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ABSTRACT. We study the algebraic properties of Generalized Laguerre polyno-

mials for negative integral values of a given parameter which is Lgf 1-n-r) (x) =

io ("7 jr)“;—i for integers r > 0,n > 1. For different values of parameter r, this
%amily provides polynomials which are of great interest. Hajir conjectured that for
integers r > 0 and n > 1, Lgfl_"_r)(x) is an irreducible polynomial whose Galois
group contains A,,, the alternating group on n symbols. Extending earlier results
of Schur, Hajir, Sell, Nair and Shorey, we confirm this conjecture for all » < 60.
We also prove that LE{HH) (z) is an irreducible polynomial whose Galois group

().

contains A,, whenever n > e

1. INTRODUCTION

For an arbitrary real number o and a positive integer n, the Generalized Laguerre
Polynomials (GLP) is a family of polynomials defined by
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The inclusion of the sign (—1)" is not standard. The corresponding monic polynomial

is obtained as £ (x) = n!Lgla)(x). These classical orthogonal polynomials play an
important role in various branches of analysis and mathematical physics and has been
well studied. Schur [15], [16] was the first to study the algebraic properties of these
polynomials by proving that L (x) where « € {0,1,—n — 1} are irreducible. For
an account of results obtained on GLP, we refer to Hajir [10] and Filaseta, Kidd and
Trifonov [6].

In this paper, we study « at negative integral values via a parameter r. For integer
r > 0, we consider
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By a factor of a polynomial, we always mean its factor over Q. We observe that
L (x) = nILY (z) = jz::() (%) (r+1) ... (r+n—j)2’ is a monic polynomial with integer
coefficients and L§LT>(:U) is irreducible if and only if £’ (x) is irreducible. Schur [16]
computed the discriminant of ciy () which is

AP =T[7(-1=n—r+5y"
=2

Let G,(r) denote the Galois group of £ (x) over Q. Let S, denote the symmetric
group on n symbols and A, the alternating group on n symbols. Schur [15, 16] and

Coleman [2] used two different techniques to prove that Li(z) is irreducible and

G,(0) = S, for every n. Hajir [8] proved that Lﬁp(a:) is irreducible and G, (1) is A,
if n = 1(mod 4) and is S,,, otherwise. Sell [14] proved that LY (x) is irreducible and
Gn(2) is A, if n+ 1 is an odd square and is S,,, otherwise.

The irreducibility of LM (x), also known as Bessel polynomials, was conjectured for
all n by Grosswald [7] and assuming his conjecture he proved that the Galois group
is .S, for every n. The irreducibility of all Bessel polynomials was proved, first for all
but finitely many n by Filaseta [4] and later for all n by Filaseta and Trifonov [5].

Hajir [10] conjectured that for integers r > 0, n > 1, Lm(x) is irreducible and
Gn(r) contains A,. It was also proved in [10] that if 7 is a fixed integer in the range
0 <r <8, then for all n > 1, L (x) is irreducible and has Galois group containing
A,,. This was extended by Nair and Shorey [13] who proved the following.

Theorem A. Forn > 1,

(i) L (x) is irreducible for 3 <r < 22.

(i7) For 9 <r <22, G,(r) = S, unless (n,r) € {(8,9), (12,13), (13, 16), (
(17,18),(20,21)} in which case G,(r) = A,. For 3 <r r
unless (n,r) € {(2,3),(24,4), (4,5),(6,7),(7,8),(9,8),(2,8)
r=3; n=1(mod 24) and "2 is a square
r=4; n+ 2 is a rational part of (2 + \/§)2k+1 where k > 0 s an integer
r=>5; n+ 3 is a rational part of (4 + \/1_5)2k+1 where k > 0 is an integer
in which case G, (r) = Ap.

We further extend this work to confirm the conjecture of Hajir for all » < 60. We
prove

Theorem 1.1. Forn > 1 and 23 < r < 60, we have

(7) L (x) s irreducible.

(i1) Gn(r) = S, unless (n,1) € {(4,24), (5,28), (24,25), (25, 24), (28,23), (28, 29),
(32,33), (33, 36), (36, 37), (40, 41), (44, 45), (48, 49), (48, 51), (49, 48), (49, 50),
(52,53), (56,57)} in which case G,(r) = A,.

