isid/ms/2016/16 December 30, 2016 http://www.isid.ac.in/~statmath/index.php?module=Preprint

Cubes in products of terms from an arithmetic progression

PRANABESH DAS, SHANTA LAISHRAM AND N. SARADHA

Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi–110016, India

CUBES IN PRODUCTS OF TERMS FROM AN ARITHMETIC PROGRESSION

PRANABESH DAS, SHANTA LAISHRAM AND N. SARADHA

Dedicated to Professor R. Tijdeman on his 75th birthday

ABSTRACT. We show that there are no cubes in a product with at least $k - (1-\epsilon)k \frac{\log \log k}{\log k}$, $\epsilon > 0$, terms from a set of $k \geq 2$ successive terms in an arithmetic progression having common difference d if either k is sufficiently large or $3^{\omega(d)} \gg k \frac{\log \log k}{\log k}$. Here $\omega(d)$ denotes the number of distinct prime divisors of d. This result improves an earlier result of Shorey and Tijdeman.

1. Introduction

Let $b, d, \ell > 1, m, k \ge 2, t \ge 2$ be positive integers. Further let $d_1, \dots, d_t \in [0, k)$ be integers with $d_1 < d_2 < \dots < d_k$. For any integer n > 1, let P(n) denote the greatest prime factor on n and put P(1) = 1. We consider solutions to the equation

(1)
$$\Delta_d = (m + d_1 d) \cdots (m + d_t d) = by^{\ell}, P(b) < k$$

i.e., we are looking for perfect powers or almost perfect powers in a product of t terms which are taken from k terms in an arithmetic progression. When t = k, all the k terms in the arithmetic progression are present in Δ_d . When t < k, then k-t terms are missing in Δ_d . This equation has been intensely studied and several papers are available in the literature since the remarkable work of Erdős and Selfridge [3] in 1975 where they showed that

a product of two or more consecutive positive integers is never a perfect power.

In other words, equation (1) with b = d = 1, t = k has no solution. Fundamental contributions were made by Shorey and Tijdeman towards (1). We refer to the expository articles of Shorey [9] and [10] for a detailed account of many of the results. In this paper, we improve a result of Shorey and Tijdeman [11] on the value of t in the case of cubes i.e. when $\ell = 3$.

Date: May 2, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 11D61.

2. Results-old and new

In 1955, Erdős [2] proved the following result when d = 1. Suppose (1) with $b = d = 1, \ell \ge 3, m > k^{\ell}$ hold and

$$t \ge k - (1 - \epsilon) \frac{k \log \log k}{\log k}, \epsilon > 0.$$

Then k is bounded by an absolute constant.

This result was considerably sharpened by Shorey [7, 8] and later by Nesterenko & Shorey [5]. As a result of [5], one obtains that k is bounded by an absolute constant whenever

$$t > .4832k, \ \ell \ge 7 \text{ and } P(b) \le k.$$

The results for $\ell > 2$ depend on the theory of linear forms in logarithms, irrationality measures of Baker based on hypergeometric method and estimates of Halberstam and Roth on difference between consecutive k free integers.

When $\ell = 2$, in the above result of Erdős, t was taken to be $t \ge k - c_1 \frac{k}{\log k}$, where c_1 is an absolute constant. This was sharpened by Shorey [8] to $t \ge k - (1 - \epsilon)k \frac{\log \log k}{\log k}$ and later relaxed further by Bala-subramanian and Shorey [1].

From now on we assume that d > 1. Shorey and Tijdeman combined several elementary arguments of Erdős with the application of box principle on numerous occassions in a beautiful paper to show the following result (see [11, p.343]). Throughout the paper, we denote by $c(\epsilon) > 0$ an effectively computable, sufficiently large number depending on $\epsilon > 0$.

Let $\epsilon > 0$. Equation (1) with d > 1 and P(y) > k implies that there exists an absolute constant c_2 such that either

$$k \le c(\epsilon) \text{ or } \ell^{\omega(d)} \ge c_2 k \frac{h(k)}{\log k}$$

provided

(2)
$$t > k - (1 - \epsilon)k \frac{h(k)}{\log k}$$

where

$$h(k) = \begin{cases} \log \log k \ if \ \ell \ge 5\\ \log \log \log \log k \ if \ \ell = 3\\ 1 \ if \ \ell = 2. \end{cases}$$

Recently, Saradha and Shorey [6] improved the above result for $\ell = 2$ as follows.

