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Abstract

We consider an infinite horizon dynamic mechanism design problem with interde-

pendent valuations. In this setting the types of the agents are assumed to be evolving

according to a first order Markov process and the types are independent across agents

in every round and across rounds. However, the valuations of the agents are functions

of the types of all the agents, which makes the problem fall into an interdependent value

model. Designing mechanisms in this setting is non-trivial in view of an impossibility

result which says that for interdependent valuations, any efficient and ex-post incentive

compatible mechanism must be a constant mechanism, even if the mechanism is static.

Mezzetti circumvents this problem by splitting the decisions of allocation and payment

into two stages. However, Mezzetti’s result is limited to a static setting and moreover

in the second stage of that mechanism, agents are weakly indifferent about reporting

their valuations truthfully. This paper provides a first attempt at designing a dynamic

mechanism which is strict ex-post incentive compatible and efficient in interdependent

value setting with Markovian type evolution. In a restricted domain, which appears of-

ten in real-world scenarios, we show that our mechanism is ex-post individually rational

as well.

1 Introduction

Organizations often face the problem of executing a task for which they do not have enough

resources or expertise. It may also be difficult, both logistically and economically, to acquire

those resources. For example, in the area of healthcare, it has been observed that there are

very few occupational health professionals and doctors and nurses in all specialities at the
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hospitals in the UK (Nicholson, 2004). With the advances in computing and communication

technologies, a natural solution to this problem is to outsource the tasks to experts outside

the organization. Hiring experts beyond an organization was already in practice. However,

with the advent of the Internet, this practice has extended even beyond the international

boundaries, e.g., some U.S. hospitals are outsourcing the tasks of reading and analyzing scan

reports to companies in Bangalore, India (Associated-Press, 2004). Gupta et al. (2008) give

a detailed description of how the healthcare industry uses the outsourcing tool.

The organizations where the tasks are outsourced (let us call them vendors) have quite

varied efficiency levels. For tasks like healthcare, it is extremely important to hire the right

set of experts. If the efficiency levels of the vendors and the medical task difficulties of the

hospitals are observable by a central management (controller), and these levels vary over time

according to a Markov process, the problem of selecting the right set of experts reduces to a

Markov Decision Problem (MDP), which has been well studied in the literature (Bertsekas,

1995; Puterman, 2005). Let us call the efficiency levels and task difficulties together as types

of the tasks and resources.

However, the types are usually observed privately by the vendors and hospitals (agents),

who are rational and intelligent. The efficiencies of the vendors are private information of the

vendors (depending on what sort of doctors they hire, or machinery they use), and they might

misreport this information in order to win the contract and to increase their net returns. At

the same time the difficulty of the medical task is private to the hospital, and is unknown

to the experts. A strategic hospital, therefore, can misreport this information to the hired

experts as well. Hence, the asymmetry of information at different agents’ end transforms

the problem from a completely or partially observable MDP into a dynamic game among the

agents.

Motivated by examples of this kind, in this paper, we analyze them using a formal mech-

anism design framework. We consider only cases where the solution of the problem involves

monetary transfer, which makes the payoffs quasi-linear. The reporting strategy of the agents

and the decision problem of the controller is dynamic since we assume that the types of the

tasks and resources are varying with time. In addition, the above problem has two char-

acteristics, namely, interdependent values : the task execution generates values to the task

owners that depend on the efficiencies of the assigned resources, and exchange economy : a

trade environment where both buyers (task owners) and sellers (resources) are present. In

this paper, the theme of modeling and analysis would be centered around the settings of task

outsourcing to strategic experts. We aim to have a socially efficient mechanism, and at the

same time, that would demand truthfulness and voluntary participation of the agents in this

setting.
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Valuations STATIC DYNAMIC

Independent VCG Mechanism Dynamic Pivot Mechanism

(Vickrey, 1961; Clarke,

1971; Groves, 1973)

(Bergemann and Välimäki,

2010; Athey and Segal, 2007;

Cavallo et al., 2006)

Interdependent Generalized VCG Mechanism MATRIX

(Mezzetti, 2004) (this paper)

Table 1: The different paradigms of mechanism design problems with their solutions.

