Development From the Viewpoint of Nonconvergence: History versus Expectations

1. Introduction

- So far we have considered *expectation-driven inertial self-reinforcement* based on the existence of complementarities and increasing returns.
 - Complementarities (or pecuniary externalities) and increasing returns may result in multiple equilibria and coordination failure.
 - The economy ends up in one equilibrium or the other depending on self-fulfilling expectations.
- An important problem with theories of multiple equilibrium is that they carry an unclear burden of *history*.
 - Suppose, for instance, that an economy has been in a low-level investment trap for decades.
 - Nothing in the multiple equilibrium theory prevents that very same economy from abruptly shooting into the high-level equilibrium today.

- *History versus Expectations*:
 - There seems to be a presumption that, somehow, *history* pins down the equilibrium, and
 - makes it difficult for firms, individuals or sectors to free themselves in a coordinated way from the low-level equilibrium trap.
 - At the same time it is also asserted that if somehow the *expectations* of the economic agents involved could be changed,

 \circ movement would occur from one equilibrium to the other.

- Recall that we started to study theories based on multiple equilibria and coordination failure to formalize the ideas of Rosenstein-Rodan (1943) and Hirschman (1958).
- But Rosenstein-Rodan (1943) and Hirschman (1958) were certainly concerned with the issue of "stickiness" of equilibria, that is, the issue of "inertia" associated with *inertial self-reinforcement.*

- This has to do with the fact that at any given moment of time, a *particular* equilibrium is in force, and

 \circ has possibly been in force in that society in the medium- or long-run past.

- What causes the past to stick?
- How is a particular equilibrium pinned down by the force of historical inertia?
- What will it take to unpin it?
- Unfortunately, the multiple equilibrium or coordination-game paradigm is not of much use in this regard beyond the demonstration that multiplicities may exist.
 - In some sense, it avoids altogether any answer to the question:
 - why is one society less developed than another, and what can be done about it?
 - For this would require a theory of
 - \circ where the pessimistic beliefs originally came from, or
 - \circ how they could be manipulated by policy interventions.

- The paradigm is also at a loss for *explaining* historical inertia:
 - Repeat a multiple equilibrium story and numerous dynamic equilibria emerge,
 - including those in which the society jumps between the bad and good equilibria in all sorts of deftly coordinated ways.
- We lack good economic theory that actually identifies the "stickiness" of equilibria that Rosenstein-Rodan (1943) and Hirschman (1958) were concerned with.
 - A small body of literature exists on this topic:
 - Krugman (1991),
 - o Matsuyama (1991),
 - Adsera and Ray (1998),
 - Frankel and Pauzner (2000).

2. Krugman (1991)

- In models with external economies, when there are multiple equilibria, there is an obvious question: which equilibrium actually gets established?
- In the literature there is a broad division into two camps on this question:
 - 1. On one side is the belief that the choice among multiple equilibria is essentially resolved by *history*:
 - \circ past events set the preconditions that drive to one or another steady state.
- 2. On the other side, is the view that the key determinant of choice of equilibrium is *expectations*:
 - \circ there is a decisive element of self-fulfilling prophecy.
- The contribution of Krugman (1991) is twofold:
- (a) it points out the importance of the history versus expectations distinction;
- (b) it shows how the parameters of the economy determine the relative importance of history and expectations in determining equilibrium.

2.1 A Simple Model with Multiple Equilibria

- A one-factor (labour, L) economy which is able to produce two goods:
 - -*C*, a good produced with *constant returns*;
 - -X, a good whose production is subject to an *externality*.
 - \circ Assume that the larger the labor force engaged in X production (L_X), the higher is labor productivity in that sector:

$$\pi = \pi \left(L_X \right). \tag{1}$$

• Small-country assumption:

This economy is able to sell both C and X at fixed prices on world markets.

- Normalization: By choosing units of goods and labor, we can normalize so that
 - one unit of labor produces one unit of \boldsymbol{C} , and
 - the value of that unit is one.
- \Rightarrow Wage rate in the C sector is unity.