Suppose equation (1) holds with d > 1 and P(y) > k. Then there exist positive numbers c_3 and c_4 depending only on d such that if

(3)
$$t \ge k - k \left(\frac{\log\log k}{\log k} - \frac{\log\log\log k}{\log k} - \frac{c_3}{\log k}\right)$$

then $k \leq c_4$.

We observe from the above two results that (2) is weaker for the values of t when $\ell = 3$. In this paper we bring the case of cubes on par with other values of ℓ as far as t is concerned.

Theorem 2.1. Equation (1) with d > 1, P(y) > k and $\ell = 3$ implies that there exists an absolute constant c_5 such that either $k \leq c(\epsilon)$ or $3^{\omega(d)} \geq c_5 k \frac{\log \log k}{\log k}$ provided

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}.$$

The above improvement is due to a better box principle that is applied while counting the number of distinct Thue equations. See Section 7 below.

3. Preliminaries

Suppose equation (1) holds with P(y) > k. Then

$$(4) m+d_t d \ge (k+1)^3$$

implying that

$$(5) m+d > k^2$$

Further we may write

$$m + d_i d = A_i X_i^3, P(A_i) < k, \gcd(X_i, \prod_{p < k} p) = 1, 1 \le i \le t$$

where the product is taken over all primes $\langle k$. Note that since gcd(m, d) = 1, we have

$$gcd(A_i, d) = gcd(X_i, d) = 1$$
 for $1 \le i \le t$

and

(6)
$$X_i \ge k \text{ if } X_i \ne 1 \text{ and } \gcd(X_i, X_j) = 1 \text{ if } i \ne j.$$

Let

$$S_1 = \{A_1, \cdots, A_t\}.$$

By deleting a term corresponding to every prime $\langle k$, we find that there exists a set S_2 with

(7)
$$S_2 \subseteq S_1 \text{ and } \prod_{A_i \in S_2} A_i | k!.$$

Let $K = \mathbb{Q}(\rho)$ where $\rho = e^{2\pi i/3}$. Then $[K : \mathbb{Q}] = 2$ and disc(K)=3. For any prime $p \neq 3$, we have the following possibilities for the ideal [p] in K.

$$[p] = \wp \text{ or } \wp^2 \text{ or } \wp_1 \wp_2$$

where \wp, \wp_1, \wp_2 are prime ideals in K. Thus for any integer d > 1, we can write $d' = d/3^{\operatorname{ord}_3(d)}$ as

(8)
$$[d'] = D_1 D_2 D_3$$

where D_1, D_2, D_3 are coprime ideals of K in at most $9^{\omega(d')}$ ways.

4. On Equal A_i 's

Although many of the facts below are true for any prime $\ell \geq 3$, we restrict to $\ell = 3$. We refer to [11, pages 326-336] for the various arguments given in the lemmas below. We have put them in lemmas to make the exposition more lucid.

Lemma 4.1. Suppose (1) holds with $\ell = 3$ with $A_{\mu} = A_{\nu}$ for some A_{μ}, A_{ν} in S_1 with $\mu < \nu$. Then $\frac{X_{\nu}}{X_{\mu}}$ belongs to at most $3^{\omega(d)}$ residue classes (mod d).

Proof. We have the identity

$$(\nu - \mu)d = A_{\mu}(X_{\nu}^3 - X_{\mu}^3).$$

It follows that $A_{\mu} < k, A_{\nu} < k$ and by (5), $X_{\mu} \neq 1, X_{\nu} \neq 1$. Hence by (6), they are distinct. Also

$$X_{\nu}^3 - X_{\mu}^3 \equiv 0 \pmod{d}.$$

Let R(d) denote the number of residue classes z such that $z^3 \equiv 1 \pmod{d}$. Then a result of Evertse [4] gives that $R(d) \leq 3^{\omega(d)}$ which implies the assertion of the lemma.

In the next lemma we find out many X_{ν}/X_{μ} belonging to distinct residue classes.