1.1 Prior work

The above properties have been investigated separately in literature on dynamic mechanism

design. Bergemann and Välimäki (2010) have proposed an efficient mechanism called the

dynamic pivot mechanism, which is a generalization of the Vickrey-Clarke-Groves (VCG)

mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) in a dynamic setting, which also

serves to be truthful and efficient. Athey and Segal (2007) consider a similar setting with

an aim to find an efficient mechanism that is budget balanced. Cavallo et al. (2006) develop

a mechanism similar to the dynamic pivot mechanism in a setting with agents whose type

evolution follows a Markov process. In a later work, Cavallo et al. (2009) consider periodically

inaccessible agents and dynamic private information jointly. Even though these mechanisms

work for an exchange economy, they have the underlying assumption of private values, i.e.,

the reward experienced by an agent is a function of the allocation and her own private

observations. Mezzetti (2004, 2007), on the other hand, explored the other facet, namely,

interdependent values, but in a static setting, and proposed a truthful mechanism. The

mechanism proposed in these papers use a two-stage mechanism, since it is impossible to

design a single-stage mechanism satisfying both truthfulness and efficiency even for a static

setting (Jehiel and Moldovanu, 2001).

1.2 Contributions

In this paper, we propose a dynamic mechanism namedMDP-basedAllocation andTRansfer

in Interdependent-valued eXchange economies (abbreviated MATRIX), which is designed to

address the class of interdependent values. It extends the results of Mezzetti (2004) to a

dynamic setting, and serves as an efficient, truthful mechanism. Under a certain realistic

domain restriction, agents receive non-negative payoffs by participating in it. The key fea-

ture that distinguishes our model and results from that of the existing dynamic mechanism

literature is that we address the interdependent values and dynamically varying types (in an

exchange economy) jointly. In Table 1, we have summarized the different paradigms of the

mechanism design problem, and their corresponding solutions in the literature.
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Our main contributions in this paper can be summarized as follows.

• We propose a dynamic mechanism MATRIX, that is efficient, and truthful for the partic-

ipants in an interdependent-valued exchange economy (Theorem 1).

◮ This extends the classic mechanism proposed by Mezzetti (2004) to a dynamic setting.

◮ It solves the issue of weak indifference by the agents in the second stage of the classic

mechanism.

• Under a restricted domain, we show that this mechanism is also individually rational

for the agents (Theorem 2).

• We discuss why known mechanisms like a fixed payment mechanism, VCG, or the dy-

namic pivot mechanism (Bergemann and Välimäki, 2010) do not satisfy all the prop-

erties that MATRIX satisfies (beginning of Section 3 and Section 3.2).

We discuss that MATRIX comes at a computational cost which is the same as that of

its independent value counterpart (Section 3.4). This paper provides a first attempt of

designing a dynamic mechanism which is strict ex-post incentive compatible and efficient in

interdependent value setting with Markovian type evolution. In a restricted domain, which

appears often in real-world scenarios, we show that our mechanism is ex-post individually

rational as well.

The rest of the paper is organized as follows. We introduce the formal model in Section 2,

and present the main results in Section 3. In Section 4, we discuss what kind of results would

be interesting to prove in order to characterize the space of interdependent valued dynamic

mechanisms. We conclude the paper in Section 5 with some potential future works.

2 Background and Model

Let the set of agents be given by N = {1, . . . , n}, who interact with each other for a countably

infinite time horizon indexed by time steps t = 0, 1, 2, . . .. The time-dependent type of each

agent is denoted by θi,t ∈ Θi for i ∈ N . We will use the shorthands θt ≡ (θ1,t, . . . , θn,t) ≡

(θi,t, θ−i,t), where θ−i,t denotes the type vector of all agents excluding agent i. We will refer

to θt as the type profile, θt ∈ Θ ≡ ×i∈NΘi.

Stationary Markov Type Transitions, SMTT The combined type θt follows a first

order Markov process which is governed by the transition probability function F (θt+1|at, θt),

which is independent across agents, defined formally below.
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Definition 1 (Stationary Markov Type Transitions, SMTT) We call the type tran-

sitions to follow stationary Markov type transitions if the joint distribution F of the types of

the agents θt ≡ (θ1,t, · · · , θn,t), and the marginals Fi’s exhibit the following for all t.

F (θt+1|at, θt, θt−1, · · · , θ0) = F (θt+1|at, θt), and

F (θt+1|at, θt) =
∏

i∈N

Fi(θi,t+1|at, θi,t).
(1)

We will assume the types to follow SMTT throughout this paper.

The allocation set is denoted by A. In each round t, the mechanism designer chooses

an allocation at from this set and decides a payment pi,t to agent i. The allocation leads

to a valuation to agent i, vi : A × Θ → R. This is in contrast to the classical independent

valuations (also called private values) case where valuations are assumed to depend only on

i’s own type; vi : A×Θi → R. However, we assume for all i, |vi(a, θ)| < ∞, for all a and θ.