The proof of Theorem 1.1 is given in Sections 4 and 5. We see that Theorem 1.1
considerably extends earlier results of [10] and [13]. The new ingredients in the proof
are Lemma 3.1 which arise from clever and important observations on prime divisors
of n and ("jr) and Lemmas 3.5-3.7 which arise from an application of p-adic Newton
polygons. These results are general in nature and make our computations much less.

In fact, for checking irreducibility of L (x), we need to exclude factors of degrees up
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to 3 which can be handled easily. The observations also imply the following result
which improves the bound for n given by Hajir [10] and Nair and Shorey [13].

Theorem 1.2. L’ (x) is irreducible and G, (r) contains A, if

(L),

n>e

We prove Theorem 1.2 in Section 6.
The computations in this paper are carried out with SAGE except for computing
a few Galois groups in Section 5 for which MAGMA online is used.

2. PRELIMINARIES

Henceforth, we always use p for a prime and n, r for integers with » > 0, n > 1
unless otherwise specified.

Definition 1. The p-adic valuation of an integer m with respect to p, denoted by
vp(m), is defined as

max{k : pFlm} if m # 0,
Vp(m):{oo it m =0.

Definition 2. Let m be a positive integer. Let m = mg + mup + -+ + myp' with
my # 0 be the p-adic representation of m. We define o,(m) := mg +my + - - - + my.

For integers m > 1 and ¢t > 0, we have

() = 222,
and v, <<T>) _ o) + Up(;n_—lt) —ay(m).

These are well known results of Legendre [12].

Definition 3. Let f(z) = > a;a? € Z[zx] with a,a, # 0. We consider the set
j=0

S ={(0,v,(an)), (1, vp(an-1)),- .-, (n,vp(ao))}

consisting of points in the extended plane R?* U {oo} . The polygonal path formed by
the lower edges along the convex hull of S is called the Newton polygon associated to
f(z) with respect to prime p and is denoted by NP,(f).

It can be observed that the left-most edge has one end-point being (0, v,(a,,)) and
the right-most edge has (n,1,(ap)) as an end point. The end points of every edge
belong to the set S. Thus every point in S lies either on or above the line obtained
by extending such an edge. In particular, if (7, v,(a,—;)) and (j, v,(a,—;)) are the two
end-points of such an edge, then every point (u,v,(a,—,)) with i < u < j lies on or
above the line passing through (¢, v,(a,—;)) and (J, vp(an—;)). Also the slopes of the
edges are always increasing when calculated from the left- most edge to the right-most
edge.

We need the following result due to Filaseta [4, Lemma 2] which is an application
of Newton polygons.
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Lemma 2.1. Let k and | be integers with k > 1 > 0. Suppose g(x) = > b;a’ € Zx]
7=0
and p is a prime such that p { by, p|b; for all j € {0,1,...,n—1—1} and the right-most
edge of the Newton polygon for g(x) with respect to p has slope < % Then for any
integers ag,ay, . .., a, with |ag] = |a,| = 1, the polynomial f(z) = 3 a;b;a? cannot
=0

=

have a factor with degree in the interval [l + 1, k].
In this paper, we use Lemma 2.1 with ag = a; = --- = a,, = 1 always.

Definition 4. Given f € Q[z]|, we define the Newton Index of f, denoted by Ny, to
be the least common multiple of the denominators (in lowest terms) of all slopes of
NP,(f) as p ranges over all primes.

The following results by Hajir [9, Theorem 2.2] are used for calculating the Galois
groups of polynomials.

Lemma 2.2. Given an irreducible polynomial f € Q[z], N} divides the order of the
Galois group of f. Moreover, if Ny has a prime divisor q in the range § < g <n—2,
where n s the degree of f, then the Galois group of f contains A,.

As a consequence of Lemma 2.2, Hajir [10, Theorem 5.4] proved the following result.

Lemma 2.3. Let L\’ (x) be irreducible.

(¢) If there exists a prime p satisfying "3 < p < n — 2, then G,(r) contains A,.
(i1) If n > max{48 —r,8 + 5}, then G, (r) contains A,.

(1i1) If Gp(r) contains A, then

Go(r) = A, if A s a square,
"N 18,  otherwise.