- In the X sector productivity depends on industry employment.
 - Since the economies of scale are external, each firm treats labor productivity as constant.
- \Rightarrow (Perceived) marginal product = average product.
- \Rightarrow Wage rate in the X sector is equal to the average product:

$$w = \pi \left(L_X \right). \tag{2}$$

- Given the normalization, w is the wage rate in X relative to that in C.
- Assumption: $\pi(0) < 1$, and $\pi(\overline{L}) > 1$.
 - $-\bar{L}$ is the economy's total labor supply.
 - Wage rate in the X sector would be
 - \circ lower than that in the C sector if nobody were employed in X,
 - \circ higher if everyone were employed in X.

• Multiple equilibrium:

- 1. Nobody is employed in X ($L_X = 0$):
 - \circ A worker considering producing *X* would find that she would receive a lower wage than she receives producing *C*.
 - \Rightarrow There is an equilibrium in which the economy is specialized in the production of C.
- 2. Everyone is employed in the X sector ($L_X = \overline{L}$):
 - \circ A worker considering producing C would find that this would involve a wage cut.
 - \Rightarrow Specialization in X is also an equilibrium.

- Which equilibrium does the economy go to?
 - In expositions of this kind of model, one often appeals to a quasi-dynamic story of the kind illustrated in Figure I.
 - Assumption: Starting with some initial allocation of labor between the two sectors, labor moves toward the sector that offers the higher wage.
 - $\circ L_X^*$ denotes the employment in X when w = 1.
 - \circ If the labor force in X is initially larger than L_X^* ,
 - \Rightarrow the X sector will snowball until the economy is specialized in X.
 - \circ If the labor force in X is initially smaller than L_X^* ,
 - \Rightarrow the X sector will unravel, and the economy will end up specializing in C.
 - Thus *history*, which determines the initial conditions, determines the ultimate outcome.

.

• Problems with the quasi-dynamic story:

Essentially the question is why labor should adjust slowly.

- Suppose first that labor can move costlessly between the X and C sectors.
 - \circ Then there is no reason why the initial distribution of labor should matter.
 - Whatever the initial position, all workers will move to the sector that they *expect* to yield the higher wage,
 - \cdot which is the sector that they *expect* all the other workers to move to.
 - Thus, in the absence of some cost of shifting labor, either equilibrium can be obtained as a *self-fulfilling prophecy*, whatever the initial position.
- To make the initial position matter, then, it is necessary to introduce some cost of adjustment in shifting labor between sectors.

- As soon as we introduce this cost of adjustment,
 - o a worker's decision to shift between sectors becomes an investment decision,
 - which depends not only on the current wage differential but on *expected* future wage rates as well.
 - But these future wage rates depend on the decisions of other workers;
 - \cdot if everyone expects many workers to move from C to X over time,
 - \rightarrow this will increase the attractiveness of moving from *C* to *X* even if there is no immediate effect on relative wage rates.
- \Rightarrow One cannot have dynamics without expectations.
 - Once one has expectations playing a role, there is in this kind of model the possibility of *self-fulfilling prophecy*.

- Does this mean that the traditional view that history is crucial for determining equilibrium is completely wrong?
 - Is it always possible to reach either equilibrium if everyone expects it?
- The answer is no.
 - To see this, it is necessary to formulate the dynamics of the model explicitly.

2.2 Making the Model Dynamic

- The model is made explicitly dynamic by making the cost of shifting labor a function of the rate at which labor is moved between sectors:
 - Moving cost:

$$\frac{1}{2\gamma}\left(\dot{L}_X\right)^2,$$

- $\circ \, \gamma$ is an inverse index of the cost of adjustment.
- \Rightarrow The national income of the economy at a given instant is

$$Y_t = \pi \left(L_X \right) \cdot L_X + \left(\bar{L} - L_X \right) - \frac{1}{2\gamma} \left(\dot{L}_X \right)^2.$$
(3)

- We suppose that individuals are able to borrow or lend freely on world markets at a given world interest rate *r*.
- \Rightarrow Their objective is to maximize the present value of output,

$$H = \int_0^\infty Y_t e^{-rt} dt.$$
(4)

