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Abstract

Starting from the quantum stochastic differential equations of Hudson and Parthasarathy

(Comm. Math. Phys. 93, 301 (1984)) and exploiting the Wiener-Itô-Segal isomorphism between

the Boson Fock reservoir space Γ(L2(R+)⊗ (Cn⊕Cn)) and the Hilbert space L2(µ), where µ is the

Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion

{B(t), t ≥ 0}, we derive a non-linear stochastic Schrödinger equation describing a classical diffu-

sion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian

motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion

equation (J. Phys. A 167, 315 (1992)). This approach also yields an explicit solution of the Gisin-

Percival equation, in terms of the Hudson-Parthasarathy unitary process and a radomized Weyl

displacement process. Irreversible dynamics of system density operators described by the well-

known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining

over the Gisin-Percival quantum state trajectories.
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I. INTRODUCTION

Irreversible dynamics of states and observables of a quantum system S is usually de-

scribed by a one parameter semigroup {Tt, t ≥ 0} of unital completely positive maps on the

algebra B(HS) of all bounded operators on the associated system Hilbert space HS. Such

a semigroup is called a quantum dynamical semigroup. When this semigroup is uniformly

continuous, its infinitesimal generator was completely described by Gorini, Kossakowski and

Sudarshan [1] when HS is finite dimensional and by Lindblad [2] in the general case. We

call it the GKSL generator, usually denoted by L. The form of this generator L becomes

meaningful even when the operators entering the description of L may be unbounded [3–6]

and can give rise to dynamical semigroups, which are not necessarily uniformly continuous.

Since the discovery of the form of the generator L, there have been attempts to understand

the stochastic processes from which L arises. This has mainly given rise to two different

approaches of constructing processes leading to the generator L.

Starting with the 1984 paper [7] of Hudson and Parthasarathy (HP), there has evolved a

Boson Fock space stochastic calculus for operator-valued processes in HS ⊗HR, where HR

is an appropriate Boson Fock space associated with a reservoir R (also called bath or noise).

Such a stochastic calculus is equipped with a quantum Itô formula [7, 8] leading to a theory

of quantum stochastic differential equations. This enables, in particular, the construction of

unitary operator-valued processes {U(t), t ≥ 0} satisfying a quantum stochastic differential

equation in HS⊗HR. It turns out that for a given GKSL generator L, there exists a canon-

ical unitary operator-valued process in HS ⊗HR obeying a quantum stochastic differential

equation of the exponential type and satisfying the identity

〈φ|Tt(X)|χ〉 = 〈φ⊗ Ω0|U(t)† (X ⊗ IR)U(t) |χ⊗ Ω0〉

for all X ∈ B(HS), φ, χ ∈ HS, where IR is the identity operator in HR, Ω0 denotes the

Boson Fock vacuum state, and {Tt = etL, t ≥ 0}, the dynamical semigroup with generator

L. In other words, {Tt, t ≥ 0} has been dilated to a Heisenberg evolution by the unitary

operator-valued process {U(t), t ≥ 0}.

On the other hand, in their 1992 paper [9] Gisin and Percival explore the possibility of

constructing the dynamical semigroup {Tt, t ≥ 0} with GKSL generator L through classical

diffusion processes, with values on the unit sphere of the system Hilbert spaceHS, driven by a

complex vector-valued standard Brownian motion {B(t), t ≥ 0}, with its Wiener probability
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measure µ, on the space of paths. They arrive at a non-linear diffusion equation on the

unit sphere involving the differentials dB(t) and dt, with diffusion and drift coefficients

depending on the operator parameters describing L. Such classical stochastic differential

equations for processes with values in the unit sphere of HS are called stochastic Schrödinger

equations. For any initial state |φ0〉 inHS, the Gisin-Percival stochastic Schrodinger equation

determines a trajectory {|Ψt(B)〉, t ≥ 0} of pure states in L2(µ) ⊗ HS, which is driven by

complex vector-valued Brownian noise B. The system density operator ρt, obtained after

coarse graining over these diffusive trajectories [10, 11],

ρt =

∫
|Ψt(B)〉〈Ψt(B)|µ(dB)

obeys a GKSL master equation [1, 2]. This determines the irreversible dynamics of states

and observables in HS. In other words, pure state solutions of stochastic Schrödinger equa-

tions can be employed effectively in studying open system dynamics. Non-linear stochastic

Schrödinger equations have gained importance from various physical and mathematical per-

spectives [9–25]. They were initially proposed [13] as stochastic non-linear modifications

of the Schrödinger equation, as an attempt to address the quantum measurement prob-

lem [12, 13, 15, 20–22, 25]. It has also been recognized that the use of pure states, instead

of density matrices, is advantageous in speeding up computer simulations [29–31].

The main goal of this paper is to construct the Gisin-Percival diffusion of states from

the quantum stochastic differential equation of HP [7, 8], by exploiting the Wiener-Itô-Segal

isomorphism [26–28] between the reservoir Boson Fock space HR and the Hilbert space

L2(µ), with µ being the Wiener probability measure on the space of paths of a vector-valued

Brownian motion. One of the striking features of our derivation is an explicit and simple

realization of a solution of the Gisin-Percival equation in terms of an HP unitary process

and a randomized Weyl displacement process. Randomized Weyl displacement operators

introduced here are themselves unitary and they are stochastic generalizations of the well

known Weyl displacement operators of classical quantum theory.

Our paper is organized in the form of seven sections. Section II contains a discussion

on discrete time irreversible dynamics of a finite d-level quantum system S. This is in-

tended to prepare a necessary groundwork for its natural adaptation to continuous time

noisy evolution, as formulated by HP [7, 8]. Section III presents a brief account of HP

quantum stochastic calculus. A description of noisy Schrödinger unitary evolutions in terms
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of quantum stochastic differential equations is presented here. We describe, how a unitary

operator-valued process {U(t), t ≥ 0} obeying a quantum stochastic differerntial equation

in HS ⊗HR, leads to the quantum dynamical semigroup {Tt, t ≥ 0}, with GKSL generator

L. Invariance properties of the GKSL generator L under unitary Weyl displacement process

and second quantized unitary operator-valued process is discussed in Section IV. The basic

notions of the Wiener-Itô-Segal isomorphism between the reservoir spaceHR and the Hilbert

space L2(µ) of norm square integrable functions with respect to the Wiener probability mea-

sure µ of a vector-valued Brownian motion are presented in Section V. Starting from an HP

quantum stochastic differential equation, Gisin-Percival [9] quantum state diffusion equation

is derived in Section VI. A brief summary of our results is given in Section VII.