If £ (z) is reducible, it has one factor with degree € [1,%]. Thus from now

onwards, whenever we consider a factor of degree k of ciy (x), we mean a factor of
degree k with 1 <k < 3.
For fixed integers » > 0 and n > 1, we write n = ngn; where

ng 1= H p*™ and ny = H prr™,
i, pI("F") plged(n ("))

The following result is contained in the first line of the proof of Hajir [10, Lemma
4.1]

Lemma 2.4. Fvery factor of Lgr)(x) has degree divisible by ny.

Next three results are due to Nair and Shorey [13, Corollary 3.2, Corollary 3.3 and
Lemma 2.10].

Lemma 2.5. Assume that L’ () has a factor of degree k > 2. Then r > 1.63k.

Lemma 2.6. Assume that L () has a factor of degree k > 2. Then
r > min{104, 3.42k + 1}.

Lemma 2.7. Forn < 127 and r < 103, LY (x) is irreducible.

We also need the following statement used in [13] and we give a proof here.
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Lemma 2.8. For p|n;, we have p»™ < r.

Proof. Write n = p®d, where d is coprime to p such that p® > r. We will show that
n+r _
v (7)) = 0.
Let r = re_1p® ' 4 -+ + rip + 19 be the p-adic representation of r. Then n +r =
dp®+re_1p° "+ - -4 rip+ry. So we have o,(n) = 0,(d), 0,(r) =re_1+---+71470 and

op(n+71) =0,(d)+re_1+--+ri+ro. Thus v, (("17)) = U"(n)wp;i)l_op(nﬂ) =0. O

The following result is due to Harborth and Kemnitz [11].

Lemma 2.9. There exists a prime p satisfying :
(a) x <p <2z for x> 25,
(b) x <p < 15 for x> 116.

For real number z > 1, we denote
m(x) = Z L.
p<z
We need the following result due to Dusart [3] for the proof of Theorem 1.2.
Lemma 2.10. We have

1.2762
log =

X

() < (1 +

~ logx

) for x > 1.

3. LEMMAS FOR THE PROOF OF THEOREM 1.1

For the proof of Theorem 1.1, we use a number of results which we record here as
lemmas and corollaries. These results are general in nature and valid for any positive
integers n and r.

Lemma 3.1. Let plny and r < p. Then

o —j(mod p) for some j with 1 < j < {CJ )
p p

Proof. Since p|ny and r < p?, v,(n;) = 1. We can write n = pd, where d is coprime
to p and r = r1p + 19, where 0 < 11,79 < p. Then n +r = p(d + 1) + 9. So we have
o(n)=o(d), o(r)=r1+19and o(n+r) = o(d+ r1) + ro. Therefore

1<y, n+r\\ _ op(n)+ Op(rz— op(n +7)
(( r >) Jp(d)+r1p_ Uj(d+rl)
p—1

("))

:Vp((d+1)(d+2)---(d+r1)>

7”1!

=,((d+1)(d+2)---(d+r1)) (since ry < p)
= 1,(d + j) for exactly one j with 1 < j <.

n —

Since r; = BJ < p, we have 2 = —j(mod p), for some 1 < j < BJ . OJ
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Corollary 3.2. If plny and r < p*, then d + BJ > p where d = %(mod p) with
1<d<p.

For the remaining part of this paper, we need the following notation and remark.
Remark 3.3. For 1 < j < n, we define b; := (7;) (r+1)---(r+ 7). The Newton
polygon for ci (x) = i bn— ;) with respect to p is given by the lower edges along the

convez hull of the pomts (7,vp(b;)) for 1 < j < n. Thus the slope of the right-most
edge of NPp(ﬁﬁf (x)) is at most M,, = nax {1;} where
<j<n

Vp(bn) = vp(bn—;)

Hj = j
B vp((r +n)) — vp((r +n —5)!) — Vp((?))
J
_J- ap(r+n)+op(r+n—j)  0,(J) +0p(n—j) —op(n)
(p—1)j (p—1)j
_i=oli) | o)+ oy(n) —oy(r+n)  oy(n— i) +oy(r) — oy(r+n—j)
(p n; * (p—1)j (p—1)j
J=opld) |

= % <(n+))‘%((+n_])>
ooy (1)) (7)) 20

Lemma 3.4. Let p = pr(n) = n — ky be the largest prime less than or equal to n with
r+k, <p. Then Eﬁp(x) cannot have a factor with degree > k,.

