∆
(0)
i . Then

log ` ≤
16(
∏

q<k,q 6=p q) + 1

6
log(
√
p+ 1) ≤ 3k.

Remark 3.1. We would like to note that the above bound for ` is
already known in [1, Theorem 1.4].

For the proof of Theorems 1.3 and 1.4, we need to be more precise
while forming the ternary equations. This involves locating the primes
dividing the aj’s. We also need the following three lemmas for excluding
several cases.

Lemma 3.3. Let ` ≥ 3, α ≥ 0, β ≥ 0 be integers. Then the equation

x` + y` = 2αz`

in relatively prime integers x, y, z ≥ 1 has no solution for α 6= 1, and
for α = 1 the equation has only the trivial solution x = y = z = 1.
Further, the equations

x` − y` = 2αz` and x` + y` = 3βz`

have no solution in relatively prime integers x, y, z ≥ 1.

The results in the first two equations were established by Wiles[15]
for α = 0, by Darmon and Merel [3] for α = 1, and by Ribet [8] for
α > 1. The result in the third equation is due to Serre [9]. The next
lemma is [11, Lemma 13].

Lemma 3.4. Let ` ≥ 5. Let a, b, c be non-zero integers such that either
P (abc) ≤ 3 or a,b,c are composed of 2 and 5. Then the equation

ax` − by` = cz` in nonzero integers x, y, z with
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gcd(ax`, by`, cz`) = 1, ord2(by
`) ≥ 4

has no solution.

As an easy consequence of the above two lemmas, we obtain the
following result.

Corollary 3.5. Suppose (6) is valid. Let 1 ≤ j1 < j2 ≤ k and none of
them equal to i.

(1) Suppose

P (aj1aj2) ≤ 2 and |j1 − j2| = 2δ for some integer δ with δ ≥ 0.

Then ` = 2.
(2) Suppose

P (aj1aj2) ≤ 3 and |j1−j2| = 2δ13δ2 for some integers δ1, δ2 with δ1 ≥ 0, δ2 ≥ 0.

Then in the ternary equation

aj1x
`
j1
− aj2x`j2 = (j1 − j2)d`

after cancelling common factors, 2 divides only one term and ord2 in
that term is ≤ 3.

In the following discussion we shall put the above corollay differently
which will be useful in the proof of Theorem 1.3. Let k be fixed and p be

a prime dividing ∆
(0)
i . Suppose jp is the first j such that p | (n+ jpd

`).
Further assume that

(8) jp + 2p ≤ k < jp + 3p.

Note that i belongs to either [jp + 1, jp +p] or [jp +p+ 1, jp + 2p]. From
now on, without loss of generality, we shall assume that

(9) i 6∈ [jp + 1, jp + p].

Definition 3.1. We say that property T holds if there exists a prime
p satisfying (8) and we can find two indices µ, ν ∈ [jp + 1, jp + p) such
that the ternary equation

aµxµ
` + aνxν

` = (µ− ν)d`

can be reduced to an equation as in Corollary 3.5 (1).

Thus if property T holds, then we conclude that ` = 2. Let us denote

(b)p = ajp+b ; (b1, b2, · · · )p = ajp+b1ajp+b2 · · ·

for any b, b1, b2, · · · ∈ [jp + 1, jp + p).
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Lemma 3.6. Suppose (6) holds. Let p be a prime dividing ∆
(0)
i and

satisfying (8). Suppose any of the following conditions hold.
(i) There exist integers a ≥ 0, 2a < p, b ∈ [jp + 1, jp + p − 2a) with
P ((b, b+ 2a)p) ≤ 2.
(ii) There exist integers a ≥ 0, 2a3 < p, b ∈ [jp + 1, jp + p − 2a3), with
3 || (b)p, 3 || (b+ 2a3)p and P ((b, b+ 2a3)p) ≤ 3.
Then property T holds and hence ` = 2.