Lemma 4.2. Suppose (1) holds with $\ell = 3$ and $m + (k-1)d \ge k^{4-\epsilon}, \epsilon > 0$. Assume that

$$|S_1| < t - (1 - \epsilon/2)k \frac{\log\log k}{\log k}$$

Then for $k \ge c(\epsilon)$, there are at least

$$\lceil (1-\epsilon)k\frac{\log\log k}{\log k}\rceil$$

distinct pairs (μ, ν) with X_{ν}/X_{μ} belonging to distinct residue classes. Proof. Let

$$R = \left\{ i : t \ge i \ge \epsilon k \frac{\log \log k}{4 \log k} \right\} \text{ and } S_3 = \left\{ A_i \in S_1 : i \in R \right\}.$$

For $A_i \in S_3$, let $\chi(A_i) = |\{j \in R : A_j = A_i\}|$ and for $h \ge 1$, let $C_h = |\{A_i : \chi(A_i) = h\}|.$

Then clearly

$$\sum hC_h = |R| \ge t - \epsilon k \frac{\log \log k}{4 \log k} \text{ and } \sum C_h \le |S_3| \le |S_1|$$

Let $\chi(A_{i_1}) = h$ and $i_1 < i_2 < \cdots < i_h$ be such that $A_{i_1} = A_{i_2} = \cdots = A_{i_h}$. Then there are $\frac{h(h-1)}{2}$ distinct pairs (μ, ν) with $\mu > \nu$ and $A_{\mu} = A_{\nu} = A_{i_1}$. Hence the number of distinct pairs (μ, ν) with

(9)
$$k > \nu > \mu \ge \epsilon k \frac{\log \log k}{4 \log k} \text{ and } A_{\mu} = A_{\nu}$$

is

$$\sum \frac{h(h-1)}{2} C_h \ge \sum h C_h - \sum C_h \ge \left(t - \frac{\epsilon k \log \log k}{4 \log k}\right) - |S_1|$$
$$\ge (1 - 3\epsilon/4)k \frac{\log \log k}{\log k}.$$

Hence we can find at least

$$\lceil (1-\epsilon)k\frac{\log\log k}{\log k}\rceil$$

distinct pairs (μ, ν) with (9).

Thus the conclusion of the lemma is true if we show that

$$X_{\nu_1}/X_{\mu_1}$$
 and X_{ν_2}/X_{μ_2}

belong to distinct residue classes (mod d) for two distinct pairs (μ_1, ν_1) and (μ_2, ν_2) satisfying (9). We now proceed to prove this claim. Suppose there exist pairs $(\mu_1, \nu_1) \neq (\mu_2, \nu_2)$, with

(10)
$$\frac{X_{\mu_1}}{X_{\nu_1}} \equiv \frac{X_{\mu_2}}{X_{\nu_2}} \pmod{d}.$$

Consider

$$\delta = (m + \mu_1 d)(m + \nu_2 d) - (m + \nu_1 d)(m + \mu_2 d)$$

$$= A_{\mu_2} A_{\nu_1} \left((X_{\mu_1} X_{\nu_2})^3 - (X_{\nu_1} X_{\mu_2})^3 \right).$$

Assume $X_{\mu_1} X_{\nu_2} > X_{\nu_1} X_{\mu_2}$. Then

$$|\delta| \ge (A_{\mu_2} A_{\nu_1})^{1/3} 3d \left((A_{\mu_2} X^3_{\mu_2}) (A_{\nu_1} X^3_{\nu_1}) \right)^{2/3}$$
$$\ge 3d \left(m + \epsilon k d \frac{\log \log k}{2 \log k} \right)^{4/3} \ge 3d \frac{\epsilon^2}{4} \left(\frac{(m + (k - 1)d) \log \log k}{\log k} \right)^{4/3}.$$

On the other hand,

$$|\delta| \le 2kd(m + (k - 1)d).$$

Comparing the lower and upper bounds for $|\delta|$ we get

$$m + (k-1)d < \left(\frac{8}{3\epsilon^2}\right)^3 k^3 \left(\frac{\log k}{\log\log k}\right)^4$$

giving

$$m + (k-1)d < k^{4-\epsilon}$$

since k is sufficiently large. This is a contradiction.

Putting together the above two lemmas we get the following proposition.

Proposition 4.3. Suppose equation (1) holds with $\ell = 3$. For $\epsilon > 0$, let

$$m + (k-1)d \ge k^{4-\epsilon}; \ 3^{\omega(d)} < \lceil (1-\epsilon)k \frac{\log\log k}{\log k} \rceil$$

and

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}.$$

Then for $k > c(\epsilon)$ we have

$$|S_1| \ge t - (1 - \epsilon/2)k \frac{\log\log k}{\log k}$$

Lemma 4.4. Suppose equation (1) holds with $\ell = 3$. Then the number of equal A_i 's do not exceed $9^{\omega(d)} + 1$.

