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Abstract
Nested orthogonal arrays have been used in the design of an experimental

setup consisting of two experiments, the expensive one of higher accuracy
being nested in a larger and relatively less expensive one of lower accuracy.
In this paper, we provide new methods of construction of two types of nested
orthogonal arrays.
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1 Introduction and Preliminaries

Computer models are widely used in business, engineering and sciences to
study real-world systems, especially when the corresponding physical exper-
iment might be time consuming, costly or even infeasible to conduct. Space-
filling designs are desirable for conducting computer experiments. Nested or-
thogonal arrays have practical use in the construction of space-filling designs
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when an experimental endeavour consists of two experiments, the expensive
one of higher accuracy to be nested in a larger and relatively inexpensive one
of lower accuracy. For example, the higher and lower accuracy experiments
can correspond to a physical versus a computer experiment, or a detailed
versus an approximate computer experiment, respectively. Experimental se-
tups of this kind were considered, among others, by Qian and Wu (2008),
Qian, Tang and Wu (2009) and Sun, Liu and Qian (2014). There are two
types of nested orthogonal arrays available in the literature. The purpose of
this paper is to provide new methods of construction of such arrays.

For completeness, we recall the definitions of a symmetric orthogonal
array and the two types of nested orthogonal arrays considered in this paper.
A (symmetric) orthogonal array OA(N, k, s, g) with N rows, k columns, s (≥
2) symbols and strength g is an N × k matrix with symbols from a finite set
of s symbols, in which all possible combinations of symbols appear equally
often as rows in every N × g submatrix, for 2 ≤ g ≤ k.

Definition 1. (Type I NOAs): A (symmetric) nested orthogonal array,
NOAI((N,M), k, (s, r), g), where M < N and r < s, is an orthogonal array
OA(N, k, s, g) which contains an OA(M,k, r, g) as a subarray.

In order to define nested orthogonal arrays of type II, we need to define
a kind of projection considered by Qian, Ai and Wu (2009).

Let s1 = pm1 , s2 = pm2 , where p is a prime and m1,m2 (m1 > m2)
are positive integers. Suppose g1(x) is an irreducible polynomial of GF (s1)
and g2(x) is an irreducible polynomial of GF (s2), where GF (·) stands for a
Galois field. We are now in a position to describe a projection from GF (s1)
to GF (s2), called the modulus projection by Qian, Ai and Wu (2009) and
denoted by ϕ. This is defined as

ϕ (f(x)) = f(x) (mod g2(x)) ,

for any f(x) ∈ GF (s1).
Since ϕ works by taking residues modulo g2(x), this projection is called

modulus projection. We now have the following definition.

Definition 2.(Type II NOAs): Let A1 be an OA(n1, k, s1, g). Suppose there
is a subarray A2 of A1 of size n2, and there is a modulus projection ϕ
that collapses the s1 levels of A1 into s2 levels. Further suppose A2 be-
comes an OA(n2, k, s2, g) after the levels of its entries are collapsed accord-
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ing to ϕ. Then (A1, A2), is a type II nested orthogonal array, denoted by
NOAII(A1, A2).

Sun, Liu and Qian (2014) extended the definition of Type II nested or-
thogonal array with two layers (as given in Definition 2) to a more general
case having more than two layers.

Definition 3. Suppose Ai is an OA(ni, k, si, g) and ϕi for i = 1, · · · , I (I ≥
2) are a series of projections satisfying the condition that ϕi(α) = ϕi(β)
implies ϕj(α) = ϕj(β) for i ≤ j. Then (A1, · · · , AI ;ϕ1, · · · , ϕI) is called
a nested orthogonal array with I layers, denoted by NOAII(A1, · · · , AI) or
NOAII(A1, · · · , AI ; ϕ1, · · · , ϕI), if:

(i) Ai is nested within Ai−1 for 2 ≤ i ≤ I, that is, A1 ⊃ A2 ⊃ · · · ⊃ AI ;

(ii) ϕj(Ai) is an OA(ni, k, sj, g), for i ≤ j,

where n1 > n2 > · · · > nI and s1 > s2 > · · · > sI .

The question of existence of symmetric nested orthogonal arrays of type
I has been examined by Mukerjee, Qian and Wu (2008), who proved that for
the existence of a type I nested orthogonal array NOAI((N,M), k, (s, r), g),
g ≤ k, it is necessary that:

N ≥M
u∑

j=0

(
k
j

)
(r−1s− 1)j, if g (= 2u, u ≥ 1) is even, (1)

N ≥ M

 u∑
j=0

(
k
j

)
(r−1s− 1)j +

(
k − 1
u

)
(r−1s− 1)u+1

 ,
if g(= 2u+ 1, u ≥ 1) is odd. (2)

Construction methods of some families of symmetric type I NOAs were
provided by Dey (2010, 2012). Some methods of construction of type II
NOAs were discussed among others, by Qian, Ai and Wu (2009), Qian,
Tang and Wu (2009) and Sun, Liu and Qian (2014). The present article
aims at constructing new families of type I and type II NOAs. Throughout,
for a positive integer t, 0t, 1t, It will respectively, denote a t× 1 null vector,
a t × 1 vector of all ones and an identity matrix of order t. A

′
denotes the

transpose of a matrix (or, vector) A.
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2 Construction of type I NOAs

We first have the following result.

