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Abstract. We show that there are no cubes in a product with at
least k−(1−ε)k log log k

log k , ε > 0, terms from a set of k(≥ 2) successive

terms in an arithmetic progression having common difference d if
either k is sufficiently large or 3ω(d) � k log log k

log k . Here ω(d) denotes

the number of distinct prime divisors of d. This result improves an
earlier result of Shorey and Tijdeman.

1. Introduction

Let b, d, ` > 1,m, k ≥ 2, t ≥ 2 be positive integers. Further let
d1, · · · , dt ∈ [0, k) be integers with d1 < d2 < · · · < dk. For any integer
n > 1, let P (n) denote the greatest prime factor on n and put P (1) = 1.
We consider solutions to the equation

(1) ∆d = (m+ d1d) · · · (m+ dtd) = by`, P (b) < k

i.e., we are looking for perfect powers or almost perfect powers in a
product of t terms which are taken from k terms in an arithmetic
progression. When t = k, all the k terms in the arithmetic progression
are present in ∆d. When t < k, then k−t terms are missing in ∆d. This
equation has been intensely studied and several papers are available in
the literature since the remarkable work of Erdős and Selfridge [3] in
1975 where they showed that

a product of two or more consecutive positive integers is never a
perfect power.

In other words, equation (1) with b = d = 1, t = k has no solu-
tion. Fundamental contributions were made by Shorey and Tijdeman
towards (1). We refer to the expository articles of Shorey [9] and [10]
for a detailed account of many of the results. In this paper, we improve
a result of Shorey and Tijdeman [11] on the value of t in the case of
cubes i.e. when ` = 3.
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2. Results-old and new

In 1955, Erdős [2] proved the following result when d = 1.
Suppose (1) with b = d = 1, ` ≥ 3,m > k` hold and

t ≥ k − (1− ε)k log log k

log k
, ε > 0.

Then k is bounded by an absolute constant.
This result was considerably sharpened by Shorey [7, 8] and later

by Nesterenko & Shorey [5]. As a result of [5], one obtains that k is
bounded by an absolute constant whenever

t > .4832k, ` ≥ 7 and P (b) ≤ k.

The results for ` > 2 depend on the theory of linear forms in loga-
rithms,irrationality measures of Baker based on hypergeometric method
and estimates of Halberstam and Roth on difference between consecu-
tive k free integers.

When ` = 2, in the above result of Erdős, t was taken to be t ≥
k − c1 k

log k
, where c1 is an absolute constant. This was sharpened by

Shorey [8] to t ≥ k − (1− ε)k log log k
log k

and later relaxed further by Bala-

subramanian and Shorey [1].

From now on we assume that d > 1. Shorey and Tijdeman com-
bined several elementary arguments of Erdős with the application of
box principle on numerous occassions in a beautiful paper to show the
following result (see [11, p.343]). Throughout the paper, we denote by
c(ε) > 0 an effectively computable, sufficiently large number depending
on ε > 0.

Let ε > 0. Equation (1) with d > 1 and P (y) > k implies that there
exists an absolute constant c2 such that either

k ≤ c(ε) or `ω(d) ≥ c2k
h(k)

log k

provided

(2) t > k − (1− ε)k h(k)

log k

where

h(k) =


log log k if ` ≥ 5

log log log k if ` = 3

1 if ` = 2.
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Recently, Saradha and Shorey [6] improved the above result for ` = 2
as follows.

Suppose equation (1) holds with d > 1 and P (y) > k. Then there
exist positive numbers c3 and c4 depending only on d such that if

(3) t ≥ k − k
(

log log k

log k
− log log log k

log k
− c3

log k

)
then k ≤ c4.

We observe from the above two results that (2) is weaker for the
values of t when ` = 3. In this paper we bring the case of cubes on par
with other values of ` as far as t is concerned.

Theorem 2.1. Equation (1) with d > 1, P (y) > k and ` = 3 implies
that there exists an absolute constant c5 such that either k ≤ c(ε) or
3ω(d) ≥ c5k

log log k
log k

provided

t > k − (1− ε)k log log k

log k
.

The above improvement is due to a better box principle that is ap-
plied while counting the number of distinct Thue equations. See Section
7 below.

3. Preliminaries

Suppose equation (1) holds with P (y) > k. Then

(4) m+ dtd ≥ (k + 1)3

implying that

(5) m+ d > k2.

Further we may write

m+ did = AiX
3
i , P (Ai) < k, gcd(Xi,

∏
p<k

p) = 1, 1 ≤ i ≤ t

where the product is taken over all primes< k.Note that since gcd(m, d) =
1, we have

gcd(Ai, d) = gcd(Xi, d) = 1 for 1 ≤ i ≤ t

and

(6) Xi ≥ k if Xi 6= 1 and gcd(Xi, Xj) = 1 if i 6= j.