II. THE CASE OF IRREVERSIBLE DISCRETE TIME DYNAMICS OF FINITE

d-LEVEL SYSTEMS

Consider a finite d-level system S in a Hilbert space HS. Let T be a unital com-

pletely positive map on the algebra B(HS) of all bounded operators in HS. Then the

sequence {T 0, T 1, T 2, T 3, · · · } determines a quantum dynamical semigroup. Thanks to

the Stinespring’s theorem, one can construct a finite probability space (X, ν) with X =

{0, 1, 2, · · · k − 1}, ν being the uniform distribution with mass 1/k at each x ∈ X, and an

orthonormal basis {|x〉, x ∈ X} in the Hilbert space L2(ν), such that |0〉 is the constant func-

tion with value unity at every x in X and a unitary operator U in HS ⊗ L2(ν) determined

by

U |φ⊗ x〉 =
∑
y∈X

(Lyx |φ〉)⊗ |y〉, ∀ |φ〉 ∈ HS, x ∈ X (1)

with Lyx being operators in HS for all x, y ∈ X, so that

T (X) =
∑
y∈X

L†y0X Ly0, ∀ X ∈ B(HS). (2)

In particular,
∑

y L
†
y0 Ly0 = IS, where IS is the identity operator in HS. Denoting N =

{1, 2, · · · } and the countable product probability space

(Ω, µ) = (X, ν)⊗N,

where any sample point ω ∈ Ω is a discrete trajectory

ω = {x1, x2, · · · , xn, · · · }, (3)
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with x1, x2, · · · ∈ X being independently and identically distributed with uniform distri-

bution ν. We consider L2(µ) as the reservoir Hilbert space HR and introduce the global

system-reservoir Hilbert space H = HS ⊗ HR. The reservoir space HR is equipped with

the natural product orthonormal basis B consisting of all vectors of the form |x〉 = |x1〉 ⊗

|x2〉 ⊗ · · · ⊗ |xn〉 · · · ≡ |x1, x2, · · · , xn · · · 〉, where x varies over all sequences of elements

x1, x2, · · · , with only a finite number of nonzero elements from X. We single out the state

|Ω0〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 · · · and call it the reservoir vacuum. Considered as a function

on the probability space (Ω, µ), the reservoir vacuum state |Ω0〉 is the constant function,

identically equal to unity.

Denote by U0j, the unitary operator in H, determined by its action,

U0j |φ⊗ x〉 =
∑
y∈X

(
Ly xj |φ〉

)
⊗ |x1, x2, · · · , xj−1, y, xj+1, · · · 〉, ∀ |φ〉 ∈ HS, |x〉 ∈ B. (4)

The unitary operator U0j acts essentially on the tensor product of HS and the jth copy of

L2(ν) in the reservoir space

HR = L2(µ) = L2(ν)⊗ L2(ν)⊗ · · ·

where the countable tensor product on the right hand side is with respect to the stabilizing

sequence (|0〉, |0〉, · · · ). Put

Un = U0n U0n−1 · · ·U0 1, n = 1, 2, · · · (5)

and U0 = I the identity operator inH. Then {Un} determines a discrete time inhomogeneous

Schrödinger evolution satisfying

Un |φ⊗ x〉 =
∑

y1,y2,···

(
Lyn xn Lyn−1 xn−1 · · ·Ly1 x1 |φ〉

)
⊗ |y1, y2 · · · , yn〉 ⊗ |xn+1, xn+2, · · · 〉. (6)

for all states |φ〉 in HS and |x〉 ∈ B. It is clear that Un is a unitary operator in H for every

n. For any operator X ∈ B(HS),

〈χ|T n(X)|φ〉 = 〈χ⊗ Ω0|U †n (X ⊗ IR)Un|φ⊗ Ω0〉, ∀ |χ〉, |φ〉 ∈ HS. (7)

This admits the following interpretation: The irreversible discrete time dynamics of the

system S described by the quantum dynamical semigroup {T n} is obtained by reducing

the Heisenberg dynamics of the system observables, induced by the unitary Schrödinger
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dynamics {Un} of the system plus reservoir. This reduction is in the reservoir vacuum state

|Ω0〉.

We now look at the evolution of the initial state

|ψ0〉 = |φ0 ⊗ Ω0〉, |φ0〉 ∈ HS (8)

in H under {Un} by explicitly expressing

|ψn〉 = Un |φ0 ⊗ Ω0〉

=
∑

y1,y2,··· ,yn

(
Lyn 0 Lyn−1 0 · · ·Ly1 0 |φ0〉

)
⊗ |y1, y2, · · · , yn〉 ⊗ |0, 0, · · · 〉. (9)

Now, let us consider a measurement on the reservoir, when the global state in H is given by

|ψn〉 of (9). If we get a classical output (y1, y2, · · · , yn) ∈ Xn as a result of the measurement,

the post-measured state is

|Ψn(y1, y2, · · · yn)〉S =
Lyn 0 Lyn−1 0 · · ·Ly1 0 |φ0〉
||Lyn 0 Lyn−1 0 · · ·Ly1 0 φ0||

(10)

where ||φ|| denotes norm of the vector |φ〉 in HS. Note that whenever the denominator

vanishes, it is clear from (10) that the classical output (y1, y2, · · · , yn) cannot occur. Thus

the random collapsed state |Ψn(y1, y2, · · · yn)〉S is defined only on the subset

{(y1, y2, · · · , yn) : Lyn 0 Lyn−1 0 · · ·Ly1 0 |φ0〉 6= 0} ⊂ Xn.

What we have described above is succinctly illustrated in Fig. 1 in the form of a quantum

circuit.

Alternatively, allowing a 1-step evolution by U01 on the initial state |φ0 ⊗ 0〉 and making

a measurement, we get a classical output y1 and a collapsed state |Ψ1(y1)〉S of the system

S given by

|Ψ1(y1)〉S =
Ly1 0 |φ0〉
||Ly1 0 φ0||

. (11)

Now, allow this collapsed state to undergo a one-step evolution again, and make a measure-

ment. We get a classical output y2 and a collapsed state |Ψ2(y1, y2)〉S given by

|Ψ2(y1, y2)〉S =
Ly2 0 |Ψ1(y1)〉S
||Ly2 0 Ψ1(y1)||

=
Ly2 0 Ly1 0 |φ0〉
||Ly2 0 Ly1 0 φ0||

. (12)

Repeating this procedure n times, we get a classical output sequence (y1, y2, · · · , yn) and

the collapsed state |Ψn(y1, y2, · · · , yn)〉S of the system, given by the same expression as in

(10). Furthermore,

|Ψn+1(y1, y2, · · · , yn+1)〉S =
Lyn+1 0 |Ψn(y1, y2, · · · yn)〉S
||Lyn+1 0 Ψn(y1, y2, · · · yn)||

. (13)
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FIG. 1. Evolution of the initial state |φ0 ⊗ Ω0〉 in H = HS ⊗HR, induced by a unitary operator

Un (see (5)), followed by a measurement on the reservoir yielding a classical output (y1, y2, · · · , yn)

and a post measured state |Ψn(y1, y2, · · · yn)〉S of the system.

Thus the sequence {|Ψn(y1, y2, · · · , yn)〉S, n = 1, 2, · · · } of HS-valued random variables is a

Markovian sequence [9, 29–32], adapted to the random trajectory (y1, y2, · · · ) of the reservoir,

occurring as a classical stochastic process in the wake of successive measurements.

Put

νn(y1, y2, . . . , yn) = ||Lyn 0 · · ·Ly2 0 Ly1 0 φ0||2

and observe that ∑
(y1,y2,··· ,yn)∈Xn

νn(y1, y2, . . . , yn) = 1.

Moreover, ∑
yn+1∈X

νn+1(y1, y2, . . . , yn, yn+1) = νn(y1, y2, . . . , yn),

for n = 1, 2, · · · . In other words, νn is a probability distribution on Xn, which is also

the marginal distribution of νn+1 on the product of the first n copies of X. Thus, {νn}

is a consistent family of distributions over {Xn}. By Kolmogorov’s consistency theorem,

there exists a unique probability measure ν∞ in the countable product space Ω = X∞,

whose marginal on the product of the first n copies of X is νn for every n = 1, 2, · · · .

