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Abstract: The paper is concerned with the distribution of the least squares estima-

tor (LSE) of the drift parameter in the stochastic differential equation (SDE) of small
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1 Introduction

One of the basic assumptions in the study of estimation for parameters of a diffusion

process is that the process can be observed continuously in time. This assumption is

too strong and impossible to meet in practice. In view of this, it is desirable to study if

the parameter can be reasonably estimated from the discrete data Dd = {t0, t1, t2, · · · tn;

X(t0), X(t1), · · · , X(tn)} This problem was first studied by Le Breton (1976) using Ito

approximation and later by Mishra and Bishwal (1995) using Stratonovich approxima-

tion. They considered the linear stochastic differential equation (SDE)

dX(t) = θX(t)dt+ dW (t), 0 < t ≤ T,

X(0) = 0 (1.1)

where {W (t), t ≥ 0} is the standard wiener process and studied the discrete approx-

imation of the maximum likelihood estimator (MLE) θ̂T of θ when T is fixed, based
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on the process X(t) observed over [0, T ], by an estimator based on Xti , 0 ≤ i ≤ n

and ∆n = max{|ti − ti+1|, 0 ≤ i ≤ n − 1} → 0 as n → ∞. The problem was studied

by Mishra and Prakasa Rao (2002) for non-linear stochastic differential equation (SDE)

by using Stratonovich approximation.

Asymptotic optimality in the minimax sense of an approximate MLE and an ap-

proximate Bayes estimator of a parameter in the drift coefficient of a non-linear SDE,

when the observations are made at regularly spaced and dense time points was studied

by Mishra and Prakasa Rao (2001).

Considering the stochastic differential equation

dX(t) = f(θ,X(t))dt+ dW (t), 0 < t ≤ T,

X(0) = X0, (1.2)

Dorogovchev (1976) studied the least squares estimator (LSE) θ̂n and proved that

θ̂n → θ0 (the true value of the parameter) in probability as ∆n → 0 and T → ∞.
Kasonga (1988) proved under mild regularity conditions that, the LSE θ̂n of θ derived

from equation (1.2) based on {Dd} is strongly consistent. In addition to this, Prakasa

Rao and Rubin (1981) studied the strong consistency and asymptotic normality of an

estimator related to LSE for parameter in the nonlinear stochastic differential equation

by studying families of stochastic integrals using Fourier analytic methods. Prakasa Rao

(1983) studied the asymptotic distribution of the LSE of parameter in the drift coefficient

in a nonlinear stochastic differential equation.

A comprehensive discussion on parameteric and non-parametric inference for stochas-

tic process from sampled data is given in Prakasa Rao (1988) and more recently in

Prakasa Rao (1999).

The study of the asymptotic distribution of an estimator is not very useful for prac-

tical purposes unless the rate convergence is known. No result of this type is known for

the distribution of the least squares estimator of the drift parameter of a diffusion pro-

cess described by a nonlinear homogenous stochastic differential equation even though

asymptotic properties of the estimator are known (cf. Prakasa Rao (1999)).

In this paper we obtain the Berry-Esseen bound for the LSE of the drift parameter

in Ito type stochastic differential equation of small diffusion, when the discretization step

decreases with noise intensity. Section 2 of the paper deals with some preliminaries and

main results.
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2 Main Result

Let Xε(t) be the solution of the one dimensional nonlinear stochastic differential equa-

tion

dXε(t) = f(θ,Xε(t))dt+ εdW (t), 0 < t < Tε

Xε(0) = X0, (2.1)

where {W (t), t ≥ 0} is a standard wiener process, f(θ, x) is a known real valued

function θ ∈ Θ ⊂ R and X0 is independent of {W (t), t ≥ 0}.
In this paper we are concerned with the discretization of the process {Xε(t), t ≥ 0}

when its values are observed at equidistant time points in [0, Tε]. Actually we take

Tε =
√
εnε and choose design points as tk = (k − 1)Tε

nε
, k = 1, 2, . . . , nε + 1. Then of

course ∆tk = tk+1 − tk =
√

ε
nε

for k = 1, 2, . . . , nε, when εnε tends to infinity and

ε→ 0. Let

Znε(θ) =
nε∑
k=1

[
Xε(tk+1)−Xε(tk)− f(θ,Xε(tk))

√
ε

nε

]2

. (2.2)

We define the least square estimator (LSE) θ̂nε of θ to be the value of θ at which

Znε(θ) attains its minimum.