In the later part of the paper, we will restrict our attention to a restricted space of

allocations and valuations as discussed below.

Subset Allocation, SA Let us motivate this restriction with the medical task assign-

ment example given in the previous section. The organizations outsource tasks to experts

for a payment, where the expert may have different and often time-varying capabilities of

executing the task. The task owners come with a specific task difficulty (type of the task

owner), which is usually privately known to them, while the workers’ capabilities (types of the

workers) are their private information. A central planner’s job in this setting is to efficiently

assign the tasks to the workers. Clearly, in this setting, the set of possible allocations is the

set of the subsets of agents, i.e., A = 2N . Note that, for a finite set of players, the allocation

set is always finite. So, we can formally define this setting as follows.

Definition 2 (Subset Allocation, SA) When the set of allocations is the set of all sub-

sets of the agent set, i.e., A = 2N , we call the domain a subset allocation domain.

Peer Influenced Valuations, PIV Even though the valuation of agent i is affected

by not only her private type but also by the types of others, it is often the case that the

valuation is affected by the types (e.g. the efficiencies of the workers in a joint project) of

only the selected agents. The valuation therefore is a function of the types of the allocated

agents and not the whole type vector, vi : A × ΘA → R. We also assume that the value of

a non-selected agent is zero. Formally, we define this setting as peer influenced valuations

(PIV).

Definition 3 (Peer Influenced Valuations, PIV) This is a special case of interdepen-

dent valuations in the SA domain, where the valuation of agent i is a function of the types
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of other selected agents, vi : A×ΘA → R. In particular, the value function is given by,

vi(a, θ) =

{
vi(a, θa) if i ∈ a

0 otherwise
(2)

Efficient Allocation, EFF The mechanism designer aims to maximize the sum of

the valuations of task owners and workers, summed over an infinite horizon, geometrically

discounted with factor δ ∈ (0, 1). The discount factor accounts for the fact that a future

payoff is less valued by an agent than a current stage payoff. We assume δ to be common

knowledge. If the designer would have perfect information about the θt’s, his objective would

be to find a policy πt, which is a sequence of allocation functions from time t, that yields the

following for all t and for all type profiles θt,

πt ∈ argmax
γ

Eγ,θt

[
∞∑

s=t

δs−t
∑

i∈N

vi(as(θs), θs)

]

, (3)

where γ = (at(·), at+1(·), . . .) is any arbitrary sequence of allocation functions. Here we use

Eγ,θt [·] = E[ · |θt; γ] for brevity of notation. We point to the fact that the allocation policy

γ is not a random variable in this expectation computation. The policy is a functional that

specifies what action to take in each time instant for a given type profile. Different policies will

lead to different sequences of allocation functions over the infinite horizon, and the efficient

allocation is the one that maximizes the expected discounted sum of the valuations of all the

agents.

In general, the allocation policy πt depends on the time instant t. However, for the special

kind of stochastic behavior of the type vectors, namely SMTT, and due to the infinite horizon

discounted utility, this policy becomes stationary, i.e., independent of t. We will denote such

a stationary policy by π = (a(·), a(·), . . .). Thus, the efficient allocation under SMTT reduces

to solving for the optimal action in the following stationary Markov Decision Problem (MDP).

W (θt) = max
π

Eπ,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a(θs), θs)

]

= max
a∈A

Ea,θt

[
∑

j∈N

vj(a, θt) + δEθt+1|a,θtW (θt+1)

]

. (4)

Here, with a slight abuse of notation, we have used a to denote the actual action taken in

t rather than the allocation function. The second equality comes from a standard recursive

argument for stationary infinite horizon MDPs. We refer an interested reader to standard

text (Puterman, 2005, e.g.) for this reduction. Above we have used the following shorthand,

Eθt+1|a,θt[·] =
∑

θt+1
p(θt+1|θt; at)[·]. We will refer to W as the social welfare. The efficient

allocation under SMTT is defined as follows.
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Definition 4 (Efficient Allocation, EFF) An allocation policy a(·) is efficient under

SMTT if for all type profiles θt,

a(θt) ∈ argmax
a∈A

Ea,θt

[
∑

j∈N

vj(a, θt) + δEθt+1|a,θtW (θt+1),

]

. (5)

2.1 Challenges in mechanism design with interdependent

valuations

true values
Agents observeAgents

report types

Agents report

valuestrue types

Agents observe

Stage 1 Stage 2

Allocation Payment

At time t

v2(a(θ̂t), θt)

vn(a(θ̂t), θt)

... ...