The probability measure ν∞ describes the statistics of the discrete measurement sequence
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(y1, y2, · · · ). Putting

Zn(y) = kn νn(y1, y2, · · · , yn), n = 1, 2, · · · ,y = ω ∈ Ω,

we obtain the likelihood ratio martingale sequence {Zn} in the probability space (Ω, µ). The

sequence {Zn} is a non-negative martingale, with Eµ [Zn] = 1, for all n. However, there is

no guarantee that ν∞ is absolutely continuous with respect to µ. Thus, the martingale {Zn}

need not converge to a finite random variable. A simple computation shows that

∑
(y1,y2,··· ,yn)∈Xn

|Ψn(y1, y2, · · · , yn)〉 〈Ψn(y1, y2, · · · , yn)| νn(y1, y2, · · · , yn)

=

∫
Ω

|Ψn(y1, y2, · · · , yn)〉 〈Ψn(y1, y2, · · · , yn)| ν∞(dy)

=

∫
Ω

|Ψn(y1, y2, · · · , yn)〉 〈Ψn(y1, y2, · · · , yn)| Zn(y)µ(dy),

where ν∞(dy) gets replaced by Zn(y)µ(dy) for all n = 1, 2, · · · .

This summarizes the way the discrete time irreversible dynamics is determined by the

discrete time state-valued Markov chain {|Ψn(·)〉} starting from |φ0 ⊗ Ω0〉. Furthermore,

this suggests a natural route for an extension to the continuous time irreversible dynamics

described by a quantum dynamical semigroup {Tt, t ≥ 0} with GKSL generator L. We can

replace the discrete Schrödinger evolution {Un, n = 0, 1, 2, · · · } by the HP unitary dilation

{U(t), t ≥ 0} of {Tt, t ≥ 0} in the tensor product ofHS with an appropriate Boson Fock space

HR, and transfer it to HS ⊗ L2(µ) with µ as the Wiener probability measure of a suitable

multidimensional Brownian motion {B(t), t ≥ 0}, using the Wiener-Itô-Segal isomorphism.

Putting |ψt〉 = U(t) |φ0 ⊗ Ω0〉, with |φ0〉 ∈ HS, |Ω0〉 being the constant function in L2(µ),

identically equal to unity, and normalizing |ψt〉 in HS, we shall arrive at a state diffusion

process {|Ψt(B)〉, t ≥ 0}, which is a perfect continuous time analogue of the Markov chain

{|Ψn(·)〉} given by (11)-(13).

III. BOSON FOCK SPACE AND QUANTUM STOCHASTIC EVOLUTIONS

We begin with some general observations on the Boson Fock space Γ(h) over a Hilbert

space h defined by

Γ(h) = C⊕ h⊕ h s©2 ⊕ · · · ⊕ h s©r ⊕ · · · (14)
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where C denotes the one dimensional complex Hilbert space and s©r indicates r-fold sym-

metric tensor product of copies of h. To each u ∈ h, its associated exponential vector e(u)

is defined by

e(u) = 1⊕ u⊕ u⊗
2

√
2!
⊕ · · · ⊕ u⊗

r

√
r!
⊕ · · · . (15)

The linear manifold generated by all such exponential vectors is denoted by E . Any finite

set of exponential vectors is linearly independent and E is dense in Γ(h). This implies that

any map from the set of all exponential vectors into Γ(h) extends to an operator in Γ(h)

with domain E . Any isometry on the set of exponential vectors extends to an isometry on

Γ(h). The map u→ e(u) is strongly continuous and for all u, v ∈ h

〈e(u)|e(v)〉 = exp〈u|v〉. (16)

Any element of the subspace h s©r
in Γ(h) is called an r-particle vector. The linear manifold

M generated by
⋃

h s©r
in Γ(h) is called the manifold of finite particle vectors. To any

u ∈ h, there is associated a pair of operators a(u), a†(u), defined on the linear manifoldM,

which are closable (with their corresponding closures denoted by the same symbols) and are

called the creation-annihilation pairs associated with u. Then, E is contained in the domain

of a(u) and a†(u). These operators are adjoint to each other on M and E . They enjoy

very important properties and the algebra generated by them gives rise to a rich family of

observables.

The map u → a(u) is antilinear whereas u → a†(u) is linear. The operator a(u) + a†(u)

closes to a selfadjoint operator and therefore, yields an observable. The linear manifolds

M and E are in the domain of products of all operators of the form F1, F2, · · · , Fl where

each Fi is either a(ui) or a†(ui) for each i = 1, 2, · · · l. On both M and E the creation and

annihilation operators obey the canonical commutation relations:

[a(u), a(v)] = 0,

[a†(u), a†(v)] = 0, (17)

[a(u), a†(v)] = 〈u|v〉.

Furthermore,

a(u) e(v) = 〈u|v〉 e(v), ∀ u, v ∈ h. (18)

If h1, h2 are two Hilbert spaces, the correspondence

e(u1 ⊕ u2)→ e(u1)⊗ e(u2), ∀ ui ∈ hi, i = 1, 2 (19)

10



extends to a Hilbert space isomorphism between Γ(h1 ⊕ h2) and Γ(h1)⊗ Γ(h2).

Now we specialize to the case where h = L2(R+,Cn) = L2(R+) ⊗ Cn, where L2(R+) is

the Hilbert space of absolutely square integrable functions on the half-interval R+ = [0,∞),

with respect to the Lebesgue measure and Cn denotes the standard n-dimensional complex

Hilbert space. The Hilbert space L2(R+) ⊗ Cn can be viewed as the space of Cn-valued

norm square integrable functions on R+. Any element u ∈ L2(R+)⊗ Cn may be expressed

as,

u = u1 ⊕ u2 ⊕ · · · ⊕ un, uk ∈ L2(R+), k = 1, 2, · · · , n.

With any u ∈ L2(R+) ⊗ Cn, we associate the exponential vector e(u) in Γ(L2(R+) ⊗ Cn).

For any u and v in L2(R+)⊗ Cn we have

〈e(u)|e(v)〉 = exp〈u|v〉

= exp

[
n∑
k=1

∫ ∞
0

u∗k vk dt

]
. (20)

The vacuum vector e(0) = 1⊕ 0⊕ 0⊕ · · · in Γ(L2(R+)⊗ Cn) is denoted by Ω0.

We consider a quantum system S in a Hilbert space HS, coupled to a reservoir R in a

Boson Fock space HR = Γ(L2(R+) ⊗ Cn). The global Hilbert space H = HS ⊗HR is used

to describe events, observables and states of the system plus reservoir. The noise processes

can be described by observables in the general continuous tensor product Hilbert space of

the reservoir for which the Boson Fock space Γ(L2(R+)⊗ Cn) serves as one of the simplest

models. The space Cn corresponds to n degrees of freedom in the selection of noise.

For any 0 < t1 < t2 · · · < tr <∞, we have the following decomposition of H = HS ⊗HR:

H([0, t)) = HS ⊗ Γ(L2([0, t))⊗ Cn)

H([tr−1, tr)) = Γ(L2([tr−1, tr))⊗ Cn)

H([tr,∞)) = Γ(L2([tr,∞))⊗ Cn)

and we denote the restrictions of u to the time intervals [0, t], [t1, t2), and [tr,∞) by

u|[0,t) = ut],

u|[tr−1,tr) = u[tr−1,tr),

u|[tr,∞) = u[tr .
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From the correspondence given by (19), it follows that, there exists a unique unitary

isomorphism U : H → H([0, t1))⊗H([t1, t2))⊗ · · · ⊗ H([tr−1, tr))⊗H([tr,∞)) satisfying,

U φ⊗ e(u) = φ⊗ e(ut1]))⊗ e(u[t1,t2))⊗ · · · ⊗ e(u[tr−1,tr))⊗ e(u[tr) (21)

for all φ ∈ HS and e(u) ∈ HR.