Let

S1 = {A1, · · · , At}.
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By deleting a term corresponding to every prime < k, we find that
there exists a set S2 with

(7) S2 ⊆ S1 and
∏
Ai∈S2

Ai
∣∣k!.

Let K = Q(ρ) where ρ = e2πi/3. Then [K : Q] = 2 and disc(K)=3. For
any prime p 6= 3, we have the following possibilities for the ideal [p] in
K.

[p] = ℘ or ℘2 or ℘1℘2

where ℘, ℘1, ℘2 are prime ideals in K. Thus for any integer d > 1, we
can write d′ = d/3ord3(d) as

(8) [d′] = D1D2D3

where D1, D2, D3 are coprime ideals of K in at most 9ω(d
′) ways.

4. On Equal Ai’s

Although many of the facts below are true for any prime ` ≥ 3,
we restrict to ` = 3. We refer to [11, pages 326-336] for the various
arguments given in the lemmas below. We have put them in lemmas
to make the exposition more lucid.

Lemma 4.1. Suppose (1) holds with ` = 3 with Aµ = Aν for some
Aµ, Aν in S1 with µ < ν. Then Xν

Xµ
belongs to at most 3ω(d) residue

classes (mod d).

Proof. We have the identity

(ν − µ)d = Aµ(X3
ν −X3

µ).

It follows that Aµ < k,Aν < k and by (5), Xµ 6= 1, Xν 6= 1. Hence by
(6), they are distinct. Also

X3
ν −X3

µ ≡ 0(mod d).

Let R(d) denote the number of residue classes z such that z3 ≡ 1(
mod d). Then a result of Evertse [4] gives that R(d) ≤ 3ω(d) which
implies the assertion of the lemma. �

In the next lemma we find out many Xν/Xµ belonging to distinct
residue classes.

Lemma 4.2. Suppose (1) holds with ` = 3 and m+(k−1)d ≥ k4−ε, ε >
0. Assume that

|S1| < t− (1− ε/2)k
log log k

log k
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Then for k ≥ c(ε), there are at least

d(1− ε)k log log k

log k
e

distinct pairs (µ, ν) with Xν/Xµ belonging to distinct residue classes.

Proof. Let

R =

{
i : t ≥ i ≥ εk

log log k

4 log k

}
and S3 = {Ai ∈ S1 : i ∈ R} .

For Ai ∈ S3, let χ(Ai) = |{j ∈ R : Aj = Ai}| and for h ≥ 1, let

Ch = |{Ai : χ(Ai) = h}|.
Then clearly∑

hCh = |R| ≥ t− εk log log k

4 log k
and

∑
Ch ≤ |S3| ≤ |S1|.

Let χ(Ai1) = h and i1 < i2 < · · · < ih be such that Ai1 = Ai2 =

· · · = Aih . Then there are h(h−1)
2

distinct pairs (µ, ν) with µ > ν and
Aµ = Aν = Ai1 . Hence the number of distinct pairs (µ, ν) with

(9) k > ν > µ ≥ εk
log log k

4 log k
and Aµ = Aν

is ∑ h(h− 1)

2
Ch ≥

∑
hCh −

∑
Ch ≥

(
t− εk log log k

4 log k

)
− |S1|

≥(1− 3ε/4)k
log log k

log k
.

Hence we can find at least

d(1− ε)k log log k

log k
e

distinct pairs (µ, ν) with (9).
Thus the conclusion of the lemma is true if we show that

Xν1/Xµ1 and Xν2/Xµ2

belong to distinct residue classes (mod d) for two distinct pairs (µ1, ν1)
and (µ2, ν2) satisfying (9). We now proceed to prove this claim. Sup-
pose there exist pairs (µ1, ν1) 6= (µ2, ν2), with

(10)
Xµ1

Xν1

≡ Xµ2

Xν2

(mod d).

Consider

δ = (m+ µ1d)(m+ ν2d)− (m+ ν1d)(m+ µ2d)
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= Aµ2Aν1
(
(Xµ1Xν2)

3 − (Xν1Xµ2)
3
)
.

Assume Xµ1Xν2 > Xν1Xµ2 . Then

|δ| ≥ (Aµ2Aν1)
1/33d

(
(Aµ2X

3
µ2

)(Aν1X
3
ν1

)
)2/3

≥ 3d

(
m+ εkd

log log k

2 log k

)4/3

≥ 3d
ε2

4

(
(m+ (k − 1)d) log log k

log k

)4/3

.

On the other hand,

|δ| ≤ 2kd(m+ (k − 1)d).