θ̂1,t

θ̂2,t

θ̂n,t

... a(θ̂t)

v̂1,t

v̂2,t
...

v̂n,t

v1(a(θ̂t), θt)θ1,t

θ2,t

...
...

θn,t

p(θ̂t, v̂t)

Figure 1: Graphical illustration of a candidate dynamic mechanism in an interdependent

value setting.

The value interdependency among the agents poses a challenge for designing mechanisms.

Even in a static setting, if the allocation and payment are decided simultaneously under the

interdependent valuation setting, efficiency and incentive compatibility together can only be

satisfied by a constant mechanism (Jehiel and Moldovanu, 2001). This strong negative result

compels us to split the decisions of allocation and payment in two separate stages. We would

mimic the two-stage mechanism of Mezzetti (2004) for each time instant of the dynamic

setting (see Figure 1). The designer decides the allocation a(θ̂t) after the agents report their

types θ̂t in first stage. After allocation, the agents observe their valuations vi(a(θ̂t), θt)’s,

and report v̂i,t’s to the designer. The payment decision is made after this second round of

reporting. Our definition of incentive compatibility is accordingly modified for a two stage

mechanism.

Due to SMTT and the infinite horizon of the MDP, we will focus only on stationary

mechanisms, that give a stationary allocation and payment to the agents in each round of

the dynamic game. Let us denote a typical two-stage dynamic mechanism byM = 〈a, p〉. The

function a : Θ → A yields an allocation for a reported type profile θ̂t in round t. Depending

on the reported types in the first stage, the mechanism designer decides the allocation a(θ̂t),

and due to which agent i experiences a valuation of vi(a(θ̂t), θt) in round t. Let us suppose

that in the second stage, the reported value vector is given by v̂t. The payment function p
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is a vector where pi(θ̂t, v̂t) is the payment received by agent i at instant t. Combining the

value and payment in each round we can write the expected discounted utility of agent i in

the quasi-linear setting, denoted by uM
i (θ̂t, v̂t|θt), when the true type vector is θt and the

reported type and value vectors are θ̂t and v̂t respectively. This utility has two parts: (a) the

current round utility, and (b) expectation over the future round utilities. The expectation

over the future rounds is taken on the true types. Thus the effect of manipulation is limited

only to the current round in this utility expression. This is enough to consider due to the

single deviation principle of Blackwell (1965).

uM
i (θ̂t, v̂t|θt)

= vi(a(θ̂t), θt) + pi(θ̂t, v̂t)
︸ ︷︷ ︸

current round utility

+Eπ,θt

[
∞∑

s=t+1

δs−t(vi(a(θs), θs) + pi(θs, vs))

]

︸ ︷︷ ︸

expected discounted future utility

(6)

Here π denotes the stationary policy of actions, (a(·), a(·), . . .). For the SMTT, the type

evolution is dependent on only the current type profile and action. To avoid confusion, we

will use π, a(θ̂t), or a(θs), s ≥ t+ 1, according to the context.

Equipped with this notation, we can now define incentive compatibility.

Definition 5 (w.p. EPIC) A mechanism M = 〈a, p〉 is within period Ex-post Incentive

Compatible (w.p. EPIC) if for all agents i ∈ N , for all possible true types θt, for all reported

types θ̂i,t, for all reported values v̂i,t, and for all t,

uM
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt)

≥ uM
i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

That is, reporting the types and valuations in the two stages truthfully is an ex-post Nash

equilibrium. In this context, individual rationality is defined as follows.

Definition 6 (w.p. EPIR) A mechanism M = 〈a, p〉 is within period Ex-post Individu-

ally Rational (w.p. EPIR) if for all agents i ∈ N , for all possible true types θt and for all

t,

uM
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt) ≥ 0.

That is, reporting the types and valuations in the two stages truthfully yields non-negative

expected utility.
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3 The MATRIX Mechanism

In the setting mentioned above, our goal is to design a mechanism which is efficient (Def. 4),

w.p. EPIC (Def. 5), and w.p. EPIR (Def. 6). Before we present the mechanism, let us discuss

why it is non-trivial to design such a mechanism in this setting. We start with discussing a

couple of näıve attempts to decide the allocation and the payment.

Fixed payment mechanism: A candidate mechanism that is often applied in organi-

zations is a fixed payment mechanism. The allocation is done using the performance history

of the agents. That is, select the agent(s) who has(have) been proved to be the most capa-

ble of doing the task in the past. But one can immediately notice that this fixed payment

mechanism would not be efficient since the capabilities (types) of the agents vary over time.