Proof. Clearly p t bg. Since p | n(n —1)---(n — ky,), p|(?) for k, +1 < j < p. Also,
p|l(r+1)---(r+j) for j > p. Thus p|b; for k, +1 < j <n.

Note that r + k, < p implies p{ (r+1)---(r+k,) and pfnn—1)---(n—k, +1).
Thus p{ (r+1)---(r+j) andpf()f0r1<j<k Therefore p 1 b; for 1 < j < k,.

Next r +n =r + k, +p < 2p implies v,(b,) = v,((r +1)---(r +n)) = 1. Hence
the vertices of first edge of the Newton polygon are (0,0) and (k,,0) and the slope of

the right-most edge is at most
bn) — vp(b;
max {Vp( ) V.p( J)}

kn<j<n n—j

For k, < j < n, we have p|b; implying v,(b;) > 1. Hence v,(b,) — 1v,(b;) <1 —1=
for k, < j <n. For j = k,, we have

Vp(bn) - ’/p<bk‘n) o 1

n—k, n—=k, p

Thus we have

max
kn<j<n

{Vp(bn)—Vp(bj)} 12

. <-< =
n—7j p n

since p > 7. Therefore, by Lemma 2.1, i () cannot have a factor with degree in
the interval [k, 4+ 1, 5] and the assertion follows. O
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Lemma 3.5. Let [, € [1,k,] be the least positive integer such that there exists p with
pl(n—1,), p > ky and v, (("77)) = 0. Then ci (x) cannot have a factor with degree
in the interval [I,, + 1, ky].
Proof. Clearly p 1 by. Since p | n(n —1)---(n — 1), p|(’;) for [ +1 < j < p. Also
pl(r+1)---(r+y) for j > p. Thus p|b; for I, + 1 < j <n.

From Remark 3.3, the slope of the right-most edge of N P]D(Lg> (x)) is less than
equal to Mp < max {j_o”(j) + %Vp ((””))}

1<j<n (p—1)j r
Notethat%§0ifj§p—1and%<p%lifj2p. Since p > k, and
Vp (("jr)) = 0, we have
1
M, < 5
Therefore, by Lemma 2.1, £ () cannot have a factor with degree in the interval
1, + 1, k. O

Lemma 3.6. Leti be a positive integer such that pjn(n—1) - - - (n—i+1)(r+1) - - - (r+i)
and let v, (("jr)) —u. Then L () cannot have a factor of degree equal to i if any
one of the following conditions holds:
(a) w=0 and p > 1,
(b) u >0, p> 2 and max{“T’fl, .
with 1 < zg < p.

(n+r—z0)—vp(n)
zo+1

} < 1, where zy = n + r(mod p)

Proof. Clearly p{by. If p|(r+1)---(r+1i), then p|b; for j > i. Ilf pt (r+1)---(r+1),
then pln(n—1)---(n—i+1) implies p| (?) fori <j<p. Alsop|(r+1)---(r+j) for
j > p. Thus p|b; for i < j <n.

From Remark 3.3, the slope of the right-most edge of N Pp(pr (x)) is at most
M, = max {n;} where

j_ap(j) u
i < ——~=+ —.
T p-15

(@) u=0and p > i. For1<j<n, we have
ujéj_a”(].) <L
(p—1)j p—17""1

(b) u > 0 and p > 2. We have

vp((r +1)!) = v ((r +n = 7)) = ,((7))
j

vp((r ) ((r+n—j+1) = v((}))
; .

M =

For 1 < j < p, we have

< 0 if j <2z
fj < ltroa) ) i o

vp(n+1 — 2p) — 1p(n)
20 —|— 1 '
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For p < j < p?, we have

=15 J~p p p
For j > p?, since p > 2, we have

My <

E A4 <
=153 J p-1 p» p
Thus, by the assumption on (b), for 1 < j <mn,

11 < max u+1 vy(n+r—z)—v,(n) 1
T p 20+ 1

i

Hence M, < % and therefore, by Lemma 2.1, ci () cannot have a factor of degree

i. OJ
The following lemma is more of general nature which will be useful for higher values

of r when [,,, defined in Lemma 3.5, is large. In our proof of Theorem 1.1, [,, < 3 and
Lemma 3.6 suffices.