Let us denote by θ0 the true value of the parameter θ. The following notations are

used in this paper.

(1) f
(i)
k = dif(θ,Xε(tk))

dθi

∣∣∣
θ=θ0

, 1 ≤ k ≤ nε and i = 1, 2; fk = f(θ0, Xε(tk)), 1 ≤ k ≤

nε and f
(2)
k (θ) denotes the second derivative of f evaluated at, some θ between

θ0 and θ̂nε , and Xε(tk). Finally we define,

(2) Wk = W (tk+1) −W (tk), Vk(θ) = f
(2)
k (θ) − f (2)

k and Uk = Xε(tk+1) − Xε(tk) −
fk
√

ε
nε
, 1 ≤ k ≤ nε.

In the sequel, the notation Eθ(respectively−Pθ) is used when an expectation (respectively-

probability) is computed when the true parameter in (1) is θ.

We assume that the following set of regularity conditions hold.

( A1 ) The process {Xε(t), t ≥ 0} is a stationary process satisfying Eθ(X
2
ε (0)) < ∞.

More over for any g(.), Eθg(Xε(0)) < ∞, and 1
nε

∑nε
k=0 g(Xε(tk)) − Eθg(Xε(0))

tends to zero in probability as nε →∞ and ε→ 0.
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( A2 ) f(θ, x) is differentiable thrice with respect to θ and for every θ ∈ Θ, there exists

a compact neighbourhood Vθ of θ such that,

sup
θ′∈Vθ

[
Eθ|f (j)(θ′, Xε(0))||f (i)(θ′, Xε(0))|

]
<∞

for 0 ≤ i, j ≤ 2, where f (0) = f and f (i) denotes the i th derivative of f with

respect to θ.

( A3 ) f (i)(θ, x) is Lipschitz in x for every θ ∈ Θ for i = 0, 1, 2, and |f (i)(θ, x)| ≤
C(θ)(1 + |x|), x ∈ IR for some C(θ) > 0, i = 0, 1, 2.

( A4 ) Eθ0|f(θ,Xε(0))− f(θ0, Xε(0))|2 = 0 iff θ = θ0.

Suppose further that there exists a non-increasing function δε → 0, Tε δ
2
ε → ∞

as nεε→∞ and ε→ 0.

( A5 ) Pθ0

{
|θ̂nε − θ0| ≥ δε

}
< Cδ

1
4
ε where C is a constant.

( A6 ) Eθ
[
f (i)(θ,Xε(0))

]2
<∞ for θ ∈ Θ and i = 0, 1, 2.

( A7 ) f (2)(θ, x) is Lipschitz in θ in a compact neighbourhood Vθ0 of θ0 with Lips-

chitzian function ϕ(x) satisfying Eθ [ϕ(Xε(0))]2 <∞.

( A8 ) lim
Tε→∞

1
Tε

∫ Tε
0

[
f (1)(θ0, Xε(t))

]2
dt = A(θ0) Pθ0 -a.s. where A(θ0) is a positive num-

ber.

( A9 ) sup
θ∈Θ

Pθ

{∣∣∣ ITε (θ)

A(θ)Tε
− 1
∣∣∣ ≥ δε

}
≤ Cδ

1
2
ε

where ITε(θ) =
∫ Tε

0

[
f (1)(θ,Xε(t))

]2
dt and C is a constant.

Under the conditions ( A1 ) and ( A2 ), Prakasa Rao (1983) has shown that,

(εnε)
1
4 (θ̂nε − θ0) = (εnε)

− 1
4

nε∑
k=1

Ukf
(1)
k

[
1

nε

nε∑
k=1

f
(1)2

k − 1

(εnε)
1
2

n∑
k=1

Ukf
(2)
k −

1

(nεε)
1
2

nε∑
k=1

UkVk(θ
?
nε) + (θ̂nε − θ0)2OP (1)

]−1

. (2.3)
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Multiplying both sides of (2.3) by
√
A(θ0) we obtain,

√
A(θ0)(εnε)

1
4 (θ̂nε − θ0) =

{
1√
A(θ0)

(εnε)
− 1

4

nε∑
k=1

Ukf
(1)
k

}



ε
1
2 n

1
2
ε

nε

nε∑
k=1

f
(1)2

k

A(θ0)(nεε)
1
2

−
1

A(θ0)(nεε)
1
2

nε∑
k=1

Ukf
(2)
k

− 1

A(θ0)(nεε)
1
2

nε∑
k=1

UkVk(θ
?
nε) + (θ̂nε − θ0)2OP (1)

]−1

.