Theorem 1. Let p be a prime, s1, s2 (s1 > s2) be powers of p and A be a
t×k matrix over GF (p). If any t× g (t ≥ g) submatrix of A has full column
rank over GF (p), then an NOAI((s

t
1, s

t
2), k, (s1, s2), g) exists.

Proof. Suppose B1 is st1 × t matrix having rows as all possible t-plets with
entries from GF (s1). Since any t×g submatrix of A has full column rank over
GF (p), by Bose and Bush (1952), C1 = B1A is an OA(st1, k, s1, g). It is easy
to see that B1 has a st2 × t submatrix B2 having rows as all possible t-plets
with entries from GF (s2), for s1 > s2. Then C2 = B2A is an OA(st2, k, s2, g).
Hence, C2 is a st2 × k submatrix of C1, with elements over GF (s2) and thus
an NOAI((s

t
1, s

t
2), k, (s1, s2), g) exists. 2

Invoking Theorem 1, one gets the following results.

Theorem 2. Let s1, s2 (s1 > s2) be powers of a prime p and t, g (t ≥ g) be
integers. Then the following families of symmetric type I NOAs exist:

(a) NOAI((s
t
1, s

t
2),

pt−1
p−1 , (s1, s2), 2),

(b) NOAI((s
t
1, s

t
2), 2

t−1, (s1, s2), 3), for p = 2,

(c) NOAI((s
t
1, s

t
2), 2(t− 1), (s1, s2), 3), for p 6= 2,

(d) NOAI((s
g
1, s

g
2), g + 1, (s1, s2), g).

Proof. (a) Let A be a t × pt−1
p−1 matrix with entries from GF (p) having

columns as all possible nonzero t-tuples, such that no two columns are pro-
portional to each other. Then, it is easy to see that any t × 2 submatrix
of A has full column rank over GF (p). Invoking Theorem 1, we obtain an

NOAI((s
t
1, s

t
2),

pt−1
p−1 , (s1, s2), 2).

(b) Let A =

[
1′2t−1

A1

]
, where A1 is a (t − 1) × 2t−1 matrix having columns

as all possible (t − 1)-tuples with entries from GF (2). As shown by Zhang,
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Deng and Dey (2017), any three columns of A are linearly independent. We
can now obtain an NOAI((s

t
1, s

t
2), 2

t−1, (s1, s2), 3) using Theorem 1.

(c) Let A =

[
1′t−1 1′t−1
It−1 2It−1

]
. By Lemma 3 in Zhang, Deng and Dey (2017),

any three columns of A are linearly independent. The result now follows by
invoking Theorem 1.

(d) Let A = [ Ig 1g ]. Then any g columns of A are linearly independent.
Using Theorem 1, we obtain an NOAI((s

g
1, s

g
2), g + 1, (s1, s2), g). 2

Remark 1. (i) When t > 4, Theorem 2 (b) accommodates more columns
than the array reported in Theorem 1 of Dey (2010). Also, the number of
symbols in the smaller array is not restricted to 2.
(ii) In part (a) and (b) of Theorem 2, when s1 = 2s2, 2t − 1 and 2t−1

are the maximum number of columns that a nested orthogonal array can
accommodate, respectively, as, these arrays attain the upper bound on the
number of columns given by (1) and (2) respectively.
(iii) For s2 ≤ g, g + 1 is the maximum number of columns that can be ac-
commodated in an orthogonal array OA(sg2, k, s2, g) (see Hedayat, Sloane and
Stufken (1999)) and hence in that case, the NOAI((s

g
1, s

g
2), g + 1, (s1, s2), g)

in part (d) of Theorem 2 cannot have more than g + 1 columns.

The following example illustrates Theorem 2.

Example 1. (i) Let A =

[
1 0 1
0 1 1

]
. Also, let B1, B2 be 16 × 2 and

4 × 2 matrices having rows as all possible 2-plets with entries from GF (4)
and GF (2), respectively. Then an NOAI((4

2, 22), 3, (4, 2), 2) is obtained,
displayed below in transposed form:

 0011 0011 2233 2233
0101 2323 0101 2323
0110 2332 2332 0110


′

.

The first 4 rows of the above array constitute an OA(4, 3, 2, 2) (obtained by
B2A), while all the 16 rows form an OA(16, 3, 4, 2) (obtained by B1A).
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(ii) Let

A =

 1 1 1 1
1 0 2 0
0 1 0 2


.