Proof. Let $Z = 9^{\omega(d)} + 2$. Suppose there exist indices $1 \le \mu_1 < \mu_2 < \cdots < \mu_Z \le t$ such that

$$A_{\mu_1} = \cdots = A_{\mu_Z}.$$

For any μ_r with $2 \leq r \leq Z$, we have

$$(\mu_r - \mu_1)d = A_{\mu_1}(X^3_{\mu_r} - X^3_{\mu_1}).$$

Since $gcd(A_{\mu_1}, d) = 1$ the ideal [d] divides $P_r = [X_{\mu_1} - X_{\mu_r}][X_{\mu_1} - \rho X_{\mu_r}][X_{\mu_1} - \rho^2 X_{\mu_r}]$ in K. There are $Z - 1 > 9^{\omega(d)}$ products P_r . Hence

there exist coprime ideals D_1, D_2, D_3 as in (8) and indices r, s such that $2 < \mu_r < \mu_s < Z$ with

$$D_h | [X_{\mu_1} - \rho^h X_{\mu_r}]; D_h | [X_{\mu_1} - \rho^h X_{\mu_s}], h = 1, 2, 3.$$

Hence $D_h | [X_{\mu_r} - X_{\mu_s}]$ implying

$$d'\big|(X_{\mu_r}-X_{\mu_s}).$$

Since $A_{\mu_r} = A_{\mu_s}$, we have $d | (X^3_{\mu_r} - X^3_{\mu_s})$. Further it is well known that

$$9 \nmid \frac{X_{\mu_r}^3 - X_{\mu_s}^3}{X_{\mu_r} - X_{\mu_s}}$$

Thus we get

$$3^{\operatorname{ord}_3(d)-1} | (X_{\mu_r} - X_{\mu_s}) \text{ if } 3 | d.$$

Putting together the above facts, we find that

(11)
$$|X_{\mu_r} - X_{\mu_s}| > d/3.$$

From the identity

$$(\mu_r - \mu_s)d = A_{\mu_r}(X^3_{\mu_r} - X^3_{\mu_s})$$

and (11) it follows that

$$kd \ge d(A_{\mu_r}X^3_{\mu_r})^{2/3} \ge d\left(\frac{(m+(k-1)d)}{k}\right)^{2/3}$$

which simplifies to

$$m + (k-1)d \le k^{5/2}.$$

This is a contradiction since $m + (k - 1)d > k^3$ by (4).

5. Large number of small A_i 's

For the following lemma we refer to [11, Lemma 6].

Lemma 5.1. Let $0 < \eta < 1/2$. Let $S' \subseteq S_1$ such that

$$\prod_{A_i \in S'} A_i | k!$$

Suppose g is a positive number such that $g \leq (\eta \log k)/8$ and

(12)
$$|S'| \ge t - \frac{gk}{\log k}$$

Then there exists a set $S'' \subseteq S'$ with at least $\eta k/2$ elements satisfying

$$A_i \le 4e^{(1+\eta)g}k$$

We apply the above lemma to get the following result.

Lemma 5.2. Suppose equation (1) holds with $\ell = 3$. For $\epsilon > 0$ let

$$m + (k-1)d \ge k^{4-\epsilon}; \ 3^{\omega(d)} < \lceil (1-\epsilon)k \frac{\log\log k}{\log k} \rceil$$

and

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}.$$

Then for $k > c(\epsilon)$, there exists $S_4 \subseteq S_1$ with $|S_3| \ge \epsilon k/20$ such that $A_i \le k e^{(1-\epsilon/4)\log\log k}$ for $A_i \in S_4$.

Proof. As noted in the preliminaries, there is a set $S_2 \subseteq S_1$ with $|S_2| \ge |S_1| - \pi(k)$ and such that

$$\prod_{A_i \in S_2} A_i | k!.$$

By Proposition 4.3, we have therefore

$$|S_2| \ge t - (1 - \epsilon/3)k \frac{\log\log k}{\log k}.$$

In Lemma 5.1, we take $S' = S_2$, $g = (1 - \epsilon/3) \log \log k$, $\eta = \epsilon/10$. Then there exists a set $S_4 \subseteq S_2$ satisfying the properties of the lemma. \Box

Another instance when A_i may be small is when $X_i \neq 1$. We shall show that there are few terms in Δ_d with $X_i = 1$.