Comparing the lower and upper bounds for |δ| we get

m+ (k − 1)d <

(
8

3ε2

)3

k3
(

log k

log log k

)4

giving
m+ (k − 1)d < k4−ε

since k is sufficiently large. This is a contradiction. �

Putting together the above two lemmas we get the following propo-
sition.

Proposition 4.3. Suppose equation (1) holds with ` = 3. For ε > 0,
let

m+ (k − 1)d ≥ k4−ε; 3ω(d) < d(1− ε)k log log k

log k
e

and

t > k − (1− ε)k log log k

log k
.

Then for k > c(ε) we have

|S1| ≥ t− (1− ε/2)k
log log k

log k
.

Lemma 4.4. Suppose equation (1) holds with ` = 3. Then the number
of equal Ai’s do not exceed 9ω(d) + 1.

Proof. Let Z = 9ω(d) + 2. Suppose there exist indices 1 ≤ µ1 < µ2 <
· · · < µZ ≤ t such that

Aµ1 = · · · = AµZ .

For any µr with 2 ≤ r ≤ Z, we have

(µr − µ1)d = Aµ1(X
3
µr −X

3
µ1

).

Since gcd(Aµ1 , d) = 1 the ideal [d] divides Pr = [Xµ1 − Xµr ][Xµ1 −
ρXµr ][Xµ1 − ρ2Xµr ] in K. There are Z − 1 > 9ω(d) products Pr. Hence
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there exist coprime ideals D1, D2, D3 as in (8) and indices r, s such that
2 < µr < µs < Z with

Dh

∣∣[Xµ1 − ρhXµr ];Dh

∣∣[Xµ1 − ρhXµs ], h = 1, 2, 3.

Hence Dh

∣∣[Xµr −Xµs ] implying

d′
∣∣(Xµr −Xµs).

Since Aµr = Aµs , we have d
∣∣(X3

µr −X
3
µs). Further it is well known that

9 -
X3
µr −X

3
µs

Xµr −Xµs

.

Thus we get

3ord3(d)−1
∣∣(Xµr −Xµs) if 3

∣∣d.
Putting together the above facts, we find that

(11) |Xµr −Xµs| > d/3.

From the identity

(µr − µs)d = Aµr(X
3
µr −X

3
µs)

and (11) it follows that

kd ≥ d(AµrX
3
µr)

2/3 ≥ d

(
(m+ (k − 1)d)

k

)2/3

which simplifies to

m+ (k − 1)d ≤ k5/2.

This is a contradiction since m+ (k − 1)d > k3 by (4). �

5. Large number of small Ai’s

For the following lemma we refer to [11, Lemma 6].

Lemma 5.1. Let 0 < η < 1/2. Let S ′ ⊆ S1 such that∏
Ai∈S′

Ai|k!

Suppose g is a positive number such that g ≤ (η log k)/8 and

(12) |S ′| ≥ t− gk

log k

Then there exists a set S ′′ ⊆ S ′ with at least ηk/2 elements satisfying

Ai ≤ 4e(1+η)gk.

We apply the above lemma to get the following result.
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Lemma 5.2. Suppose equation (1) holds with ` = 3. For ε > 0 let

m+ (k − 1)d ≥ k4−ε; 3ω(d) < d(1− ε)k log log k

log k
e

and

t > k − (1− ε)k log log k

log k
.

Then for k > c(ε), there exists S4 ⊆ S1 with |S3| ≥ εk/20 such that

Ai ≤ ke(1−ε/4) log log k for Ai ∈ S4.

Proof. As noted in the preliminaries, there is a set S2 ⊆ S1 with |S2| ≥
|S1| − π(k) and such that ∏

Ai∈S2

Ai
∣∣k!.

By Proposition 4.3, we have therefore

|S2| ≥ t− (1− ε/3)k
log log k

log k
.

In Lemma 5.1, we take S ′ = S2, g = (1− ε/3) log log k, η = ε/10. Then
there exists a set S4 ⊆ S2 satisfying the properties of the lemma. �

Another instance when Ai may be small is when Xi 6= 1. We shall
show that there are few terms in ∆d with Xi = 1.

Lemma 5.3. Suppose equation (1) holds with ` = 3 and for ε > 0, let

t > k − (1− ε)k log log k

log k
.

Suppose
T1 = {µ : 2 ≤ µ ≤ t and Xµ = 1}.

Then for k > c(ε), we have |T1| ≤ 2k/3.

Proof. For any µ ∈ T1, we have Aµ = m + dµd ≥ m + d. From T1, for
every prime p < k delete one µ such that p appears to the maximum
power in Aµ. Let T2 be the set of remaining µ’s. Then |T2| ≥ |T1|−π(k)
and ∏

µ∈T2

Aµ|k!