Lemma 3.7. Let | > 0 and let pln(r + 1) and v, (("7")) = u. Then ci (x) cannot
have a factor with degree in the interval [1,1] if any one of the following conditions

hold:

(@) u=0 and p >,

b)) u=1,p>2l+1 anduj<%f0r1§j§l,
()u>lp=Il+landp; <7 forl<j<u-—7i,
)

(d) u>1,p#1+1 and p; < 7 f07"1<j<ul+ )1

vp((r+n)Y)—vp((r+n—5)H—vp
J

where 1; = (G (as defined in Remark 3.3).

Proof. Clearly p t byp. If p|(r + 1), then p|b; for all 1 < j < n. If p{ (r+ 1), then
p|n implies p|(;‘) for 1 < j <p. Also p|(r+1)---(r+j) for j > p. Thus p|b; for all
1<j<n

From Remark 3.3, the slope of the right-most edge of N Pp(Lﬁf> (x)) is at most
M, = max {u;}, where

1<j<n

]_Up(J')_'_E.'
(p—1)Jj J
(@) u=0and p>[. For 1 < j <n, we have

py <

j—op(j) 1 1
i < =< 7

: <
(p—1)j5 p—1
(b) u=1and p> 2+ 1. For 1 < j <, we have

My < 7

For [ < j < p, we have
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For 57 > p, we have

j—opy) 1 _ 1 1
pj < ——=—+ - < ——+ =
T =15 el
1 1
< —+4 = (sincep—1>2and j > p > 2])
20 21
1
=
(¢)u>1land p#1+1. For 1 <j <n, we have
| —op(J U 1 1 u 1 uip—1) -1
<2l ~ = = upz -1

p=1j - p-1 (@-1ji j p-1 (p—1)j
Thusuj<%,if

up—1)—1 p—-1-1

(p—1)j (p— 1)L

(d) u>1and p=1+1. For 1 <j <n, we have

<j—a(j)+u<1 1+u_1+ul—1
eI
Thusuj<%,if%<00rj>u—%.

Therefore the slope of the right-most edge is less than % and hence, by Lemma 2.1,
ci (x) cannot have a factor with degree in the interval [1,[]. O

We need the following three lemmas for describing the Galois groups of L ().
The third lemma is computational.

Lemma 3.8. Given that £ (z) is irreducible, if there is a prime p with § < p < n—2
and r < p, then G,(r) contains A,.

Proof. Let ng =n—pand rg =p—1r. For 1 < j <n, we have

n nn—1)---(n—j+1) 1 ifng<j<p,
il )] =w : = .
J J! 0 otherwise.

First assume that r +n < 2p. Note that rg > ng and ro +p = rg +n —ng > n.
Thus r 4 ro = p is the only multiple of p in the product (r 4+ 1)(r +2)---(r +n). So
for 1 < j < n, we have

0 ifj<T0,

up<<r+1><r+2>---<r+j>>={

1 otherwise.

Therefore N Pp(df) (x)) is given by the lower edges along the convex hull of the points:
(0,0),...,(no,0),(no+1,1),...,(ro — 1,1),(r0,2),...,(p—1,2),(p,1),...,(n,1).

Thus the vertices of NPp(ESn)(a:)) are (0,0), (nog,0) and (n,1). Hence i is a slope of

NPp(Em(x)) and it follows from Lemma 2.2 that G,,(r) contains A,,.
Next assume that r +n > 2p. Since r+n < 3p, r+1r9 = p and r +rg+ p = 2p are
the only multiples of p in the product (r +1)(r +2)---(r+n). So for 1 < j <n, we
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have
0 if j <o,
v((r+1)(r+2)---(r+7) =1 fro<j<rotp,
2 iftj>r0+p.

Therefore in this case N Pp(£,<f> (x)) is given by the lower edges along the convex hull
of the points:

(0,0),...,(ro — 1,0),(ro,1),...,(ro+p—1,1), (r0 + p,2), ..., (n0,2), (no + 1,3), ...,

(p—1,3),(p,2),...,(n,2).
Thus the vertices of NPp(Eng)(x)) are (0,0),(ro — 1,0),(ro + p — 1,1) and (n,2).
Hence }17 is one of the slopes of N Pp(ﬁfﬁ (x)) and it follows from Lemma 2.2 that
Gn(r) contains A,. O

Lemma 3.9. Let m > 197 be an odd integer and let k < 60 be an even integer. Then
product of any two distinct terms in the set {m +2,m +4,...,m + k} cannot be a
square.