(2.4)

For the proof of our main result we need following lemmas.

Lemma 2.1: Let (Ω,F , P ) be a probability space and f and g be F -measurable

functions. Then, for every ε > 0,

sup
x
|P
{
w :

f(w)

g(w)
< x

}
−Φ(x)| ≤ sup

y
|P {w : f(w) < y}−Φ(y)|+P {w : |g(w)− 1| > ε}+ε

where Φ(.) is the standard normal distribution function.

The proof of the lemma is given in Michael and Pfanzagl (1971).

Lemma 2.2: Let {W (t), t ≥ 0} be a standard Wiener process and Z be a non-negative

random variable. Then, for every ε > 0 and for all x,

|P {W (Z) ≤ x} − Φ(x)| ≤ (2ε)
1
2 + P (|Z − 1| > ε)

For the proof of this lemma, we refer to Hall and Heyde (1980). From relation (2.4),
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using Lemma 2.1, we have

sup
y
|Pθ0

{√
A(θ0)(nεε)

1
4 (θ̂nε − θ0) ≤ y

}
− Φ(y)|

≤ sup
y
|Pθ0

{
1√

A(θ0)(nεε)
1
4

nε∑
k=1

Ukf
(1)
k ≤ y

}
− Φ(y)|

+Pθ0

[
|

{
(nεε)

1
2

nε

nε∑
k=1

(f
(1)
k )2/A(θ0)(nεε)

1
2

}
− 1

A(θ0)(nεε)
1
2

nε∑
k=1

Ukf
(2)
k

− 1

A(θ0)(nεε)
1
2

nε∑
k=1

UkVk(θ
?
nε) + (θ̂nε − θ0)2Op(1)− 1| > δε

]
+ δε

≤ sup
y
|Pθ0

{
1√

A(θ0)(nεε)
1
4

nε∑
k=1

Ukf
(1)
k < y

}
− Φ(y)|

+Pθ0

[
|

{
(nεε)

1
2

nε

nε∑
k=1

(f
(1)
k )2

A(θ0)(nεε)
1
2

}
− 1| ≥ δε

4

]

+Pθ0

{
| 1

A(θ0)(nεε)
1
2

nε∑
k=1

Ukf
(2)
k | ≥

δε
4

}

+Pθ0

{
| 1

A(θ0)(nεε)
1
2

nε∑
k=1

UkVk(θ
?
nε)| ≥

δε
4

}

+Pθ0

{
|(θ̂nε − θ0)2OP (1)| ≥ δε

4

}
+ δε

= I1 + I2 + I3 + I4 + I5 + δε (say).

Now

|I1| = sup
y
|Pθ0

{
1√

A(θ0)(nεε)
1
4

nε∑
k=1

(
Ukf

(1)
k − εWkf

(1)
k

)
+

ε√
A(θ0)(nεε)

1
4

∫ Tε

0

H(1)(t)dW (t) +
ε√

A(θ0)(nεε)
1
4

∫ Tε

0

f (1)(θ0, X(t))dW (t)

}
≤ y} − Φ(y)|

≤ sup
y
|Pθ0

{
ε√

A(θ0)(nεε)
1
4

∫ Tε

0

f (1)(θ0, X(t))dW (t) ≤ y

}
− Φ(y)|

+Pθ0

{
| 1√

A(θ0)(nεε)
1
4

nε∑
k=1

(Ukf
(1)
k − εWkf

(1)
k )| ≥ ε

1
4

2

}

+Pθ0

{
| ε√

A(θ0)(nεε)
1
4

∫ Tε

0

H(1)(t)dW (t)| ≥ ε
1
4/2

}
+ (
√

2π)−1ε
1
4

(by G.J.Babu et al. (1978))
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where H(i)(t) = f (i)(θ0, X(tk)) − f (i)(θ0, X(t))) for i = 0, 1, 2, whenever tk ≤ t <

tk+1, 1 ≤ k ≤ nε. Observe that

nε∑
k=1

Eθ0|Uk − εWk||f (1)
k | =

nε∑
k=1

Eθ0

{
|
[∫ tk+1

tk

f(θ0, Xε(tk))− f(θ0, Xε(t))