This implies
(m+ d)|T1|−π(k) ≤ kk

giving by (5) that

|T1| ≤ k/2 + π(k) ≤ 2k/3

since k is large. �
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REMARK. By the above lemma, we therefore get that the comple-
ment set T3 of T1 in [2, t] satisfies |T3| ≥ t − 1 − 2k/3 ≥ k/4 and for
each µ ∈ T3, we have Xµ 6= 1 and hence

(13) Aµ ≤ (m+ (k − 1)d)/k3 for µ ∈ T3.

6. Many pairs of Ai’s with large gcd

We use an argument of Erdős to show that there is a subset of S3 in
which gcd of any two elements is large.

Lemma 6.1. Suppose equation (1) holds with ` = 3. For ε > 0, let

m+ (k − 1)d ≥ k3−ε; 3ω(d) < d(1− ε)k log log k

log k
e

and

t > k − (1− ε)k log log k

log k
.

Then for k > c(ε), there exists a set S5 ⊆ S1 with |S4| ≥ εk/80 and
such that gcd(Aµ, Aν) ≥ k1−θ where θ < 1.

Proof. We take the set S4 given by Lemma 5.2. Let

S6 = {Ai ∈ S4 : Ai ≥ k1−θ}.
Then

|S6| ≥ εk/40.

Denote by b1, · · · , bs all integers between k1−θ and ke(1−ε/4) log log k such
that every proper divisor of bi is ≤ k1−θ. Observe that if bi ≥ k1−θ/2,
every prime divisor of bi is ≥ kθ/2. Hence by Brun’s sieve,

(14) s� k1−θ/2 +
2ke(1−ε/4) log log k

θ log k
.

Every element of S6 is divisible by at least one bi. Let

S7 = {Ai ∈ S6 : ∃ bi dividing Ai and no other Aj in S6}.
Then

|S7| ≤ s

and hence by (14), taking S5, as the complement of S7 in S6 we get

|S5| ≥ εk/80.

Further, for any Aµ, Aν ∈ S5 we have

gcd(Aµ, Aν) ≥ bi

for some bi which gives the assertion of the lemma. �
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7. Proof of Theorem 2.1 when m+ (k − 1)d ≥ k4−ε

Suppose equation (1) with d > 1, P (y) > k and ` = 3 holds. Let
ε > 0. Suppose

m+ (k − 1)d ≥ k4−ε

and

t > k − (1− ε)k log log k

log k
.

Also assume that k > c1(ε) where c1(ε) is sufficiently large. We shall
show that

3ω(d) ≥ (1− ε)k log log k

log k
.

Suppose not. Then we take S5 as in Lemma 6.1 with θ < 1/3. For any
pair (Aµ, Aν) with Aµ, Aν ∈ S5, form the cubic equation

AµX
3
µ − AνX3

ν = (µ− ν)d.

This reduces to

(15) LX3 −MY 3 = Nd

where

L =
Aµ

gcd (Aµ, Aν)
,M =

Aν
gcd (Aµ, Aν)

, N =
µ− ν

gcd (Aµ, Aν)

and L,M,N are co-prime and bounded by kθe(1−ε/4) log log k and (15) has
a solution (Xµ, Xν). The number of distinct pairs (Aµ, Aν) is at least
(εk/80)2/2 and the number of distinct triples (L,M,N) is at most
k3θe3(1−ε/4) log log k. Hence there are at least

K =
1

2
(ε/80)2k2−3θe−3(1−ε/4) log log k

pairs (Aµ, Aν) which give rise to the same cubic equation as in (15).
Further this cubic equation has at least K distinct solutions (Xµ, Xν).
By a result of Evertse [4] and our supposition we get

K ≤ 3ω(d) < (1− ε)k log log k

log k

which gives k ≤ c1(ε). Taking c(ε) > c1(ε) we get a contradiction. �
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8. Proof of Theorem 2.1 when m+ (k − 1)d < k4−ε

Suppose equation (1) with d > 1, P (y) > k and ` = 3 holds. Let

m+ (k − 1)d < k4−ε

and

t > k − (1− ε)k log log k

log k
.

Also assume that k > c(ε). We take the set T3 as given in the Remark
after Lemma 5.3. Thus by (13) there are at least k/4 number of Aµ’s
with

Aµ ≤ k1−ε.

Hence there are at least kε/4 number of Aµ’s which are equal. By
Lemma 4.4,

kε/4 ≤ 9ω(d) + 1.

It is well known that ω(d) ≤ 4 log d/ log log d. Since d < k3−ε,we have

9ω(d) + 1 < k5(3−ε)/ log log k < kε/4

for k > c(ε). This is a contradiction. �
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