Using the notions of creation and annihilation operators introduced in (17), (18), we

consider the family of linear operators {Ak(t), t ≥ 0} and {A†k(t), t ≥ 0} as follows:

Ak(t) = IS ⊗ a
(
1[0,t] ⊗ |k〉

)
(22)

A†k(t) = IS ⊗ a†
(
1[0,t] ⊗ |k〉

)
(23)

where {|k〉 = (0, · · · , 0, 1, 0, · · · , 0)} (with 1 in the k-th place), k = 1, 2, · · · , n, is a canonical

orthonormal basis in Cn; 1[0,t] denotes the indicator function of the interval [0, t] for each

t ∈ R+ and IS denotes the identity operator in HS. The operators defined in (22) and (23)

obey the canonical commutation relations (CCRs):

[Ak(s), Al(t)] = 0 = [A†k(s), A
†
l (t)], (24)

[Ak(s), A
†
l (t)] = δkl (s ∧ t) IS ⊗ IR. (25)

Here s ∧ t denotes the minimum of s and t.

The operators Ak(t), A
†
k(t) are well-defined on the linear manifold generated by elements

of the form φ ⊗ e(u), with φ ∈ HS and u ∈ L2(R+ ⊗ Cn). In particular, one obtains the

following eigen-relation for Ak(t):

Ak(t) |φ⊗ e(u)〉 =

(∫ t

0

uk(s) ds

)
|φ⊗ e(u)〉 (26)

and consequently, the adjoint relation for A†k(t) follows:

〈φ⊗ e(u)|A†k(t) = 〈φ⊗ e(u)|
(∫ t

0

u∗k(s) ds

)
. (27)

The family of operators {Ak(t), t ≥ 0}, {A†k(t), t ≥ 0} are respectively called the annihilation

and creation processes. These are the fundamental noise processes of quantum stochastic

calculus. (For more detailed description of fundamental noise processes in Boson Fock space,

including conservation noise process, see Refs. [7, 8]).

A family X = {X(t), 0 ≤ t <∞} of operators in H is said to be adapted if, for each t,

there exists an operator Xt in H([0, t)) such that

X(t) = Xt ⊗ I[t
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where I[t is the identity operator in H([t,∞)). Further, an adapted process X is said to be

simple with respect to a partition 0 < t1 < t2 < · · · < tr < · · · of [0,∞) such that tr → ∞

as r →∞, if

X(t) = X(tj) when tj ≤ t < tj+1, j = 0, 1, 2, · · · . (28)

Let {L(t)} be such a simple adapted process and {M(t)} be any one of the fundamental

operator-valued adapted processes {Ak(t)}, {A†k(t)}, k = 1, 2, · · · , n. Then, the stochastic

integral of {L(t)}, with respect to {M(t)} is defined by

X(t) =

∫ t

0

L(s) dM(s)

=
∑
tj

Ltj (M(tj+1 ∧ t)−M(tj ∧ t)) , (29)

tj ≤ t < tj+1, j = 0, 1, 2, · · · .

It may be noted that the operators Ltj and M(tj+1∧ t)−M(tj ∧ t) commute with each other

i.e., L(s) dM(s) can be written as dM(s)L(s).

As shown in Ref. [7], the notion of such integrals can be extended by a completion

procedure to a wide class of adapted processes, which are not necessarily simple. Such an

integration is a linear operation in the space of adapted processes. For details see Sec. 4 of

Ref. [7].

We consider adapted processes of the form

X(t) = X(0) +

∫ t

0

n∑
k=1

(
Ek(s) dA

†
k(s) + Fk(s) dAk(s) +Gk(s) ds

)
(30)

where X(0) = X0 ⊗ IR, X0 is an operator in the system Hilbert space HS and IR denotes

the identity operator in HR; the integrands Ek(t), Fk(t), Gk(t) are adapted processes. We

write (30) in the differential form as,

dX(t) =
n∑
k=1

(
Ek(t)dA

†
k(t) + Fk(t) dAk(t) + Gk(t) dt

)
, (31)

with initial value X0 ⊗ IR.

The central result of quantum stochastic calculus is the following quantum Itô multipli-

cation table [7, 8], summarized as follows:
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dA†k dAk dt

dA†l 0 0 0

dAl δkl dt 0 0

dt 0 0 0

(32)

The product of two stochastic integrals is again a stochastic integral, the differentials of

which satisfy the modified Leibnitz relation,

d(X Y ) = (dX)Y +X (dY ) + (dX) (dY ). (33)

Quantum Itô multiplication table (32) is employed in (33) to express the differential d(X Y )

of the product of adapted processes X, Y in terms of the fundamental operator-valued

differentials dA†k, dAk and dt. This provides a simple and natural extension of Itô calculus

based on Brownian motion [33] to its quantum counterpart in the Boson Fock space.

One of the most successful applications of HP quantum stochastic calculus is the realiza-

tion of unitary dilations of quantum dynamical semigroups through Schrödinger evolutions

of open systems. Such a Schrödinger evolution can be expressed through a unitary operator-

valued process obeying a quantum stochastic differential equation of the form,

dU(t) =

(
n∑
k=1

(
L

(1)
k dA†k(t) + L

(2)
k dAk(t)

)
+ L(3) dt

)
U(t), U(0) = I (34)

in H = HS ⊗HR, where L
(α)
k , α = 1, 2, 3 are bounded operators in HS. It is shown [7] that

a unique unitary solution for (34) exists if

L
(1)
k = Lk, L

(2)
k = −L†k

L
(3)
k = −iH − 1

2

n∑
k=1

L†k Lk (35)

and H is a self-adjoint operator. Taking the conditions (35) into account, (34) can be

expressed as [7, 8]

dU(t) =

[
n∑
k=1

(
Lk dA

†
k(t)− L

†
k dAk(t)

)
−

(
iH +

1

2

n∑
k=1

L†k Lk

)
dt

]
U(t), U(0) = I, (36)

which is referred to as the HP equation. In terms of the set of operators L = (L1, L2, · · · , Ln)

and H, we denote the unitary process {U(t), t ≥ 0} satisfying (36) by U(L, H). In the special

case of Lk = 0 for all k = 1, 2, · · · , n, one obtains the familiar Schrödinger unitary dynamics

dU(t) = −iH U(t), (37)

14



with H being the Hamiltonian of the quantum system. It is of interest to note that there

do exist examples with unique unitary solutions, when the coefficients Lk and H in (36) are

unbounded [3–6].

We may now use the unitary process {U(t), t ≥ 0} to describe noisy Heisenberg dynamics.

To this end, consider any bounded operator X in the system Hilbert space HS (i.e., X ∈

B(HS)), and a unitary process U(L, H). Define a homomorphism jt : B(HS) −→ B(HS ⊗

HR) by

jt(X) = U(t)†(X ⊗ IR)U(t), t ≥ 0. (38)

Using the relation (33) and employing the quantum Itô multiplication table given by (32),

one obtains

djt(X) =
n∑
k=1

{
jt ([X,Lk]) dA

†
k(t)− jt

(
[X,L†k]

)
dAk(t)

}
+ jt (L(X)) dt, (39)

where the map L from B(HS) to itself is given by

L(X) = i [H, X]− 1

2

n∑
k=1

(
L†k LkX +X L†k Lk − 2L†kX Lk

)
(40)

Equation (39) describes noisy evolution of system observables X. If Lk = 0 ∀ k, then (39)

reduces to the well-known Heisenberg equation of motion for the observable X:

djt(X)

dt
= jt(i[H,X]).