]
dt||f (1)

k |
}

=
nε∑
k=1

Eθ0

{
|
∫ tk+1

tk

H(0)(t)dt||f (1)
k |
}

≤
nε∑
k=1

{
Eθ0

(∫ tk+1

tk

H(0)(t)dt

)2

Eθ0(f
(1)2

k )

} 1
2

≤
nε∑
k=1

(∫ tk+1

tk

H(0)(f
(1)2

k )

} 1
2

≤
nε∑
k=1

{
(nεε)

1
2

nε

∫ tk+1

tk

Eθ0(H(0)(t))2dt Eθ0(f
(1)
k (θ0, Xε(0))2

} 1
2

(2.5)

by stationarity of Xε(t). But∫ tk+1

tk

Eθ0(H0(t))2dt ≤ C

∫ tk+1

tk

Eθ0(Xε(t)−Xε(tk))
2dt (2.6)

by condition ( A3 ) for some constant C > 0. Again for tk+1 ≥ t ≥ tk,

Eθ0(X(t)−X(tk))
2 ≤ C(t− tk) ≤ C

√
ε

nε

for some constant C independent of t (cf. Gihman and Skorokhod (1969)). Com-

bining (2.5) and (2.6) we obtain that,

nε∑
k=1

Eθ0|Uk − εWk||f (1)
k | ≤ C

(nεε)
3
4

n
1
2
ε

(2.7)

for some constant C > 0, by using (A6).

Therefore

1√
A(θ0)(nεε)

1
4

nε∑
k=1

Eθ0|Uk − εWk||f (1)
k | ≤

C1√
A(θ0)

(nεε)
1
2

n
1
2
ε

.

Again, using this we have,

Pθ0

{
1√

A(θ0)(nεε)
1
4

nε∑
k=1

|Uk − εWk||f (1)
k | ≥

ε
1
4

2

}
≤ C1√

A(θ0)

(nεε)
1
2

n
1
2
ε ε

1
4

≤ C2ε
1
4 . (2.8)
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Next,

Eθ0|ε(nεε)−
1
4

{∫ Tε

0

H(1)(t)dW (t)

}
| ≤ ε(nεε)

− 1
4

{
Eθ0|

∫ Tε

0

H(1)(t)dW (t)|2
} 1

2

=
ε

(nεε)
1
4

{∫ Tε

0

Eθ0(H(1)(t))2dt

} 1
2

≤ C3ε

(nεε)
1
4

(
(nεε)

1
2
ε

1
2

n
1
2
ε

) 1
2

=
C3ε

3
2

(nεε)
1
4

= C3

(
ε3

(nεε)
1
2

) 1
2

,

(2.9)

by using ( A3 ) and arguments similar to those given above. Hence,

Pθ0

{
|ε(nεε)−

1
4

∫ Tε

0

H(1)(t)dW (t)| ≥ ε
1
4

2

}
≤ 2C3ε

5
4

(nεε)
1
4

. (2.10)

Denote

ZTε =

∫ Tε

0

f (1)(θ0, Xε(t))dW (t)

which is a square integrable martingale with zero mean. Hence, by Theorem 2.3 of Feigin

(1976), there exists a standard Wiener process W(.) adapted to {Ft, t ≥ 0} such that

ZTε√
A(θ0)Tε

= W

(
ITε(θ0)

A(θ0)Tε

)
, Pθ0 − a.s. for all Tε > 0.

Hence, by Lemma 2.2,

|Pθ0

{
ε√

A(θ0)Tε

∫ Tε

0

f (1)(θ0, X(t))dW (t)) ≤ y

}
− Φ(y)|

=

∣∣∣∣Pθ0 {W (
ITε(θ0)

A(θ0)Tε

)
≤ y

ε

}
− Φ

(y
ε

)∣∣∣∣+
∣∣∣Φ(y

ε

)
− Φ(y)

∣∣∣ (by assumption(A9))

≤ (2δε)
1
2 + Pθ0

{
| ITε(θ0)

A(θ0)Tε
− 1| ≥ δε

}
+
∣∣∣Φ(y

ε

)
− Φ(y)

∣∣∣ (by Lemma 2.2)

≤ C4

{
(2δε)

1
2 + (Tεδ

2
ε)
−1
}
≤ 2C4

{
δ

1
2
ε + (n

1
2
ε ε

1
2 δ2
ε)
−1
}
.