To make the correct decision on the allocation, it is important to know the realized type of

the agent. Since this is private, the history will give only a (possibly incorrect) estimate of

the type. Hence, this is not efficient.

Repeated static VCG mechanism: We know that the VCG mechanism is truthful

in dominant strategies for static settings. The mechanism works on an efficient allocation

for a single stage game, and pays each agent her marginal contribution. One can think of

applying the static VCG in each stage of the dynamic setting. However, now, social welfare

is no longer the sum of the values at the current stage, rather is the expected discounted sum

of the values over the horizon of the dynamic game. Hence the allocation given by the static

VCG mechanism would not be efficient in a dynamic setting.

Discussion The above two candidate mechanisms are designed to be truthful in each round,

however, they fail to be efficient. It suggests that, to achieve efficient allocation in a dynamic

setting, one needs to consider the expected future evolution of the types of the agents, which

would reflect in the allocation and payment decisions. The value interdependency among

the agents plays a crucial role here. The reason the above approach does not work is not an

accident. We have already mentioned that even in a static interdependent value setting, if

the allocation and payment are decided simultaneously, one cannot guarantee efficiency and

incentive compatibility together (Jehiel and Moldovanu, 2001). One way out is to split the

decision of allocation and payment in two stages (Mezzetti, 2004).

Following this observation, we proposeMDP-basedAllocation andTRansfer in Interdependent-

valued eXchange economies (MATRIX), which we prove to satisfy EFF and w.p. EPIC for

general interdependent valuations, and w.p. EPIR under the restricted setting of SA and

PIV.

Given the above dynamics of the game as illustrated in Figure 1, the agents report their

types in the first stage, and then the allocation is decided. In the second stage, they report

their experienced values and the payment is decided. The task of the mechanism designer,

therefore, is to design the allocation and payment rules 〈a, p〉.
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We have already defined the social welfare given by Eq. (4). Let us also define the

maximum social welfare excluding agent i to be W−i(θ−i,t), which is the same as Eq. (4)

except now the sum of the valuations and the allocations are over all agents j 6= i.

W−i(θ−i,t) = max
a−i∈A−i

Ea−i,θ−i,t

[ ∑

j∈N\{i}

vj(a−i, θ−i,t) +

δEθ−i,t+1|a−i,θ−i,t
W−i(θ−i,t+1)

]

(7)

Notice that, when i is absent, the following two notations are equivalent: Eθt+1|a−i,t,θt [·] =

Eθ−i,t+1|a−i,t,θ−i,t
[·], since the type of i will be unchanged when she is not in the game. However,

we adopt the former for the ease of notation.

Using the definitions above and in the previous section, now we formally present MATRIX.

Mechanism 1 (MATRIX) Given the reported type profile θ̂t in stage 1, choose the agents

a∗(θ̂t) as follows.

a∗(θ̂t) ∈ argmax
a

Ea,θ̂t

[
∑

j∈N

vj(a, θ̂t) + δEθt+1|a,θ̂t
W (θt+1),

]

(8)

and transfer to agent i after agents report v̂t in stage 2, a payment of,

p∗i (θ̂t, v̂t) =

(
∑

j 6=i

v̂j,t

)

+ δEθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1)−W−i(θ̂−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

. (9)

Algorithm 1 MATRIX

for all time instants t do

Stage 1:

for agents i = 0, 1, . . . , n do

agent i observes θi,t;

agent i reports θ̂i,t;

end for

compute allocation a∗(θ̂t) according to Eq. 8;

Stage 2:

for agents i = 0, 1, . . . , n do

agent i observes vi(a
∗(θ̂t), θt);

agent i reports v̂i,t;

end for

compute payment to agent i, p∗i (θ̂t, v̂t), Eq. 9;

types evolve θt → θt+1 according to SMTT;

end for

The last quadratic term in the

above equation is agent i’s penalty

of not being consistent with the

first stage report. The intuition

of charging a penalty is to make

sure that agent i be consistent with

her reported type θ̂i,t in the first

stage and her value report v̂i,t in

the second stage, given that others

are reporting their types and values

truthfully. We will argue that when

all agents other than agent i reports

their types and values truthfully in
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those stages, it is the best response

for agent i to do so as well. This

term distinguishes our mechanism

from that given by Mezzetti (2004),

where the agents are weakly indif-

ferent between reporting true and false values in the second round.