• Note that (3) implies

$$\dot{L}_X = \sqrt{2\gamma \left[\pi \left(L_X\right) \cdot L_X + \left(\bar{L} - L_X\right) - Y_t\right]}.$$
(i)

• The dynamic optimization problem:

$$\underset{\{Y_t\}}{\text{Maximize}} \quad \int_0^\infty Y_t e^{-rt} dt$$

subject to

$$\dot{L}_X = \sqrt{2\gamma \left[\pi \left(L_X\right) \cdot L_X + \left(\bar{L} - L_X\right) - Y_t\right]}.$$

- Control variable: Y_t
- State variable: L_X
- Current value Hamiltonian:

$$CVH = Y_t + q_t \cdot \sqrt{2\gamma} \left[\pi \left(L_X \right) \cdot L_X + \left(\bar{L} - L_X \right) - Y_t \right]$$

 q_t : the shadow price placed on the "asset" of having a unit of labor in the X rather than the C sector.

• The first-order conditions are:

$$\frac{\partial CVH}{\partial Y_t} = 0, \tag{ii}$$

$$\frac{\partial CVH}{\partial L_X} = rq_t - \dot{q}, \tag{iii}$$

and the transversality condition:

$$\lim_{T \to \infty} q_T \cdot e^{-rT} \cdot L_X(T) = 0.$$
 (iv)

• (ii) implies

$$1 - \frac{\gamma q_t}{\sqrt{2\gamma \left[\pi \left(L_X\right) \cdot L_X + \left(\bar{L} - L_X\right) - Y_t\right]}} = 0.$$

– Using (i), this gives

$$\dot{L}_X = \gamma q_t. \tag{5}$$

- Labor moves at a rate determined by the equality of \circ marginal moving costs ($\frac{\dot{L}_X}{\gamma}$), and
 - \circ a shadow price (q_t) that represents the difference in *private* value between having a unit of labor in the X sector and in the Y sector.
- (iii) implies

$$rq_{t} - \dot{q} = \frac{q_{t}\gamma \left[\pi \left(L_{X}\right) - 1\right]}{\sqrt{2\gamma \left[\pi \left(L_{X}\right) \cdot L_{X} + \left(\bar{L} - L_{X}\right) - Y_{t}\right]}} = \pi \left(L_{X}\right) - 1 \quad \text{[using (i) and (5)]}.$$

that is,

$$\dot{q} = rq - \pi \left(L_X \right) + 1. \tag{8}$$

– Since individuals do not internalize the increasing returns to scale present in X production, they take π as given.

$$\circ$$
 This is used in calculating $\frac{\partial CVH}{\partial L_X}$.

• Integrating forward we derive the shadow price from (8):

$$q_t = \int_t^\infty (\pi - 1) \, e^{-r(\tau - t)} d\tau.$$
 (6)

• Rearranging (8) we get

$$r = \frac{(\pi - 1) + \dot{q}}{q}.$$
(7)

- ⇒ Interest rate must equal to the rate of return on the shadow asset consisting of \circ the difference in current earnings between labor in the X and C sectors (π − 1), and
 - \circ the rate of capital gains on the shadow asset (\dot{q}).
- Equations (5) and (8) define a dynamic system in (L_X, q) space.
 - In Figures II and III the qualitative laws of motion of this system are shown by the small arrows.

- (5) $\Rightarrow \dot{L}_X = 0$ if q = 0;
 - whenever q is positive, L_X is rising,
 - whenever q is negative, L_X is falling.
- (8) $\Rightarrow \dot{q} = 0$ for the combinations of (L_X, q) such that

$$q = \frac{1}{r} \left[\pi \left(L_X \right) - 1 \right].$$

- In Figures II and III these combinations are represented by the upward-sloping line marked $\dot{q} = 0$.
- For these combinations of (L_X, q) , q equals the capitalized value of a constant wage differential at the current rate.
- A higher value of q can result only if q is expected to rise.
- A lower value only if q is expected to fall.
- The two lines, $\dot{L}_X = 0$ and $\dot{q} = 0$, cross at q = 0, where $\pi(L_X) 1 = 0$, that is, at $L_X = L_X^*$.