(2.11)

Now, combining (2.8), (2.10) and (2.11), we get,

|I1| ≤ C5

{
δ

1
2
ε + ε

1
4 +

(
n

1
2
ε ε

1
2 δ2
ε

)−1

+ ε
5
4 (nεε)

− 1
4

}
. (2.12)
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Let us consider,

|I2| = Pθ0

[
|

{
(nεε)

1
2

nε

nε∑
k=1

(f
(1)
k )2

A(θ0)(nεε)
1
2

}
− 1| ≥ δε

4

]

≤ Pθ0

[
|

{
nε∑
k=1

∫ tk+1

tk

(f
(1)
k )2dt−

nε∑
k=1

∫ tk+1

tk

(f (1)2

(θ0, Xε(t))dt

}
/A(θ0)(nεε)

1
2 | ≥ δε

8

]

+Pθ0

{
|
(

(

∫ Tε

0

f (1)2

(θ0, Xε(t))dt/A(θ0)(nεε)
1
2

)
− 1| ≥ δε

8

}
≤ Pθ0

[{
nε∑
k=1

∫ tk+1

tk

|f (1)2

k − f (1)2

(θ0, Xε(t))|dt

}
/A(θ0)(nεε)

1
2 ≥ δε

8

]
+C6δ

1
2
ε (by assumption(A9))

≤ C7

A(θ0)(nεε)
1
2 δε

Eθ0

{
nε∑
k=1

∫ tk+1

tk

∣∣∣fk(1)2 − f (1)2

(θ0, Xε(t))
∣∣∣ dt}+ C7δ

1
2
ε

≤ C7

A(θ0)(nεε)
1
2 δε

nε∑
k=1

Eθ0

{∫ tk+1

tk

∣∣∣f (1)
k − f

(1)(θ0, X
(t)
ε )
∣∣∣ ∣∣∣f (1)

k + f (1)(θ0, X
(t)
ε )
∣∣∣ dt}+ C7δ

1
2
ε

≤ C8

A(θ0)(nεε)
1
2 δε

nε∑
k=1

√
ε

nε
Eθ0

{∫ tk+1

tk

∣∣∣f (1)
k + f (1)(θ0, Xε(t))

∣∣∣ dt}
+C7δ

1
2
ε (by assumption(A3))

≤ C8

A(θ0)(nεε)
1
2 δε

√
ε

nε

nε∑
k=1

∫ tk+1

tk

(
Eθ0

∣∣∣f (1)
k + f (1)(θ0, X(t))

∣∣∣2) 1
2

dt+ C7δ
1
2
ε

≤ C9

A(θ0)(nεε)
1
2 δε

√
ε

nε

{
nε∑
k=1

∫ tk+1

tk

{
Eθ0f

(1)2

k (θ0, Xε(0)) + Eθ0f
(1)2

(θ0, Xε(0))
} 1

2
dt

+C7δ
1
2
ε (by stationarity)

≤ C10

A(θ0)(nεε)
1
2 δε

ε

nε
nε + C7δ

1
2
ε (by assumption(A6))

≤ C11

(
ε

A(θ0)(nεε)
1
2 δε

+ δ
1
2
ε

)
. (2.13)

We know that

|
nε∑
k=1

Ukf
(2)
k | ≤

nε∑
k=1

|Uk − εWk||f (2)
k |+ |ε

∫ Tε

0

H(2)(t)dW (t)|+ |ε
∫ Tε

0

f (2)(θ0, X(t))dW (t)|
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and

Eθ0

nε∑
k=1

|Uk − εWk||f (2)
k | ≤

nε∑
k=1

{
Eθ0

(∫ tk+1

tk

H(◦)(t)dt

)2

Eθ0

(
f

(2)
k

)2
} 1

2

≤
nε∑
k=1

{(
ε

nε

)∫ tk+1

tk

Eθ0
(
H(◦)(t)

)2
dt Eθ0(f

(2)
k )2(θ,Xε(0)))

} 1
2

. (by stationarity)

≤ C12

nε∑
k=1

{(
ε

nε

) 1
2
∫ tk+1

tk

Eθ0 (Xε(tk)−Xε(t))
2 dt

} 1
2

(by using(A3) and (A6)).