Proof. Suppose (m + 2i)(m + 27) is a square with 1 < i < j < % We may assume
m + 2i = az? and m + 2j = ay? where y —z > 2. Then k —2 > 2(j — i) =
aly — z)(y + ) > 2a(y + x) > 4az. Therefore z < |22] < | 2] = 14 which implies
m < 195, a contradiction. O

Lemma 3.10. There is a prime in every set of 20 consecutive positive integers each
< 1129.

4. TRREDUCIBILITY OF L{' (x): PROOF OF THEOREM 1.1(7)

In this section, we give proof of Theorem 1.1(7) by showing that L (x) is irreducible
for each 23 < r < 60 and n > 1. Recall that for fixed integers r > 0 and n > 1,

n = non; where
ng := H p*™ and ny = H pr ().
pln, p("77) plged(n,("17))
Let 23 < r <60 and n > 1 be integers. Suppose L§f>(:v) has a factor of degree k.
By Lemma 2.4, we have nglk. So if ng > 2, then k£ > 2 and thus Lemma 2.6 implies
r>342k+1,ie,ng < k< gjé Therefore we have 1 < ng < Lﬂj for each value

3.42
of r.
Fix r with 23 < r < 60. For each ngy, we have

{n=mngny : p»™) <7} C {n:p»™ <7}

Since LQZ;J > max{ng, /r}, if p|n with p > U;T%J? then pln; and r < p?. Thus,
by Lemma 2.7, Lemma 2.8 and Corollary 3.2, it is enough to check irreducibility of

Lﬁp(x) for n € H, where
—1
H, = {n € N:n > 127 and for each p|n, p*™ < and if p > K))QJ then d + L:J > p}

where d denotes the remainder of % modulo p.

For each n € H,, we compute k, and [, (defined respectively in Lemma 3.4 and
Lemma 3.5). We find that I, < 3 for each n € H, and it follows that k£ <, < 3. For
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1 <i <3, we define H;, = {n € H, : 1, > i}. To obtain a contradiction, we need to
prove non-existence of a factor of degree i for each n € H;,. For this we use Lemma

3.6 and we are left with (n,r) € T for which L (x) may have a factor of degree 1,
where 7' is given by

T = {(144,23), (144,25), (144, 26), (144, 51), (144, 53), (216, 29), (216, 31), (216, 42),
(216, 44), (216, 47), (216, 49), (216, 53), (216, 59), (240, 35), (288, 40), (288, 41),
(288,47), (288, 48), (288, 51), (288, 53), (312, 26), (600, 26), (720, 31), (1440, 35),
(4320, 55)}.

Observe that p|n implies p|b; for 1 < j < n (see the first paragraph in the proof of
Lemma 3.7). Since 2|n and 3|n for each n given in T, to remove the existence of a
factor of degree 1, by Lemma 2.1 and Remark 3.3, it suffices to show that p; <1 for
each 1 < j < n, for either p = 2 or p = 3, where

v((r+n)(r+n—=1)--(r+n—7+1)) —1,(("))

(1) jj = 7 :

()

It can be easily observed that

(1)

IN

if and only if,

2) o= (("77)) <025+ 50,

For (n,r) € T\ {(216,29), (4320,55)} and p = 3, we find the least positive integer jo
such that (2) holds for j > jo, so that p; <1 for j > jo. For j < jo, we verify that

p; < 1 by using (1). Hence ci (x) does not have factor of degree 1.
For (n,r) € {(216,29), (4320,55)}, we take p = 2 and proceed as above to verify

that Efp(x) does not have a factor of degree 1. O

5. GALOIS GROUPS OF L{(z): PROOF OF THEOREM 1.1(ii)
In this section, we prove Theorem 1.1(77) by describing the Galois groups of L (x)

for 23 < r < 60, n > 1. From Section 4, we have L§Z"> (x) is irreducible for each
23 <r<60andn > 1.
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For 23 < r <60, let B, be given by

B23:B24:"':B28:{1727"‘731}7
Bsg = B3y = {1,2,...,33},

B3y = B3y = -+ = B3g = {1,2,...,39},
Bs; = Bsg = -+ = By ={1,2,...,43},
By = By ={1,2,...,45},

Byy = By == By ={1,2,...,49},
By = Byg == Bss = {1,2,...,55},
B53:BS4:"':B58:{1727"'761}7

Bso = Bgo = {1,2,...,63).