For any operator F inH we define the vacuum conditional expectation value as the unique

operator EΩ0(F ) in HS determined by,

〈φ|EΩ0(F )|χ〉 = 〈φ⊗ Ω0|F |χ⊗ Ω0〉, ∀ φ, χ ∈ HS. (41)

Now, we write the vacuum conditional expectation value of jt(X) as

EΩ0 (jt(X)) = EΩ0

(
U(t)†(X ⊗ IR)U(t)

)
= Tt(X) (42)

Thus one obtains
dTt(X)

dt
= Tt(L(X)) = L (Tt(X)) (43)

for the time evolution of the quantum dynamical semigroup of completely positive unital

maps

Tt = exp(tL), t ≥ 0 (44)
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on B(HS) generated by L of (40). This coincides with the well-known form obtained by

Gorini, Kossakowski, Sudarshan [1] and Lindblad [2].

For the intial state ρ0 ⊗ |Ω0〉〈Ω0| of the system plus reservoir, we express,

Tr (ρ0 ⊗ |Ω0〉〈Ω0| jt(X)) = Tr (ρ0 Tt(X))

= Tr (ρtX) , (45)

where ρt = TrR
(
U(t) ρ0 ⊗ |Ω0〉〈Ω0|U(t)†

)
denotes the reduced density operator of the quan-

tum system. Using (42)-(45) we get the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)

master equation for ρt :

dρt
dt

= −i[H, ρt]−
1

2

n∑
k=1

(
L†k Lk ρt + ρt L

†
k Lk − 2Lk ρt L

†
k

)
. (46)

In the next section we discuss invariance properties of the GKSL generator L.

IV. SYMMETRIES OF THE GKSL GENERATOR

Let {Ri(t) = IS ⊗ Fi(t), t ≥ 0}, i=1,2 be unitary adapted processes in H such that

{Fi(t), t ≥ 0}, i = 1, 2, act only on the reservoir space HR. Let

F2(t)|Ω0〉 = F2(t)† |Ω0〉 = |Ω0〉 , t ≥ 0. (47)

Consider the process

{V (t) = R1(t)U(t)R2(t), t ≥ 0} (48)

where U(t) satisfies the HP equation (36). Define a homomorphism j′t : B(HS) −→ B(HS⊗

HR) by

j′t(X) = V †(t)(X ⊗ IR)V (t), t ≥ 0. (49)

Then, the vacuum conditional expectation value (see (41) and (42)) of j′t(X) is given by,

EΩ0 (j′t(X)) = EΩ0

(
R†2(t)U †(t)R†1(t)(X ⊗ IR)R1(t)U(t)R2(t)

)
= EΩ0

(
U †(t) (X ⊗ IR)U(t)

)
= EΩ0 (jt(X)) = Tt(X) = etL(X). (50)

for all t ≥ 0 andX in B(HS). Thus, conjugation by the unitary adapted processes {U(t)} and

{V (t)} yield the reduced dynamics of the quantum system with the same GKSL generator

L. In the following, we discuss two important examples of {V (t), t ≥ 0}, which specialize to

the translation and rotation invariance of the GKSL generator L.
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A. Example 1

In analogy with exponential vectors of (15) we now introduce exponential operators in

HR as follows: For any f ∈ L2(R+)⊗ Cn, we write, on the set of exponential vectors,

W (f)e(u) = e−
1
2
||f ||2−〈f |u〉e(f + u) ∀ u ∈ K, (51)

where ||f ||2 =
∫∞

0
|f |2 dt, and |f |2 =

∑n
k=1 |fk|2. The exponential operator W (f) preserves

the scalar product between exponential vectors and therefore extends to a unique unitary

operator in HR, which we denote by the same symbol W (f).

A normalized vector α(f) ∈ HR given by

α(f) = W (f) e(0) = e−
1
2
||f ||2 e(f), f ∈ L2(R+)⊗ Cn, (52)

is called a coherent state associated with f .

The operators W (f), W (g) obey the multiplication relation,

W (f)W (g) = e−i Im〈f |g〉W (f + g), ∀ f ,g ∈ K. (53)

These are the well known Weyl canonical commutation relations (CCRs) of which the CCRs

of creation and annihilation operators ( 17) are the infinitesimal versions. We call W (f) the

Weyl displacement operator associated with f .

Now, for any map f : R+ → Cn satisfying the local square integrability condition∫ t

0

|f(s)|2 ds <∞, ∀ t > 0

we introduce the unitary Weyl displacement operator process {W (f)(t), t ≥ 0} by the relation

W (f)(t) e(u) = W (1[0,t]f) e(ut])⊗ e(u[t). (54)

Then {Rf (t) = IS ⊗W (f)(t), t ≥ 0} is a unitary adapted process in HS ⊗HR, which obeys

the quantum stochastic differential equation

dRf (t) =

{
n∑
k=1

(
fk dA

†
k(t)− f

∗
kdAk(t)

)
− 1

2

n∑
k=1

|fk|2 dt

}
Rf (t), t ≥ 0 (55)

with initial condition Rf (0) = IS ⊗ IR.
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Choose R1(t) = Rf (t), R2 = IS ⊗ IR in (48). Then, {V (t) = Rf (t)U(t), t ≥ 0}, is a

unitary adapted process satisfying

dV (t) = [dRf (t)]U(t) +Rf (t) [dU(t)] + [dRf (t)] [dU(t)]

=

{
n∑
k=1

(
(Lk + fk) dA

†
k(t)− (L†k + f ∗k ) dAk(t)

)
−

(
iH +

1

2

n∑
k=1

(L†kLk + |fk|2 + 2 f ∗kLk

)}
V (t) (56)

with intial condition V (0) = IS ⊗ IR. The process {V (t), t ≥ 0} is, indeed, given by

{V (t), t ≥ 0} = U (L′, H ′) ,

where L′ = L + f and H ′ = H + 1
2i

∑n
k=1

(
f ∗kLk − fk L

†
k

)
.

Clearly, the homomorphism jt,f : B(HS) −→ B(HS ⊗HR) defined by

jt,f (X) = V (t)†(X ⊗ IR)V (t)

satisfies the relation

jt,f (X) ≡ U(t)†(X ⊗ IR)U(t) = jt(X)

and hence, the generator L, defined by (40) with operators (L, H), remains invariant, when

L, H are replaced by L′ = L + f and H ′ = H + 1
2i

n∑
k=0

(f ∗kLk − fk L
†
k) respectively.

Remark: When f(·) is a constant vector `̀̀ for all t ≥ 0, it follows that L′ = L + `̀̀ and

H ′ = H+ 1
2i

n∑
k=0

(`∗kLk− `k L
†
k), thereby exhibiting the translation invariance property of the

GKSL generator L.

B. Example 2

Let t → F(t) be an n × n unitary matrix-valued Borel map on R+. Define the second

quantization unitary operator process {Γ(F)(t), t ≥ 0}, acting only on HR, by the relation

Γ(F)(t) e(u) = Γ(F)(t) e(u⊗ ζζζ) = e
(
ut] ⊗ F(t)ζζζ

)
⊗ e(u[t ⊗ ζζζ). (57)

where we use the identification L2(R+,Cn) = L2(R+) ⊗ Cn and choose u = u ⊗ ζζζ with

u ∈ L2(R+) and ζζζ ∈ Cn. Then,

Γ(F)(t) Ω0 = Γ†(F)(t) Ω0 = Ω0. (58)
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Define

R(t) = IS ⊗ Γ(F)(t), t ≥ 0. (59)

and choose R1(t) = R(t), R2(t) = R†(t) in (48). Then,

V (t) = R(t)U(t)R†(t), t ≥ 0.