≤ C13nε

(
ε

nε

) 3
4

≤ C14n
1
4
ε ε

3
4 . (2.14)

Again,

Eθ0

∣∣∣∣ε ∫ Tε

0

H(2)(t)dW (t)

∣∣∣∣ ≤ ε

{
Eθ0

∣∣∣∣∫ Tε

0

H(2)(t)dW (t)

∣∣∣∣2
} 1

2

≤ ε

{∫ Tε

0

Eθ0
(
H(2)(t)

)2
dt

} 1
2

≤ C15ε

(
(nεε)

1
2 (
ε

nε
)

1
2

) 1
2

≤ C16ε
3
2 (2.15)

by using assumption (A3) and similar arguments as given earlier. Further more

Eθ0

∣∣∣∣ε ∫ Tε

0

f (2)(θ0, Xε(t))dW (t)

∣∣∣∣
≤ ε

{∫ Tε

0

Eθ0(f (2)(θ0, Xε(0))2dt

} 1
2

(by stationarity)

≤ C18ε(nεε)
1
4 (by assumption (A3)). (2.16)

10



Therefore,

|I3| = Pθ0

{∣∣∣∣∣ 1

A(θ0)(nεε)
1
2

nε∑
k=1

Ukf
(2)
k

∣∣∣∣∣ ≥ δε
4

}

≤ Pθ0

{
1

A(θ0)(nεε)
1
2

nε∑
k=1

|Uk − εWk|
∣∣∣f (2)
k

∣∣∣ ≥ δε
12

}

+Pθ0

{
1

A(θ0)(nεε)
1
2

∣∣∣∣ε ∫ Tε

0

H(2)(t)dW (t)

∣∣∣∣ ≥ δε
12

}

+Pθ0

{
1

A(θ0)(nεε)
1
2

∣∣∣∣ε ∫ Tε

0

f (2)(θ0, X(t))dt

∣∣∣∣ ≥ δε
12

}

≤ C19
ε

1
2√

(nεε)
1
2 δ2
ε

, (by using (2.14), (2.15) and (2.16)) (2.17)

Observe that,

|
nε∑
k=1

UkVk(θ
?
nε)| ≤

nε∑
k=1

|(Uk − εWk)Vk(θ
?
nε)|+ |

nε∑
k=1

ε

∫ tk+1

tk

Vk(θ
?
nε)dW (t)|.

Following the procedure in the calculation of the upper bound of |I1|, we obtain,

Eθ0

nε∑
k=1

|Uk − εWk|Vk(θ?nε)

≤
nε∑
k=1

Eθ0

{
|Uk − εWk| sup

θ∈Vθ0
|Vk(θ)|

}
(since θ?n is in the compact neighbourhood Vθ0of θ0

with probability close to 1 as (nεε)
1
2 →∞, and ε→ 0)

≤ C20
(nεε)

3
4

n
1
2
ε

(since Eθ0| sup
θ∈Vθ0

Vk(θ)|2 <∞ by using (A7)).

Further more

Eθ0

∣∣∣∣∣
nε∑
k=1

ε

∫ tk+1

tk

Vk(θ
?
nε)dW (t)

∣∣∣∣∣
≤ εEθ0 sup

θ∈Vθ0

∣∣∣∣∣
nε∑
k=1

∫ tk+1

tk

Vk(θ)dW (t)

∣∣∣∣∣
= εEθ0 sup

θ∈Vθ0

∣∣∣∣∣
nε∑
k=1

ε

∫ tk+1

tk

J(θ, t)dW (t)

∣∣∣∣∣
11



where J(θ, t) =

{
Vk(θ) if tk ≤ t ≤ tk+1,

0 otherwise.
Now using assumptions ( A3 ) and

( A7 ), we get from Prakasa Rao and Rubin (1981, p.181) that there exists a γ > 1
2

such

that

Eθ0

∣∣∣∣∣
nε∑
k=1

ε

∫ tk+1

tk

Vk(θ
?
nε)dW (t)

∣∣∣∣∣
≤ Eθ0 sup

θ∈Vθ0
ε

∣∣∣∣∫ Tε

0

J(θ, t)dW (t)

∣∣∣∣
≤ C21εT

1
2
ε (log Tε)

γ

≤ C22(nεε)
1
4 (log nεε)

γ

Hence

|I4| ≤
(log (nεε))

γ√
(nεε)

1
2 δ2
ε

. (2.18)

In view of assumption ( A5 ),

|I5| ≤ C23δ
1
4
ε . (2.19)

Therefore using (2.12), (2.13), (2.17), (2.18) and (2.19), we obtain

sup
y
|Pθ0

{√
A(θ0)(nεε)

1
4 (θ̂nε − θ0) ≤ y

}
− Φ(y)|

≤ C24

(log(nεε))
γ√

(nεε)
1
2 δ2
ε

+ ε
1
4 + δ

1
2
ε

 .