It is worth mentioning that we have used this quadratic term for the ease of exposition.

However, it is easy to show that any non-negative function g(x, ℓ) having the property that

g(x, ℓ) = 0 ⇔ x = ℓ would still satisfy the claims made in this paper.

3.1 Efficiency and incentive compatibility

We summarize the dynamics of MATRIX using an algorithmic flowchart in Algorithm 1. The

following theorem shows that MATRIX satisfies two desirable properties in the unrestricted

setting.

Theorem 1 Under SMTT, MATRIX is EFF and w.p. EPIC. In addition, the second stage of

MATRIX is strictly EPIC.

Note that the above theorem does not put any restriction on the allocation space and the

valuation functions. MATRIX is a two stage mechanism, and we need to ensure that truth-

telling is a best response in both these stages when other agents also do the same. Also, the

strict EPIC in the second stage of this mechanism improves upon the mechanism given by

Mezzetti (2004). Let us prove the above theorem.

Proof : Clearly, given true reported types, the allocation of MATRIX is efficient by Definition 4.

Hence, we need to show only that MATRIX is w.p. EPIC.

To show that MATRIX is w.p. EPIC, let us assume that the true type profile at time t is

θt, and all agents j 6= i report their true types and values in each round s = t, t + 1, · · ·

etc. Only agent i reports θ̂i,t and v̂i,t in the two stages. Therefore, θ̂t = (θ̂i,t, θ−i,t) and

v̂j,t = vj(a
∗(θ̂t), θt), for all j 6= i. Using the single deviation principle (Blackwell, 1965), we

conclude that it is enough to consider only a single shot deviation from the true report of the

type. Hence, without loss of generality, let us assume that agent i deviates only in round t

of this game.
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Let us write down the discounted utility to agent i at time t.

uMATRIXi ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

= vi(a
∗(θ̂t), θt) + p∗i (θ̂t, v̂t)

︸ ︷︷ ︸

current round utility

+Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

︸ ︷︷ ︸

expected discounted future utility

= vi(a
∗(θ̂t), θt) +

∑

j 6=i

v̂j,t + δEθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1)−W−i(θ̂−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

We use the shorthand π∗ to denote the allocation policy under MATRIX. This gives rise

to the allocations a(·) in each round given the type profiles (either reported or true). The

first equality is from Eq. (6). The second equality comes by substituting the expression of

payment from Eq. (9).

Now, from the previous discussion on the v̂j,t’s and θ̂j,t’s, j 6= i, we get,

uMATRIXi ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

= vi(a
∗(θ̂t), θt) +

∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)−W−i(θ−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

≤ vi(a
∗(θ̂t), θt) +

∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)−W−i(θ−i,t)

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

(10)

The equality comes because of the assumption that all agents j 6= i report their types

and values truthfully. The inequality is because we are ignoring a non-positive term. Now,

let us consider the last term of the above equation.
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Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

= Eπ∗,θt

[
∞∑

s=t+1

δs−t (vi(a
∗(θs), θs)

+
∑

j 6=i

vj(a
∗(θs), θs) + δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)]

= Eπ∗,θt

[ ∞∑

s=t+1

δs−t
(∑

j∈N

vj(a
∗(θs), θs) + δEθs+1|a∗(θs),θsW−i(θ−i,s+1)

−W−i(θ−i,s)
)]

The first equality comes from Eq. (9). We can now rearrange the expectation for the first

term above using the Markov property of θt that gives, Eπ∗,θt[·] = Eθt+1|a∗(θ̂t),θt
[Eπ∗,θt+1

[·]].

Therefore,

Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

= Eθt+1|a∗(θ̂t),θt

[

Eπ∗,θt+1

(
∞∑

s=t+1

δs−t
∑

j∈N

vj(a
∗(θs), θs)

)]

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

= Eθt+1|a∗(θ̂t),θt
(δW (θt+1))

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

(11)

The last equality comes from the definition of W (θt+1). Let us now focus on the last term

of the above equation.
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Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

=
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ2Eπ∗,θtW−i(θ−i,t+2)− δEθt+1|a∗(θ̂t),θt
W−i(θ−i,t+1)

+
✭
✭
✭
✭
✭

✭
✭
✭
✭
✭✭

δ3Eπ∗,θtW−i(θ−i,t+3)−
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ2Eπ∗,θtW−i(θ−i,t+2)

+ · · · −
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ3Eπ∗,θtW−i(θ−i,t+3)

+ · · · − · · ·

= −δEθt+1|a∗(θ̂t),θt
W−i(θ−i,t+1) (12)

Let us show the reduction from the first term on the LHS to the first term on the RHS

above. The reduction of the other terms comes from similar exercises which is straightforward

and not shown here.