Proof. Suppose (i) holds. Then we consider the ternary equation

(10) ajp+b+2axjp+b+2a
` − ajp+bxjp+b` = 2ad`

After cancelling the powers of 2, we conclude that ` = 2 from Corollary
3.5(1).

The proof, when (ii) holds is similar.
�

As a consequence of the above lemma, we get

Corollary 3.7. Suppose (6) holds with ` ≥ 3. Let p be a prime dividing

∆
(0)
i and satisfying (8). Then for any integer a ≥ 0 with 2a < p and

for any integer b with b ∈ [jp + 1, jp + p− 2a) we have
(A1) P ((b, b+ 2a)p) > 2.
Also for any integer a ≥ 0 with 2a3 < p and for any integer b with
b ∈ [jp + 1, jp + p− 2a3), 3 || (b)p and 3 || (b+ 2a3)p we have
(A2) P ((b, b+ 2a3)p) > 3.

The next lemma is part of [1, Proposition 3.1 ].

Lemma 3.8. Let ` ≥ 7 be prime and A,B co-prime positive integers.
Then the following equations have no solution in non-zero co-prime
integers (x, y, z) with xy 6= ±1:

(i) Ax` +By` = z2, P (AB) ≤ 3, p | xy for each p ∈ {5, 7}.
(ii) Ax` +By` = z2, P (AB) ≤ 5, 7 | xy and ` ≥ 11

(iii) x` + 2αy` = 3z2 with p | xy for each p ∈ {5, 7} and α ≥ 0.

We will use the above lemma by forming an identity as

(11) (n+ i1d
`)(n+ i2d

`)− (n+ j1d
`)(n+ j2d

`) = (i1i2 − j1j2)d2`

for 1 ≤ i1 < i2 ≤ k, 1 ≤ j1 < j2 ≤ k, (i1, i2) 6= (j1, j2) with i1 + i2 =
j1 + j2. We end this section with the following well known result on
Pythogorean triples and a related result.
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Lemma 3.9. Positive integral solutions of the equation

x2 + y2 = z2, y even

are given by x = r2 − s2, y = 2rs, z = r2 + s2 with r > s > 0 co-prime
integers of opposite parity.

Positive integral solutions of the equation

x2 + 2y2 = z2

are given by x = |u2 − 2v2|, y = 2uv, z = u2 + 2v2 with u, v co-prime
positive integers with u odd.

4. Proof of Theorem 1.1

For 1 ≤ i ≤ k, let ∆
(0)
i,1 and ∆

(0)
i,2 be as defined in Section 2. Suppose

2 ≤ i ≤ k−pθ. Then length of ∆
(0)
i,2 is k− i ≥ pθ. Hence ∆

(0)
i is divisible

by a prime ≥ k/2 by the definition of θ. This prime can divide at most

two terms of ∆
(0)
i . Hence by Lemma 3.2, inequality (2) is valid.

Suppose pθ < i < k. Then length of ∆
(0)
i,1 is i − 1 ≥ pθ ≥ k/2. Now

the conclusion follows as in the previous case. �

5. Proof of Theorem 1.4

First we take k = 3. We assume that ` > 2. Then (6) is

(n+ d`)(n+ 3d`) = m`.

Thus

a3x
`
3 − a1x`1 = 2d`.

Since P (a1a3) ≤ 2, the above equation gives rise to a ternary equation
as in Corollary 3.5 (1), by which we conclude that ` = 2. Further
(a1, a3) ∈ {(1, 1), (2, 2)}. These choices lead to

x21 + 2d2 = x23 or x21 + d2 = x23.