Define the homomorphism jt,F : B(HS) −→ B(HS ⊗HR) by

jt,F(X) = V †(t)(X ⊗ IR)V (t)

= IS ⊗ Γ(F)(t)U †(t)(X ⊗ IR)U(t) IS ⊗ Γ†(F)(t), ∀ t ≥ 0. (60)

Then, it follows immediately from (58) that,

EΩ0 (jt,F(X)) = EΩ0

(
U †(t)(X ⊗ IR)U(t)

)
= EΩ0 (jt(X)) = etL(X). (61)

In other words, both {U(t)} and {V (t) = R(t)U(t)R†(t)} yield the irreversible dynamics of

the states and observables of the quantum system with the same GKSL generator L.

Remark: Consider a special case of the second quantization unitary process {Γ(F(t)}, where

F(t) is a constant n × n unitary matrix defined by, F(t) = ((uij)), i, j = 1, 2, · · · , n

for all t ≥ 0. Then, {U(t), t ≥ 0} = U(L, H) and {V (t), t ≥ 0} = U(L′, H ′), where

L′i =
∑n

j=1 uij Lj, H ′ = H. The GKSL generator L remains invariant, when the opera-

tor parameters (L, H) are replaced by (L′, H ′), thereby exhibiting the rotation invariance

property of L.

V. WIENER-ITÔ-SEGAL ISOMORPHISM

We shall now describe the HP quantum stochastic calculus in the Hilbert space L2(µ),

where µ is the classical Wiener probability measure of the n-dimensional standard Brownian

motion process {B(t), t ≥ 0}. To this end, we denote
{

B(t)T = (B1(t), B2(t), · · · , Bn(t))T
}

where Bk(t), 1 ≤ k ≤ n are n independent one dimensional standard Brownian motion

processes, ‘T ’ denoting transpose. We introduce the exponential random variables

ẽ(u)(B) = exp

(∫ ∞
0

u(s)T dB(s)− 1

2

∫ ∞
0

u(s)Tu(s) ds

)
, u ∈ L2(R+)⊗ Cn, (62)
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where we view L2(R+)⊗Cn also as the direct sum of n copies of L2(R+). Now, consider the

correspondence

Θ : e(u)→ ẽ(u),

where e(u) is the exponential vector defined in Section III (see (15)). The map Θ is scalar

product preserving and so, it extends uniquely to a Hilbert space isomorphism from the

Boson Fock space Γ(L2(R+) ⊗ Cn) to L2(µ). This is called the Wiener-Itô-Segal isomor-

phism [26–28].

For any vector φ in HR = Γ(L2(R+)⊗ Cn) or in H = HS ⊗HR, we write

φ̃ =

 Θφ, if φ ∈ HR,

IS ⊗Θφ, if φ ∈ H.
(63)

Then φ→ φ̃ is a Hilbert space isomorphism from HR → L2(µ) as well as H → HS ⊗L2(µ).

We shall identify HS⊗L2(µ) with the space L2(µ,HS) of HS-valued norm square integrable

functions on the space of Brownian paths. A typical element of L2(µ,HS) is a functional

φ̃(B) and the scalar product of two vectors φ̃1, φ̃2 in L2(µ,HS) is given by,

〈φ̃1|φ̃2〉 = EB[〈 φ̃1|φ̃2〉S] =

∫
〈φ̃1(B)|φ̃2(B)〉S µ(dB) (64)

where 〈·|·〉S denotes scalar product in the system Hilbert space HS and EB[·] denotes ex-

pectation value with respect to µ. For any operator X in HR or H, we write

X̃ = ΘX Θ−1.

Denote by µ[t1,t2], µ[t1,∞), the probability measure of the Brownian motion

{B(t+ t1)−B(t1), 0 ≤ t ≤ t2 − t1}.

It may be noted that the factorizability property

L2(µ) = L2(µ[0,t1])⊗ L2(µ[t1,t2])⊗ · · · ⊗ L2(µ[tr−1,tr])⊗ L2(µ[tr,∞)), (65)

holds for all 0 < t1 < t2 < · · · < tr−1 < tr <∞. In other words, the isomorphism Θ between

HR and L2(µ) preserves the continuous tensor product structure. With the restriction of

u ∈ L2(R+) ⊗ Cn to the time interval [t1, t2], 0 ≤ t1 < t2 < ∞, in R+, the exponential

random variables in L2(µ[t1,t2]) are expressed by

ẽ(u[t1,t2])(B) = exp

(∫ t2

t1

u(s)T dB(s)− 1

2

∫ t2

t1

u(s)Tu(s) ds

)
. (66)
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The Wiener-Itô-Segal isomorphism maps the vacuum vector Ω0 = e(0) of the Boson Fock

space to the constant function in L2(µ), identically equal to unity. Furthermore, we have

the following proposition, which identifies the sum of creation and annihilation processes in

Γ(L2(µ)⊗Cn) with multiplication by components of the n-dimensional Brownian motion in

L2(µ) under the isomorphism Θ.

Proposition: Let

Qk(t) = Ak(t) + A†k(t), 0 ≤ t <∞

in Γ(L2(R+)⊗Cn). Then, ΘQk(t) Θ−1 is multiplication by Brownian motion random variable

Bk(t) in L2(µ) i.e.,

[ Q̃k(t) φ̃ ] (B) = Bk(t) φ̃ (B) (67)

for all φ̃ ∈ L2(µ,HS) under the Wiener-Itô-Segal isomorphism.

Proof: Using (26), (27), we obtain

〈e(u)|Qk(t)|e(v)〉 = e〈u|v〉
∫ t

0

(u∗k + vk)(s) ds, (68)

which yields,

d

dt
〈e(u)|Qk(t)|e(v)〉 = e〈u|v〉 (u∗k + vk)(t) (69)

in Γ(L2(R+ ⊗ Cn).

On the other hand,

EB [Bk(t) {ẽ(u)∗} {ẽ(v)}] = e〈u|v〉 EB

[
Bk(t) exp

{
βu∗k+vk(t)

}]
(70)

where βu∗k+vk(t) satisfies

d βu∗k+vk(t) = (u∗k + vk)(t) dBk(t)−
1

2
(u∗k + vk)

2(t) dt. (71)

Simple application of classical Itô calculus [33] leads to

d

dt
(EB [Bk(t) {ẽ(u)∗} {ẽ(v)}]) = e〈u|v〉 (u∗k + vk)(t), (72)

thus establishing the proposition. �

We shall now explain how the Weyl displacement process {W (f)(t), t ≥ 0}, discussed in

Section IV, looks like in L2(µ). Under the Θ isomorphism W (f)(t) satisfies the relation

W̃ (f)(t)ẽ(u)(B) = ẽ(u + 1[0,t] f)(B) × exp

[
−1

2

∫ t

0

|f(s)|2 ds−
∫ t

0

f †u(s) ds

]
= ẽ(u[t)(B) eγu(t,B). (73)
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where γu(t,B) is a non-anticipating Brownian functional, obeying

dγu = (f + u)T dB− 1

2

[
f †f + (f + u)T (f + u) + 2 f †u

]
dt. (74)

This suggests the possibility of introducing a randomized Weyl displacement operator

W̃(f)(t) by replacing f(t) by a non-anticipating Brownian functional f(t,B) in (73) and

(74). To this end, we consider the class

F2 = {f : f = f(t,B),

∫ t

0

|f(s,B)|2 ds <∞ ∀ t ≥ 0}

of non-anticipating Cn-valued Brownian functionals. For any f ∈ F2, we define

W̃(f)(t)ẽ(u)(B) = ẽ(u[t)(B) eγ̂u(t) (75)

where the differential of γ̂u(t) obeys (74), with f ∈ F2. We shall now prove that the

randomized Weyl displacement operators W̃(f)(t) are unitary.