Eπ∗,θtEθt+2|a∗(θt+1),θt+1
W−i(θ−i,t+2)

= Eθt+1|a∗(θ̂t),θt
[Eθt+2|a∗(θt+1),θt+1

W−i(θ−i,t+2)]

= Eθt+1|a∗(θ̂t),θt
[Eθt+2|a∗(θt+1),θt+1,θtW−i(θ−i,t+2)]

= Eθt+2|π∗,θtW−i(θ−i,t+2)

= Eπ∗,θtW−i(θ−i,t+2)

The first equality above comes from the fact that the function inside bracket is only a

function of θt+1, and the second equality is due to the Markov property.

Hence, combining Equations 10, 11, and 12, we get,

uMATRIXi ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

≤ vi(a
∗(θ̂t), θt) +

∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)

− W−i(θ−i,t) + δEθt+1|a∗(θ̂t),θt
[W (θt+1)−W−i(θ−i,t+1)] (13)

We also note that,

Eθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1) = Eθt+1|a∗(θ̂t),θt

W−i(θ−i,t+1) (14)

This is because when i is removed from the system (while computing W−i(θ−i,t+1)), the

values of none of the other agents will depend on the type θi,t+1. And due to the independence

of type transitions, i’s reported type θ̂i,t can only influence θi,t+1. Hence, the reported value

of agent i at t, i.e., θ̂i,t cannot affect W−i(θ−i,t+1).
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Hence, Equation 13 can be rewritten and we can show the following inequality.

uMATRIXi ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

≤ vi(a
∗(θ̂t), θt) +

∑

j 6=i

vj(a
∗(θ̂t), θt) +

✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭

δEθt+1|a∗(θ̂t),θt
W−i(θ−i,t+1)

−W−i(θ−i,t) + δEθt+1|a∗(θ̂t),θt
[W (θt+1)−✭

✭
✭
✭
✭
✭✭

W−i(θ−i,t+1)] (from Eq. 14)

=
∑

j∈N

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θt

W (θt+1)−W−i(θ−i,t)

≤
∑

j∈N

vj(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)−W−i(θ−i,t)

(by definition of a∗(θt), Eq. 8)

= uMATRIXi (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt). (15)

This shows that utility of agent i is maximized when θ̂i,t = θi,t and v̂i,t = vi(a
∗(θt), θt). This

proves that MATRIX is within period ex-post incentive compatible.

We now argue that the second stage is strictly EPIC for an agent i. This happens because

of the quadratic penalty term
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

in the payment p∗i (Eq. (9)). Notice that

if all the agents except i report the types and values truthfully, and agent i also reports

her type truthfully in the first stage, then the penalty term will always penalize her if v̂i,t is

different from vi(a
∗(θt), θt), which is her true valuation. Hence, the best response of agent i

would be to report the true values in the second stage, which makes MATRIX strictly EPIC in

this stage. �

3.2 Why a dynamic pivot mechanism would not work in this

setting

It is interesting to note that, if we tried to use the dynamic pivot mechanism (DPM),

(Bergemann and Välimäki, 2010), unmodified in this setting, the true type profile θt in the

first summation of Eq. (13) would have been replaced by θ̂t, since this comes from the pay-

ment term (Eq. (9)). The proof for the DPM relies on the private value assumption (see the

beginning of Section 2 for a definition) such that, when reasoning about the valuations for

the other agents j 6= i, we have vj(a
∗((θ̂i,t, θ−i,t)), (θ̂i,t, θ−i,t)) = vj(a

∗(θ̂t), θj,t), with which the

EPIC claim of DPM can be shown. But in the interdependent value setting, we cannot do

such a substitution, and hence the proof of EPIC in DPM does not work. We have to invoke

the second stage of value reporting in order to satisfy the EPIC.
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3.3 Ex-post individual rationality for a restricted domain

In this section, we consider subset allocation (SA) and the values to be peer influenced (PIV).

Note that now the valuation of agent i is given by vi(a, θa), and the maximum social welfare

would be given by,

W (θt) = max
π

Eπ,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a(θs), θa(θs))

]

= max
a∈A

Ea,θt

[
∑

j∈N

vj(a, θa) + δEθt+1|a,θtW (θt+1)

]

(16)

Similarly the maximum social welfare excluding agent i is given by,

W−i(θ−i,t)

= max
a−i

Ea−i,θt




∑

j∈N\{i}

vj(a−i, θa−i
) + δEθt+1|a−i,θtW−i(θ−i,t+1)



 (17)

Both these definitions are the same as Definitions 4 and 7, but redefined in this restricted

domain. We now state the following theorem on individual rationality.