For each 23 < r < 60 and n € B,, we compute G, (r) using MAGMA online, and in
fact, G, (r) = A, for (n,r) € {(4,24), (5,28), (24, 25), (25, 24), (28, 23), (28, 29), (32, 33),
(33,36), (36, 37), (40, 41), (44, 45), (48, 49), (48, 51), (49,48), (49, 50), (52, 53), (56,57)}
and G, (r) = S, otherwise.

From now onwards, we assume that n ¢ B,. We first show that G,,(r) contains A,,.
Fix r with 23 <r < 60. We have max{48 — r,8 + %’"} =8+ 5—37’ Let

5
C’T:{nGN:n<8+§TandﬂaprimepwithnT—{_r<p<n—2}.

Observe that C, is finite and B, C C,. By Lemma 2.3 (i) and (ii), we have G,,(r)
contains A,, for each n ¢ C,.. For n € C,, we now apply Lemma 3.8 to get G,(r)
contains A,, for each n € C,, n ¢ B,. Hence G, (r) contains A, for n ¢ B,.

Thus, by Lemma 2.3(iii), we have

e A ()
G (r) = {An if A, 'is a square,

S, otherwise.

Therefore to complete the proof of Theorem 1.1(i7), it suffices to check if Al is a

square or not. In fact, we show that for each 23 < r < 60 and n ¢ B,, A is never
a square.

For integers a and b, we write a ~ b if a = bc? for some integer ¢ > 0. We consider
the following cases:

Case 1. n is odd: We have
AN (=) D2(1.3 5 ) (i — 1) (n 41 —3) - (r+2).

If n =3 (mod 4), then A is not a square. Thus assume n = 1 (mod 4).
Subcase 1(a). r is even: By re-arranging the factors, we see that

A~ (1235 (r=D)((r+ D)(r+2)--n)(n+)(n+3)--(n+r—1).

For n > 3(7";1), we have
n+r—1 - §n
2 6
By Lemma 2.9 with 2 = 2n, there is a prime p satisfying
n+r—1
- T~ <p<n

2
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so that 1,(AY’) is odd, and hence A is not a square.
For n < @ with n ¢ B,, we check directly that A is not a square.

Subcase 1(b). r is odd: By re-arranging the factors, we see that
A~ (1-3-5r)(n+2)(n+4)---(n+r—1).

If n <1070, then n 4+ r — 1 < 1129 and since there are at least 10 consecutive odd
integers in {n +2,n+4,...,n+r — 1}, it follows from Lemma 3.10 that there is a
prime p in this set. For % < n <1070, we have

-3
rTgngp—2<p§n+r—1<3p.

Since n+2,n+4,...,n+r—1are all odd, 2p is not in the set {n+2,n+4,... ,n+r—1}
and hence we get l/p(Aﬁf)) is odd. Therefore AY” is not a square.
For n < % with n ¢ B,., we check directly that Afﬁ is not a square. Now suppose

that n > 1070 and AY is a square.
Let r = 23. Then

A"~ (3-11-13-17-19-23)(n 4+ 2)(n +4) - (n + 22).

There are at most 5 terms in {n + 2,n + 4,...,n + 22} which are divisible by
11,13,17,19 or 23. After removing these terms, we are left with at least 6 terms
each of which is either a square or 3 times a square. Therefore there are two distinct
terms in {n+2,n+4,...,n+22} whose product is a square. This contradicts Lemma
3.9 for m = n and k = r — 1. Therefore AY’ is not a square.

Similarly, for r € {25,33,35,51,53,55}, we get a contradiction using Lemma 3.9
as above.

Let r = 27. Then

AT~ (11-13-17-19-23)(n +2)(n +4) - -+ (n + 26).

There are at most 4 terms in {n+2,n+4,...,n+26} which are divisible by 13,17, 19
or 23 and further 11 divides at most 2 terms of this set. After removing these terms,
we are left with 7 terms in this set which are squares. This contradicts Lemma 3.9
for m =n and k = r — 1. Thus A is not a square.