We apply Lemma 3.9 to get the assertions of the theorem.
Let 4 ≤ k ≤ 8. We assume that (5) holds. Thus ` ≥ k and (6) is

valid. Suppose 2|d. Then 2 - aj for any j with 1 ≤ j ≤ k, j 6= i. Hence
we can find 1 ≤ j1 < j2 ≤ k, {j1, j2} 6∈ i such that j2 − j1 = 1 or 2 and
P (aj1aj2) ≤ 3. Thus the ternary equation

aj2x
`
j2
− aj1x`j1 = (j2 − j1)d`

satisfies Corollary 3.5 (2), giving ` ≤ 3.
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From now on we shall assume that 2 - d. Then 2 divides terms of

∆
(0)
i . Let 2µ be the maximum power of 2 appearing in any term of ∆

(0)
i

and let

n+ j(µ)d` = 2µa(µ)(xj(µ))
`, where a(µ) =

aj(µ)

2µ

be the term divisible by 2µ. We discuss each value of k now.
Let k = 4. Then i = 2 and P (aj) ≤ 3. Since aj’s are `− th power

free, we have either 3|a1, a4 or P (aj) ≤ 2. In the latter case, we apply
Corollary 3.5(1) with (j1, j2) = (1, 3) or (3, 4) to conclude that ` = 2.
Let 3|a1, a4. We have j(µ) ∈ {1, 3}, µ ≥ l − 1 or j(µ) = 4, µ ≥ `. Form
ternary equations

2µa(µ)(xj(µ))
` − a4x`4 = (j(µ) − 4)d`

or
2µa(µ)(xj(µ))

` − a3x`3 = (j(µ) − 3)d`,

respectively to conclude from Corollary 3.5(2) that ` ≤ 3.
Let k = 5. Then i = 2 or 3, P (aj) ≤ 3 and j(µ) ∈ {1, 3, 5} or j(µ) = 4

if i = 2; j(µ) ∈ {1, 5} or j(µ) ∈ {2, 4} if i = 3. Thus µ ≥ `−3. As shown
in the case k = 4 we can form a ternary equation as in Corollary 3.5(2)
to conclude that ` ≤ 5.

Let k = 6. Then i = 2 or 3 and P (aj) ≤ 5. Then µ ≥ `− 3. Suppose
5 does not divide any of the aj’s. Then we form a ternary equation
as in Corollary 3.5(1) to conclude that ` = 2. Thus we may assume
that 5|a1 and 5|a6. Observe that ord5(a1a6) ≡ 0(mod l). We form the
identities

(n+ d`)(n+ 6d`)− (n+ 3d`)(n+ 4d`) = −6d2` if i = 2;(12)

(n+ d`)(n+ 6d`)− (n+ 2d`)(n+ 5d`) = −4d2` if i = 3(13)

These are reduced to equations of the form given in Lemma 3.8 since
P (a3a4) ≤ 3 if i = 2 and P (a2a5) ≤ 3 if i = 3. Hence we conclude that
` ≤ 5.

Let k = 7. Then i ∈ {2, 3, 4} and P (aj) ≤ 5. Suppose P (aj) ≤ 3 for
1 ≤ j ≤ 7, j 6= i we can form a ternary equation as in Corollary 3.5(1)
to get ` = 2. Thus we may suppose that 5|aj and 5|aj+5 with j = 1
when i = 2 and j ∈ {1, 2} when i = 3, 4. Then we form the identity
(12) if i = 2 and identity (13) if i ∈ {3, 4} and 5|a1, a6 to conclude
` ≤ 5. When i ∈ {3, 4} and 5|a2, a7, we form the identities

(n+ 2d`)(n+ 7d`)− (n+ 4d`)(n+ 5d`) = −6d2` if i = 3

(n+ 2d`)(n+ 7d`)− (n+ 3d`)(n+ 6d`) = −4d2` if i = 4

to conclude that ` ≤ 5.
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Let k = 8. Then i ∈ {2, 3, 4} and P (aj) ≤ 7. If P (aj) ≤ 5, we argue
as in k = 7 to get ` ≤ 5. So we may suppose that 7|a1, a8. Also we may
assume that 5|ajaj+5 with j ∈ {1, 2, 3}, j 6= i. Otherwise, P (aj) ≤ 3
for 1 < j < 8, j 6= i, and it can be seen easily that we can form a
ternary equation as in Corollary 3.5 (1) to get ` = 2. Now we form the
identities