Lemma 5.3. Suppose equation (1) holds with $\ell = 3$ and for $\epsilon > 0$, let

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}$$

Suppose

$$T_1 = \{\mu : 2 \le \mu \le t \text{ and } X_\mu = 1\}.$$

Then for $k > c(\epsilon)$, we have $|T_1| \le 2k/3$.

Proof. For any $\mu \in T_1$, we have $A_{\mu} = m + d_{\mu}d \ge m + d$. From T_1 , for every prime p < k delete one μ such that p appears to the maximum power in A_{μ} . Let T_2 be the set of remaining μ 's. Then $|T_2| \ge |T_1| - \pi(k)$ and

$$\prod_{\mu \in T_2} A_{\mu} | k!$$

This implies

$$(m+d)^{|T_1|-\pi(k)|} \le k^k$$

giving by (5) that

$$|T_1| \le k/2 + \pi(k) \le 2k/3$$

since k is large.

REMARK. By the above lemma, we therefore get that the complement set T_3 of T_1 in [2, t] satisfies $|T_3| \ge t - 1 - 2k/3 \ge k/4$ and for each $\mu \in T_3$, we have $X_{\mu} \ne 1$ and hence

(13)
$$A_{\mu} \le (m + (k - 1)d)/k^3 \text{ for } \mu \in T_3.$$

6. Many pairs of A_i 's with large gcd

We use an argument of Erdős to show that there is a subset of S_3 in which gcd of any two elements is large.

Lemma 6.1. Suppose equation (1) holds with $\ell = 3$. For $\epsilon > 0$, let

$$m + (k-1)d \ge k^{3-\epsilon}; \ 3^{\omega(d)} < \lceil (1-\epsilon)k \frac{\log\log k}{\log k} \rceil$$

and

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}.$$

Then for $k > c(\epsilon)$, there exists a set $S_5 \subseteq S_1$ with $|S_4| \ge \epsilon k/80$ and such that $gcd(A_{\mu}, A_{\nu}) \ge k^{1-\theta}$ where $\theta < 1$.

Proof. We take the set S_4 given by Lemma 5.2. Let

$$S_6 = \{A_i \in S_4 : A_i \ge k^{1-\theta}\}$$

Then

$$|S_6| \ge \epsilon k/40.$$

Denote by b_1, \dots, b_s all integers between $k^{1-\theta}$ and $ke^{(1-\epsilon/4)\log\log k}$ such that every proper divisor of b_i is $\leq k^{1-\theta}$. Observe that if $b_i \geq k^{1-\theta/2}$, every prime divisor of b_i is $\geq k^{\theta/2}$. Hence by Brun's sieve,

(14)
$$s \ll k^{1-\theta/2} + \frac{2ke^{(1-\epsilon/4)\log\log k}}{\theta\log k}.$$

Every element of S_6 is divisible by at least one b_i . Let

 $S_7 = \{A_i \in S_6 : \exists b_i \text{ dividing } A_i \text{ and no other } A_j \text{ in } S_6\}.$

Then

$$|S_7| \le s$$

and hence by (14), taking S_5 , as the complement of S_7 in S_6 we get

$$|S_5| \ge \epsilon k/80.$$

Further, for any $A_{\mu}, A_{\nu} \in S_5$ we have

$$gcd(A_{\mu}, A_{\nu}) \ge b_i$$

for some b_i which gives the assertion of the lemma.

7. Proof of Theorem 2.1 when $m + (k-1)d \ge k^{4-\epsilon}$

Suppose equation (1) with d > 1, P(y) > k and $\ell = 3$ holds. Let $\epsilon > 0$. Suppose

$$m + (k-1)d \ge k^{4-\epsilon}$$

and

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}$$

Also assume that $k > c_1(\epsilon)$ where $c_1(\epsilon)$ is sufficiently large. We shall show that

$$3^{\omega(d)} \ge (1-\epsilon)k \frac{\log\log k}{\log k}.$$

Suppose not. Then we take S_5 as in Lemma 6.1 with $\theta < 1/3$. For any pair (A_{μ}, A_{ν}) with $A_{\mu}, A_{\nu} \in S_5$, form the cubic equation