Theorem: For any f in F2, the family {W̃(f)(t), t ≥ 0} is a unitary operator-valued adapted

process.

Proof: Substituting (75) we get,

〈W̃(f)(t) ẽ(u)|W̃(f)(t) ẽ(v)〉 = EB

[
{exp (γ̂∗u(t) + γ̂v(t))} 〈ẽ(u[t) |ẽ(v[t) 〉

]
= EB

[
{exp (γ̂∗u(t) + γ̂v(t))} exp

(∫ ∞
t

u†v dt

)]
(76)

where γ̂∗u, γ̂v obey (74), but with f in F2. On simplification using standard classical Itô

calculus [33] we obtain

d〈W̃(f)(t) ẽ(u)|W̃(f)(t) ẽ(v)〉 = 0. (77)

thus establishing that the random Weyl process is unitary in L2(µ). �

In a similar vein consider an n × n unitary matrix-valued nonanticipating Brownian

functional {F(t,B), t ≥ 0} and introduce the randomized second quantization process

{Γ̃(F)(t), t ≥ 0} by the following relation:

Γ̃(F)(t) ẽ(u) = exp

(∫ t

0

F(s,B)u(s) · dB(s)− 1

2

∫ t

0

F(s,B)u(s) · F(s,B)u(s) ds

)
⊗ ẽ(u[t),

t ≥ 0,u ∈ L2(R+)⊗ Cn. (78)

Then, a simple algebra, using the Itô calculus, shows that {Γ̃(F)(t), t ≥ 0} is scalar product

preserving on the set of exponential vectors in L2(µ) and hence, determine a randomized
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second quantization unitary process, which can be transferred to an adapted unitary process

in the Boson Fock space through the Wiener-Itô-Segal isomorphism.

We shall present some applications of randomized Weyl displacement and randomized

second quantization processes in a separate article.

Remark: For every t ≥ 0 one obtains a Randomized coherent state α(f)(t) = W(f)(t) e(0)

where f ∈ F2. Then, under Θ isomorphism, we obtain

α̃(f)(t,B) = Θα(f)(t) = exp

{∫ t

0

f(s)TdB(s)− 1

2

∫ t

0

[
f(s)†f(s) + f(s)T f(s)

]
ds

}
, (79)

which satisfies,

d α̃(f)(t) = [f(t)TdB(t)− 1

2
f(t)†f(t) dt] α̃(f)(t), α̃(f)(0) = 1. (80)

It is interesting to note that α̃(f)(t), t ≥ 0 is a randomized coherent state-valued non-

anticipating Brownian functional, for each f ∈ F2. The classical stochastic process

{α̃(f)(t), t ≥ 0} will be used, in the next section, to derive the quantum state diffusion

equation from the HP equation.

VI. GISIN-PERCIVAL STATE DIFFUSION EQUATION FROM HP UNITARY

EVOLUTION

Consider the HP unitary process

U(L⊕ iL, H) = {U(t), t ≥ 0} (81)

in HS ⊗ Γ(L2(R+) ⊗ (Cn ⊕ Cn))), where L = (L1, L2, · · · , Ln). Here Lk, k = 1, 2, · · · , n

and H are bounded operators in HS, with H being selfadjoint. We denote the annihilation

and creation processes in the Boson Fock space Γ(L2(R+)⊗ (Cn ⊕ Cn)) by {Aα,k A†α,k, α =

1, 2, k = 1, 2, · · · , n}. The unitary process {U(t)} of (81) obeys the HP equation,

dU(t) =

{
n∑
k=1

(
Lk dA

†
1,k(t)− L

†
k dA1,k(t) + i Lk dA

†
2,k(t) + iL†k dA2,k(t)

)
−

(
iH +

n∑
k=1

L†kLk

)
dt

}
U(t), (82)

with initial condition U(0) = IS ⊗ IR. Let φ0 be a unit vector in HS and let Ω0 be the

vacuum vector in Γ(L2(R+)⊗ (Cn ⊕ Cn). Denote

U(t) |φ0 ⊗ Ω0〉 = |ψt〉. (83)
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Since U(t) acts inH(t]), whereas the creation, annihilation differentials dA†α,k(t), dAα,k(t), α =

1, 2; k = 1, 2, · · · , n operate inH([t, t+dt]), it follows that U(t) commutes with dA†α,k(t), dAα,k(t).

Furthermore, dAα,k |Ω0〉 = 0. Hence, using (82) and (83), we obtain

d |ψt〉 =
n∑
k=1

[
Lk dA

†
1,k(t)|ψt〉+ i Lk dA

†
2,k(t)|ψt〉

]
−

[
iH +

n∑
k=1

L†kLk

]
|ψt〉 dt

(84)

with intial value |ψ0〉 = |φ0 ⊗ Ω0〉. Once again, since dAα,k |ψt〉 = 0, we can write (84) in

terms of {Qα,k(t) = Aα,k(t) + A†α,k(t)} as follows:

d |ψt〉 =
n∑
k=1

[Lk dQ1,k(t) |ψt〉+ i Lk dQ2,k(t) |ψt〉]− [iH +
n∑
k=1

L†kLk] |ψt〉 dt. (85)

Under the Wiener-Itô-Segal isomorphism Qαk(t)→ ΘQαk(t)Θ
−1 = Q̃α,k(t) is multiplication

by Bα,k(t), ∀ t ∈ R+ in L2(µ) (see proposition of Section V). We replace the 2n dimensional

Brownian path {Bα,k, α = 1, 2; k = 1, 2, · · · , n} by the corresponding n-dimensional complex

Brownian path B = {B1,k + i B2,k, k = 1, 2, · · · , n}. The map defined by t → |ψ̃t(B)〉 =

ΘU(t) |φ0 ⊗ Ω0〉 is a non-anticipating HS-valued Brownian functional in L2(µ,HS), with µ

denoting the Wiener probability measure of n-dimensional complex Brownian motion B.

Hereafter, all our discussions will take place in L2(µ,HS) and we shall omit the symbol ‘˜’
over vectors as well as operators.

The functional |ψt(B)〉 obeys a linear classical stochastic differential equation

d |ψt〉 =
n∑
k=1

Lk|ψt〉 dBk(t)− (iH +
n∑
k=1

L†k Lk) |ψt〉 dt. (86)

The system density operator

ρt = EB [ |ψt〉〈ψt| ] =

∫
|ψt(B)〉〈ψt(B)|µ(dB), (87)

obtained after coarse graining over the Brownian paths, obeys the GKSL master equation

dρt
dt

= −i[H, ρt]−
n∑
k=1

(
L†k Lk ρt + ρL†k Lk − 2Lk ρt L

†
k

)
. (88)

The solution |ψt〉 of linear stochastic Schrödinger equation (86) does not, in general, have

unit norm in HS. Hence, it does not result in a quantum state diffusion. Using the classical

Itô multiplication rule [33]

dBk dBl = 0, dBkdB
∗
l = 2 δkl dt, (dt)2 = 0
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for the product of differentials, we obtain

d 〈ψt|ψt〉S = (〈ψt|) ( d |ψt〉) + ( d 〈ψt|) (|ψt〉) + ( d 〈ψt|) ( d |ψt〉)

=
n∑
k=1

{
〈ψt|Lk|ψt〉S dBk(t) + 〈ψt|L†k |ψt〉S dB

∗
k(t)
}

= 2 Re

[
n∑
k=1

〈ψt|Lk |ψt〉S dBk(t)