(n+ d`)(n+ 8d`)− (n+ 3d`)(n+ 6d`) = −10d2` if i = 2, 4, 5|a1a6 or 5|a3a8
(n+ d`)(n+ 8d`)− (n+ 2d`)(n+ 7d`) = −6d2` if i = 3, 4, 5|a2a7
(n+ d`)(n+ 8d`)− (n+ 4d`)(n+ 5d`) = −12d2` if i = 3, 5|a1a6
to conclude that ` ≤ 5. �

6. Proofs of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3. Note that either ∆
(0)
i,1 or ∆

(0)
i,1 is divisible by a

prime > k/3. Hence by hypothesis, if p = P (∆
(0)
i ), then jp + 3p > k ≥

jp + 2p and without loss of generality i /∈ [jp + 1, jp + p]. We restrict to
the interval [jp + 1, jp + p). We have

P (aj) ≤


3 if k = 9, 10

5 if 11 ≤ k ≤ 14

7 if 15 ≤ k ≤ 22

11 if 23 ≤ k ≤ 26.

The assertion is true for k = 10, 14, 22, 26 by Corollary 3. Let k = 9.
Take p = 3. Then Corollary 3.7 (A1) does not hold with a = 0, b =
j3 + 1. Hence by (5), ` < k.

Let 11 ≤ k ≤ 13. Take p = 5. Then P ((j5+1, · · · , j5+4)5) ≤ 3. Since
3 can divide at most two terms of (j5 + 1)5, · · · , (j5 + 4)5, there exists
a, b ∈ [j5 + 1, j5 + 4) with P ((b, b + 1)5) ≤ 2, which is a contradiction
to Corollary 3.7 (A1) with a = 0. Thus by (5), ` < k.

Let 15 ≤ k ≤ 21. Take p = 7. Then P ((j7 + 1, · · · , j7 + 6)7) ≤ 5.
Here 3 divides exactly two terms, say (b)7 and (b + 3)7 for some b ∈
[j7 + 1, j7 + 2, j7 + 3]. By Corollary 3.7 (A1), P ((b + 1, b + 2)7) = 5
and b 6= j7 + 1, j7 + 3. If b = j7 + 2, then P ((j7 + 1, j7 + 3)7) ≤ 2 or
P ((j7 + 4, j7 + 6)7) ≤ 2 according as 5 | (j7 + 4)7 or 5 | (j7 + 3)7 which
contradicts Corollary 3.7 (A1) and we get ` ≤ k − 1.

Let 23 ≤ k ≤ 25. Take p = 11. Then P ((j11 + 1, · · · , j11 + 10)11) ≤ 7.
Here 3 divides at least three terms. Let 3 divide say (b)11, (b+3)11, (b+
6)11. By Corollary 3.5 (A1), 7 ≥ P ((b+1, b+2)11) ≥ 5; 7 ≥ P ((b+4, b+
5)11) ≥ 5; 7 ≥ P ((b+ 1, b+ 5)11) ≥ 5; 7 ≥ P ((b+ 2, b+ 4)11) ≥ 5. This
implies 5 | (b+ 1)11 and 7 | (b+ 4)11 or 5 | (b+ 2)11 and 7 | (b+ 5)11.
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Hence P ((b, b + 3, b + 6)11) ≤ 3. This is a contradiction to Corollary
3.7 (A2), since there exists at least two of (b)11, (b+ 3)11 and (b+ 6)11
which are exactly divisible by 3. Thus ` ≤ k − 1. �

Proof of Corollary 1.5. By Theorems 1.4 and 1.3, we may assume

that 9 ≤ k ≤ 26 and P (∆
(0)
i ) > pθ. As pθ ≥ k/2, the result follows

from Lemma 3.2 by taking p = P (∆
(0)
i ). �
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[4] P.Erdős and J.L.Selfridge, The product of consecutive integers is never a power,
Illinois J. Math.19 (1975), 292-301.
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