We now have the main result.

Theorem : Under the conditions ( A1 )-( A9 ),

sup
−∞<y<∞

|Pθ0
{√

A(θ0)(nεε)
1
4 (θ̂nε − θ0) ≤ y

}
− Φ(y)| ≤ C

ε 1
4 + δ

1
2
ε +

(log(nεε))
γ√

(nεε)
1
2 δ2
ε


where C is a positive constant and γ > 1

2
.

Example : Considering the Ornstein-Uhlenbeck process

dXε(t) = −θXε(t) + εdW (t), Xε(0) = X0

where θ > 0 and X0 is independent of the standard Wiener process {W (t), t ≥ 0} .
We obtain from Prakasa Rao (1983)

nε∑
k=1

[
∆k −

{
−θ0Xε(tk)− (θ̂nε − θ0)Xε(tk)

} Tε
nε

]
(−Xε(tk)) = 0

12



or
nε∑
k=1

[
∆k + θ0Xε(tk)

Tε
nε

]
Xε(tk) + (θ̂nε − θ0)

nε∑
k=1

X2
ε (tk)

Tε
nε

= 0

or

θ̂nε − θ0 = −

∑nε
k=1

[
∆k + θ0Xε(tk)

Tε
nε

]
Xε(tk)∑nε

k=1 X
2
ε (tk)

Tε
nε

= −
1

(nεε)
1
2

∑nε
k=1

[
∆k + θ0Xε(tk)(

ε
nε

)
1
2

]
Xε(tk)

1
nε

∑nε
k=1 X

2
ε (tk)

= −
1

(nεε)
1
2

∑nε
k=1 [UkXε(tk)]

1
nε

∑nε
k=1 X

2
ε (tk)

.

Then

Pθ0

{
|θ̂nε − θ0| ≥ δε

}
= Pθ0

{
| 1

(nεε)
1
2

nε∑
k=1

UkXε(tk)/
1

nε

nε∑
k=1

X2
ε (tk)| ≥ δε

}

≤ Pθ0

{
| 1

(nεε)
1
2

nε∑
k=1

UkXε(tk)| ≥ A(θ0)δε(1− δε)

}

+Pθ0

{
| 1

nεA(θ0)

nε∑
k=1

X2
ε (tk)− 1| ≥ δε

}
.

From (2.13) we get

Pθ0

{
| 1

nεA(θ0)

nε∑
k=1

X2
ε (tk)− 1| ≥ δε

}
≤ C25

ε√
nεε δ2

ε

+ δ
1
2
ε . (2.20)

Now,

Pθ0

{
| 1

(nεε)
1
2

nε∑
k=1

UkXε(tk)| ≥ A(θ0)δε(1− δε)

}

= Pθ0

{
| 1

(nεε)
1
2

nε∑
k=1

(Uk − εWk)Xε(tk)| ≥ A(θ0)
δε
3

(1− δε)

}

+Pθ0

{
| ε

(nεε)
1
2

nε∑
k=1

∫ tk+1

tk

(Xε(tk)−Xε(t)) dW (t)| ≥ A(θ0)
δε
3

(1− δε)

}

+Pθ0

{
| ε

(nεε)
1
2

∫ Tε

0

Xε(t)dW (t)| ≥ A(θ0)
δε
3

(1− δε)

}

≤ C26

{
(nεε)

1
4

nεε
δε +

ε
3
2

(nεε)
1
2 δε

}
≤ C27

1

(nεε)
1
20

(by using (2.7) and (2.9)). (2.21)

13



Let δε = (nεε)
1
5 . Then from (2.20) and (2.21) we get,

Pθ0

{
|θ̂nε − θ0| ≥ δε

}
≤ C28δ

1
4
ε .

Condition ( A9 ) is satisfied for the Ornstein-Uhlenbeck Process (cf. Mishra and Prakasa

Rao (1985)). It can be verified that other conditions are satisfied for Ornstein-Uhlenbeck

Process.
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