Theorem 2 (Individual Rationality) When the allocations are chosen from class SA,

values are in PIV, and types evolve in SMTT, MATRIX is w.p. EPIR.

Proof : We observe that the allocation set is the set of subsets ofN , the player set. Therefore,

the set of allocations excluding agent i, denoted by A−i = 2N\{i}, is already contained in the

set of allocations including i, denoted by A = 2N . Formally, this means a−i ∈ A−i ⊆ A ∋ a.

Therefore, the policies π−i ∈ A∞
−i ⊆ A∞ ∋ π. From Equation 4, we can write the optimal

social welfare in terms of the optimal policy π∗ as follows.

W (θt) =
∑

j∈N

vj(a
∗(θt), θa∗(θt)) + δEθt+1|a∗(θt),θtW (θt+1)

= Eπ∗,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a
∗(θs), θa∗(θs))

]

(18)

Hence in the ex-post Nash equilibrium, the utility of agent i is given by,

uMATRIXi (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt)

=
∑

j∈N

vj(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)−W−i(θ−i,t)

= W (θt)−W−i(θ−i,t).
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The first equality comes from the last equality in Equation 15. The last expression in the

equation above can be written as,

W (θt)−W−i(θ−i,t)

= Eπ∗,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a
∗(θs), θa∗(θs))

]

− Eπ∗

−i
,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i
(θ−i,s))





≥ Eπ∗

−i
,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i
(θ−i,s))





− Eπ∗

−i
,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i
(θ−i,s))





= 0 (19)

The inequality holds since while choosing the optimal policy including agent i, i.e., π∗, one

has the option of choosing π∗
−i as well, as we are in the SA domain, and the fact that the

valuations of the unallocated agents are zero, a consequence of the PIV domain. If this

inequality was not true, then there would exist some π∗
−i ∈ A∞

−i which would have achieved

a social welfare more than the maximum, which is a contradiction. This proves that MATRIX

is within period ex-post individually rational. �

3.4 Complexity of computing the allocation and payment

The non-strategic version of the resource to task assignment problem was that of solving an

MDP, whose complexity was polynomial in the size of state-space (Ye, 2005). Interestingly,

for the proposed mechanism, the allocation and payment decisions are also solutions of MDPs

(Equations 8, 9). Hence the proposed mechanism MATRIX has polynomial time complexity in

the number of agents and size of the state-space, which is the same as that of the dynamic

pivot mechanism (Bergemann and Välimäki, 2010).

In order to get a feel for the theory behind the mechanism MATRIX, let us illustrate the

mechanism through an example in the following section.
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4 Discussion of the Characterization of Dynamic Mechanisms

Let us consolidate our findings in this section. We have discussed the interesting and chal-

lenging domain of mechanism design with dynamically varying types and interdependent

valuations. There is very little work where dynamic types and interdependent values have

been addressed together. Hence, there is very little known on the limits of achievable prop-

erties in this domain. We have provided one mechanism, namely MATRIX, that is w.p. EPIC,

strict in the second stage, and under a restricted domain, even w.p. EPIR. However, we

do not know what mechanism characterizes those properties in this domain. For example,

a question that may arise is “Is this the only dynamic mechanism that satisfies strict w.p.

EPIC in an interdependent value setting?”. For the static setting with independent values

we have the Green-Laffont characterization result that answers this question for efficiency

and DSIC. However, such a characterization result is absent for interdependent valuations

for both static and dynamic mechanisms. Developing such a full characterization would be

worthwhile.

5 Conclusions and Future Work

This paper provides a first attempt of designing a dynamic mechanism that is strict ex-post

incentive compatible and efficient in an interdependent value setting with Markovian type

evolution. In a restricted domain, which appears often in real-world scenarios, we show that

our mechanism is ex-post individually rational as well. This mechanism, MATRIX, extends

the mechanism proposed by Mezzetti (2004) to a dynamic setting and connects it to the

mechanism proposed by Bergemann and Välimäki (2010).

However, we do not know if this is the maximal set of properties that can be satisfied

by any mechanism in dynamic setting. The full set of mechanisms that satisfy the proper-

ties studied in this paper is also not characterized. Both these questions form interesting

directions for future research.
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