For r € {29,31,39,41,43,45,47,49,57,59}, we proceed as in the case of r = 27
and get a contradiction using Lemma 3.9.

Let r = 37. Then

A~ (3-5-7-13-17-19-23-29-31-37)(n+2)(n+4)--- (n + 36).

The number of terms in {n 4+ 2,n +4,...,n+ 36} divisible by 7,13 and 17 are at
most 3,2 and 2 respectively. Also each of 19,23,29,31 and 37 divides at most one
term in this set. After removing these terms, we are left with 6 terms in the set
{n+2,n+4,...,n+ 36} each of which is either a square or of the form az? with
a € {3,5,15} and it follows that there are two distinct terms in {n+2,n+4, ..., n+36}
whose product is a square. We get a contradiction using Lemma 3.9 as above.

Case 2. n is even: We have
A~ (=)D 35 (n = D))t = D) (ndr—3) - (r 1),

If n =2 (mod 4), then A{ is not a square. Thus assume n = 0 (mod 4).
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Subcase 2(a). r is odd: By re-arranging the factors, we see that

A~ (1-3:5--(r=2)r(r+1)--n)(n+2)(n+4) - (n+r—1).

For n > @, we have

n+r—1 5
—_— < =N.

2 6
By Lemma 2.9 with x = %n, there is a prime p satisfying

n+r—1 - 3 e
——— < -n n
2 6 =7
so that 1,(AY’) is odd, and hence AY is not a square.

For n < @ with n ¢ B,, we check directly that A is not a square.
Subcase 2(b). r is even: By re-arranging the factors, we see that

A~ (1-3-5--(r=1)n+1)(n+3)---(n4+r—1).

If n <1070, then n 4+ r — 1 < 1129 and since there are at least 10 consecutive odd
integers in {n+ 1,n+3,...,n+r — 1}, it follows from Lemma 3.10 that there is a
prime p in this set. For % <n <1070, we have

r—2

<n<<p—-—1<p<n+r—1<3p.

Sincen+1,n+3,...,n+7r—1 are all odd, we get up(Aﬁﬁ) is odd. Hence AY is not
a square.
r—2

For n < 5% with n ¢ B,, we check directly that Aﬁﬁ is not a square. Now we

suppose that n > 1070 and Afﬁ is a square.
Let r = 24. Then

A~ (3-11-13-17-19-23)(n4 1)(n +3) -+ - (n + 23).

There are at most 4 terms in {n+1,n+3,...,n+23} which are divisible by 13,17, 19
or 23 and further 11 divides at most 2 terms of this set. After removing these terms,
we are left with 6 terms each of which is either a square or 3 times a square. Thus
there are two distinct terms in {n + 1,n + 3,...,n + 23} whose product is a square.
This contradicts Lemma 3.9 for m = n— 1 and k = r. Therefore AY” is not a square.

Similarly, for r € {26, 34, 36,38, 52,54,56}, we get a contradiction using Lemma
3.9 as above.

Let r = 28. Then

A~ (11-13-17-19-23)(n 4+ 1) (n +3) - - (n 4 27).

There are at most 3 terms in {n+1,n+3,...,n+ 27} which are divisible by 17,19 or
23 and further each of 11 and 13 divides at most 2 terms of this set. After removing
these terms, we are left with 7 terms in this set which are squares. This contradicts
Lemma 3.9 for m =n — 1 and k = r. Thus AY” is not a square.

For r € {30,32,40,42, 44,46, 48,50,58,60}, we proceed as in the case of r = 36
and get a contradiction using Lemma 3.9. O
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6. PROOF OF THEOREM 1.2

Suppose that Lﬁp(x) has a factor of degree k. Then by Lemma 2.5, k < 1.
By Lemma 2.4, we have ng < k < 4. Thus if p|ng, then p*") < r and in fact

pr(?) = pre(0) < Also by Lemma 2.8, if p|ny, then p*»(™ < r. Hence

n = mngn, = Hp”p(”) S H,r — ,',.71'(7’) — e7r(7") log r S 67‘(1+ 1135;2)

pln p<r
by Lemma 2.10. This proves Theorem 1.2. 0
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