$$A_{\mu}X_{\mu}^{3} - A_{\nu}X_{\nu}^{3} = (\mu - \nu)d.$$

This reduces to

$$LX^3 - MY^3 = Nd$$

where

$$L = \frac{A_{\mu}}{\gcd(A_{\mu}, A_{\nu})}, M = \frac{A_{\nu}}{\gcd(A_{\mu}, A_{\nu})}, N = \frac{\mu - \nu}{\gcd(A_{\mu}, A_{\nu})}$$

and L, M, N are co-prime and bounded by $k^{\theta} e^{(1-\epsilon/4) \log \log k}$ and (15) has a solution (X_{μ}, X_{ν}) . The number of distinct pairs (A_{μ}, A_{ν}) is at least $(\epsilon k/80)^2/2$ and the number of distinct triples (L, M, N) is at most $k^{3\theta} e^{3(1-\epsilon/4) \log \log k}$. Hence there are at least

$$K = \frac{1}{2} (\epsilon/80)^2 k^{2-3\theta} e^{-3(1-\epsilon/4)\log\log k}$$

pairs (A_{μ}, A_{ν}) which give rise to the same cubic equation as in (15). Further this cubic equation has at least K distinct solutions (X_{μ}, X_{ν}) . By a result of Evertse [4] and our supposition we get

$$K \leq 3^{\omega(d)} < (1-\epsilon)k \frac{\log\log k}{\log k}$$

which gives $k \leq c_1(\epsilon)$. Taking $c(\epsilon) > c_1(\epsilon)$ we get a contradiction. \Box

8. Proof of Theorem 2.1 when $m + (k-1)d < k^{4-\epsilon}$

Suppose equation (1) with d > 1, P(y) > k and $\ell = 3$ holds. Let

 $m + (k-1)d < k^{4-\epsilon}$

and

$$t > k - (1 - \epsilon)k \frac{\log \log k}{\log k}.$$

Also assume that $k > c(\epsilon)$. We take the set T_3 as given in the Remark after Lemma 5.3. Thus by (13) there are at least k/4 number of A_{μ} 's with

$$A_{\mu} \le k^{1-\epsilon}$$

Hence there are at least $k^{\epsilon}/4$ number of A_{μ} 's which are equal. By Lemma 4.4,

$$k^{\epsilon}/4 \le 9^{\omega(d)} + 1.$$

It is well known that $\omega(d) \leq 4 \log d / \log \log d$. Since $d < k^{3-\epsilon}$, we have

$$9^{\omega(d)} + 1 < k^{5(3-\epsilon)/\log\log k} < k^{\epsilon}/4$$

for $k > c(\epsilon)$. This is a contradiction.

Acknowledgement. The above work was carried out when N. Saradha visited Indian Statistical Institute, Delhi Centre during September 1-15, 2016. She likes to thank Dr. Shanta Laishram for the invitation and hospitality.

References

- R. Balasubramanian and T.N. Shorey, Squares in products from a block of consecutive integers, Acta Arith. 65 (1994) 213-220.
- [2] P. Erdős, On the product of consecutive integers, III, Indag. Math. 17 (1955) 85-90.
- [3] P. Erdős and J. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975) 292-301.
- [4] J. H. Evertse, On the equation $ax^n by^n = c$, Compositio Math.47(1982),289-315.
- [5] Yu. Nesterenko and T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers (II), Acta Arith. 76 (1996) 191-198.
- [6] N.Saradha and T.N. Shorey, Squares in blocks from an arithmetic progression and Galois group of laguerre polynomials, Int. J Number Theory, 11 (2015) 233-250.
- T. N. Shorey, Perfect powers in values of certain polynomials at integers points, Math. Proc. Camb. phil. Soc. 99 (1986), 195-207.
- [8] T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith 49 (1987), 71-79.
- [9] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, in Number Theory, R. P. Bambah et al. (eds), Hindustan Book Agency, 1999,463-495.

- [10] T. N. Shorey, Diophantine approximations, Diophantine equations, Transcendence and Applications, Indian Jour. of Pure and Applied Math, 37 (2006), 9-39.
- [11] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math., 75 (1990) 307-344.

STAT-MATH UNIT, INDIAN STATISTICAL INSTITUTE DELHI CENTRE, NEW DELHI 110016, INDIA

E-mail address: pranabesh.math@gmail.com *E-mail address*: shanta@isid.ac.in

School of Mathematics, Tata Institute of Fundamental Research, Mumbai, 400005, INDIA

E-mail address: saradha@math.tifr.res.in