]
. (89)

Define

`k, ψt =


〈ψt|Lk |ψt〉S
〈ψt|ψt〉S

, if 〈ψt|ψt〉S 6= 0

〈ψ0|Lk |ψ0〉S, otherwise,
(90)

for k = 1, 2, · · · , n. Then, |`k, ψt | ≤ ||Lk || and hence, `k, ψt is a non-anticipating Brownian

functional in F2 . Thus,

d 〈ψt|ψt〉S = 2 Re

[
n∑
k=1

`k ψtdBk(t)

]
〈ψt|ψt〉S. (91)

This implies

〈ψt|ψt〉S = exp

{∫ t

0

2 Re

[
n∑
k=1

`k,ψs dBk(s)

]
− 2

∫ t

0

n∑
k=1

| `k, ψs|2 ds

}

= exp

{∫ t

0

2 Re

[
n∑
k=1

〈ψs|Lk|ψs〉S
〈ψs|ψs〉S

dBk(s)

]
− 2

∫ t

0

n∑
k=1

∣∣∣∣〈ψs|Lk|ψs〉S〈ψs|ψs〉S

∣∣∣∣2 ds
}

= exp

{∫ t

0

2 Re

[
n∑
k=1

〈Lk〉ψs dBk(s)

]
− 2

∫ t

0

n∑
k=1

|〈Lk,ψs|
2 ds

}
(92)

where we have denoted 〈Lk〉ψs = 〈ψs|Lk |ψs〉S
〈ψs|ψs〉S

in the last line of (92).

Consider the following exponential classical stochastic process (see (79)) in the probability

space (Ω, µ):

{α(f ⊕ if)(t,B) = W(f ⊕ if)(t) e(0)(B), f ∈ F2, t ≥ 0}. (93)

Such a process obeys the following classical stochastic differential equation

dα(f ⊕ if) =

{
n∑
k=1

[
fk dBk − | fk |2dt

]}
α(f ⊕ if). (94)
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From (93) and (94) it may be noted that α(f⊕if)(t,B) is a non-anticipating Brownian func-

tional. We consider a related process
{

Φt(f) = exp
[∫ t

0
2 | f(s) |2ds

]
α(f ⊕ if)(t,B), t ≥ 0

}
which satisfies

dΦt(f) =

{
n∑
k=1

[
fk dBk + | fk|2dt

]}
Φt(f). (95)

Theorem: Let |ψt〉, t ≥ 0 be given by the linear stochastic differential equation (86) and

let

|Ψt〉 = Φt(−〈L〉ψt) |ψt〉. (96)

Then, {|Ψt〉, t ≥ 0} is an HS state-valued diffusion process, which obeys the diffusion equa-

tion

d |Ψt〉 =
n∑
k=1

(Lk − 〈Lk〉Ψt) |Ψt〉 dBk(t)−

[
iH +

n∑
k=1

(
L†k Lk − |〈Lk〉Ψt |

2
)]
|Ψt〉 dt. (97)

Proof: From (86), (92), (95) and (96) it can be recognized that

|Ψt〉 = |ψt〉 exp

{
−
∫ t

0

n∑
k=1

[
〈Lk〉ψsdBk(s) + |〈Lk〉ψs|

2 ds
]}

. (98)

is a normalized vector in HS. Thus, it immediately follows that

〈Lk〉ψt = 〈Lk〉Ψt , ∀ k = 1, 2, · · ·n. (99)

Substitituting (99) in (98) and applying Itô’s differentiation rules [33] to simplify the differ-

ential of (98), we obtain the quantum state diffusion equation (97). �

Corollary: (Gisin-Percival state diffusion) The state diffusion equation (97) is equiv-

alent to the Gisin-Percival quantum state diffusion equation

d|Ψt〉 =
n∑
k=1

(Lk − 〈Lk〉Ψt) |Ψt〉 dB′k(t)

−

(
iH +

n∑
k=1

[
L†k Lk + |〈Lk 〉Ψt |

2 − 2Lk 〈Lk〉∗Ψt

])
|Ψt〉 dt, (100)

where B′ = (B′1, B
′
2, · · · , B′n) is a process defined by

dB′k(t) = dBk(t)− 2 〈Lk〉∗Ψt
dt, B′k(0) = 0, ∀ k = 1, 2, · · ·n. (101)

Then, B′ is also a standard Brownian motion in the probability space (Ω, µG), where (Gir-

sanov’s theorem [34]),

µG(dB) = exp

[
n∑
k=1

∫ t

0

〈Lk 〉∗Ψs
dB∗k(s)

]
µ(dB) (102)
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for every finite time interval [0, t].

Proof: This is immediate from the Girsanov’s theorem [34]. �

Remark: Note that the exponential martingale
{

exp
[∑n

k=1

∫ t
0
〈Lk 〉∗Ψs

dB∗k(s)
]}

, appearing

under Girsanov measure transformation from µ((dB)) to µG(dB), is a continuous time ana-

logue of the discrete time martingale sequence {Zn} of Sec. II.

It is interesting to note that {|Ψt〉, t ≥ 0} of (98) is, indeed, an explicit solution of Gisin-

Percival state diffusion equation (100). The system density operator ρt, t ≥ 0 is obtained by

coarse-graining over the HS state-valued trajectories {|Ψt(B
′)〉 i.e.,

ρt = EB′ [|Ψt〉〈Ψt|]

=

∫
exp

[
n∑
k=1

∫ t

0

〈Lk 〉∗Ψs
dB∗k(s)

]
|Ψt(B〉〈Ψt(B|µ(dB).

(103)

Evidently, the GKSL master equation (88) obeyed by ρt follows as a consequence of this

unraveling. In fact, one may realize different forms for state diffusion processes associated

with a GKSL master equation (88), when the opertor parameters (L, H) are replaced by

(L′, H ′) corresponding to symmetry transformations discussed in Sec. IV. In other words, a

single noisy unitary Schrodinger evolution driven by a quantum stochastic differential equa-

tion (82) of the HP type results in various forms of Gisin-Percival state diffusion processes

associated with a GKSL generator L of the one parameter quantum dynamical semigroup

{Tt, t ≥ 0} describing the irreversible dynamics of the quantum system.

VII. SUMMARY

We have derived a non-linear stochastic Schrödinger equation (97) describing classical

diffusive trajectories, with values on the unit sphere of the system Hilbert space HS, driven

by a complex vector-valued standard Brownian motion {B(t), t ≥ 0}, starting from the

quantum stochastic differential equation (82) of the HP type. This is facilitated by mak-

ing use of Wiener-Itô-Segal isomorphism between the reservoir Boson Fock space and the

Hilbert space L2(µ) of norm square integrable functions, with respect to the Wiener proba-

bility measure µ of a vector-valued Brownian motion. Consequently, the Gisin-Percival state

diffusion equation (100) is obtained by changing the Brownian motion with an appropriate

Girsanov measure transformation. A striking feature of our approach is that it leads to
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an explicit solution (98) of the Gisin-Percival equation in terms of the HP unitary process

and a randomized Weyl displacement process. It follows that the system density matrix ρt,

obtained by averaging over the Gisin-Percival diffusive trajectories, obeys a GKSL master

equation (88), describing the irreversible dynamics of states and observables of the quantum

system. Furthermore, it follows that, starting from a single noisy Schrôdinger unitary evolu-

tion (82) of the HP type, different forms of Gisin-Percival state diffusion processes could be

realized, based on the symmetries of the GKSL generator L of the one parameter quantum

dynamical semigroup {Tt, t ≥ 0}.
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