It can be seen that any three columns of A are linearly independent over
GF (3). Let B1 be an 93 × 3 matrix having rows as all possible 3-tuples
with entries from GF (9). Then C1 = B1A is an OA(93, 4, 9, 3). Let B2 be
a 33 × 3 submatrix of B1 with elements over GF (3). Then C2 = B2A is an
OA(33, 4, 3, 3). Hence we obtain an NOAI((9

3, 33), 4, (9, 3), 3).

3 Construction of type II NOAs

In this section, we construct a family of type II NOAs. As before, let p
be a prime and A be a t × k matrix, s1 = pm1 , s2 = pm2 , where m1,m2

(m1 > m2) are integers. Let g1(x) and g2(x) be irreducible polynomials of
GF (s1) and GF (s2) respectively, and ϕ1, ϕ2 respectively, be modulus g1(x),
g2(x) projections. We then have the following result.

Theorem 3. If any t × g (t ≥ g) submatrix of A has full column rank
over GF (s2) and 2m2 ≤ m1 + 1, then an NOAII(A1, A2) exists, where
A1 = OA(st1, k, s1, g), A2 = OA(st2, k, s2, g).

Proof. Suppose B1 is a st1 × t matrix having rows as all possible t-plets with
entries from GF (s1). It is easy to see that B1 has a st2×t submatrix B2 having
rows as all possible t-plets with entries from GF (s2), for s1 > s2. Since any
t × g submatrix of A has full column rank over GF (s2), A2 = ϕ2(B2A) is
an OA(st2, k, s2, g). And A is a t × k matrix over GF (s2), for s1 > s2, so
the elements of A can be considered as over GF (s1). It follows then that
A1 = ϕ1(B1A) is an OA(st1, k, s1, g). If we can show that

ϕ2(ϕ1(B2A)) = ϕ2(B2A),

then A2 is nested in A1. Since 2m2 ≤ m1 + 1, by the result of Qian, Tang
and Wu (2009), the above holds. 2
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Theorem 3 is an improvement of the result of Qian, Tang and Wu (2009),
who considered arrays of strength two, while Theorem 3 is true for arrays of
any strength.

Example 2. Suppose s1 = 2m1 , s2 = 2m2 , m1,m2 (m1 > m2) are integers,
and 2m2 ≤ m1+1. Then an NOAII(OA(s31, s2+2, s1, 3), OA(s32, s2+2, s2, 3))
exists.

Let g1(x) = xm1 +x+ 1, g2(x) = xm2 +x+ 1. Next set the first column of
A as A1 = [1, 0, 0]′, the second column of A as A2 = [0, 1, 0]′, and the third
to the (s2 + 2)th columns of the form

Ai = [x2, x, 1]′,

where x ∈ GF (s2), 3 ≤ i ≤ s2 + 2. The matrix [Aj1 Aj2 Aj3 ], 1 ≤ j1 < j2 <
j3 ≤ s2 + 2, has full column rank. The result now follows.

Theorem 3 can be modified to generate NOAs with more than two layers.
Suppose si = pmi where p is a prime and for 2 ≤ i ≤ I, mi’s are integers
satisfying mi < mi−1. Let gi(x) be an irreducible polynomial of GF (si), and
ϕi be a modulus gi(x) projection. We then have the following result whose
proof is similar to that of Theorem 3 and is therefore omitted. As before, let
A be a t× k matrix.

Theorem 4. If any t× g (t ≥ g) submatrix of A has full column rank over
GF (sI) and 2mi ≤ mi−1 + 1 for 2 ≤ i ≤ I, then an NOAII(A1, · · · , AI)
exists, where Ai = OA(sti, k, si, g), 1 ≤ i ≤ I.

Remark 2. The construction of NOAs with more than two layers given
by Sun, Liu and Qian (2014) requires that the conditions (i) mi < mi−1
and (ii) mi|mi−1, 2 ≤ i ≤ I hold. Our result requires condition (i) and
(ii′) 2mi ≤ mi−1 + 1 to hold. Thus, the requirements of our construction are
less stringent than those of Sun, Liu and Qian (2014).

Example 3. Construction of NOAII(A1, A2, A3), where A1 = (322, 5, 32, 2),
A2 = OA(82, 5, 8, 2), A3 = OA(42, 5, 4, 2).

Since s1 = 25, s2 = 23 and s3 = 22, we have m1 = 5, m2 = 3 and
m3 = 2. The condition 2mi ≤ mi−1 + 1 is satisfied. Note that here the
condition mi|mi−1 does not hold. Let g1(x) = x5 + x+ 1, g2(x) = x3 + x+ 1,
g3(x) = x2 + x + 1 and Bi be an s2i × 2 matrix having rows as all possible
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2-plets with entries from GF (si) (i = 1, 2, 3). Define

A =

[
1 0 1 x x+ 1
0 1 1 1 1

]
.

Then any two columns ofA are linearly independent. By Theorem 4, NOAII(A1, A2, A3)
can now be constructed.
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