FIGURE II

- There are, two possible long-run equilibria of this model.
 - At one, illustrated by E_C , the economy specializes completely in production of C;
 - At the other, E_X , the economy specializes in X.
 - At each equilibrium q equals the present value of the difference between
 - \circ what workers actually earn and
 - what an individual worker would earn if she decided to produce the other good indefinitely.
 - Note that $(q = 0 \text{ and } L_X = L_X^*)$ is an unstable steady state.
- We now ask what paths can lead to these equilibria, consistent with the laws of motion.
- Given the qualitative laws of motion shown in Figure II,
 - it is clearly possible to draw paths leading to the two equilibria that form the Sshaped locus shown in the figure.
 - \circ The right half of the *S* represents a path that leads to E_X ;
 - \circ the left half a path that leads to E_C .

- Dynamic behaviour corresponding to the paths in Figure II:
 - Suppose that we are given an initial allocation of labor between the two sectors.
 - \circ Then the initial value of q must be set at the unique value that puts the economy on the S-shaped curve.
 - From that point on, the economy would simply obey the dynamics,
 - \cdot converging to one or the other long-run equilibrium.
 - If $L_X > L_X^*$ initially, then the economy would gradually move to E_X ;
 - If $L_X < L_X^*$ initially, then the economy would gradually converge to E_C .
 - Thus, the dynamics illustrated in Figure II confirm the quasi-dynamic story illustrated in Figure I.
 - Adding an explicit description of the decision to reallocate resources and of the implied role of expectations does not change much.

- The paths shown in Figure II are not, however, the only possible ones consistent with the qualitative laws of motion.
- Figure III illustrates that instead of a monotonic approach to each long-run equilibrium, the economy might follow equilibrium paths consisting of two interlocking spirals:
 - The spirals wind outward from the center of the figure and
 o eventually separate to head for the two long-run equilibria.
 - These paths do indeed obey the laws of motion indicated by the small arrows.
 - Also the two spirals never cross one another.
 - \circ There is a unique path from any point.
 - Since the two paths end up in different places, they must not have any points in common.

FIGURE III

2.3 S-Curve versus Spirals

- Let us first confirm that both Figure II and Figure III are possible descriptions of equilibrium paths, and find out under what circumstances each description prevails.
- For that purpose it is necessary to place some more structure on the model.
 - The simplest structure is a linear one:

 \circ we suppose that the function $\pi(L_X)$ takes the particular form,

$$\pi \left(L_X \right) = 1 + \beta \left(L_X - L_X^* \right). \tag{9}$$

 With this structure, the dynamic system defined by (5) and (8) constitutes a pair of linear differential equations:

$$\begin{pmatrix} \dot{L}_X \\ \dot{q} \end{pmatrix} = \begin{bmatrix} 0 & \gamma \\ -\beta & r \end{bmatrix} \begin{pmatrix} L_X \\ q \end{pmatrix} + \begin{pmatrix} 0 \\ \beta L_X^* \end{pmatrix} + \begin{pmatrix} 0 \\ \beta L_X$$

- The behaviour of the system is determined by the characteristic roots of the matrix

$$\left[\begin{array}{cc} 0 & \gamma \\ -\beta & r \end{array}\right].$$

– The characteristic roots are:

$$\rho = \frac{1}{2} \left[r \pm \sqrt{r^2 - 4\beta\gamma} \right]. \tag{10}$$

• Two qualitative cases:

1. $r^2 > 4eta \gamma$:

- \Rightarrow There are two real positive roots.
- ⇒ The system is unstable and must steadily diverge from (q = 0 and $L_X = L_X^*$). • The possible paths to the two equilibria, ($q = -\frac{\beta L_X^*}{r}$ and $L_X = 0$) and ($q = \frac{\beta (\bar{L} - L_X^*)}{r}$ and $L_X = \bar{L}$), form the S-curve in Figure II.

2. $r^2 < 4eta\gamma$:

- \Rightarrow There are two complex roots with positive real parts.
- \Rightarrow The system is unstable, but diverges from (q = 0 and $L_X = L_X^*$) in expanding oscillations.
 - The possible paths form the interlocking spirals of Figure III.

- What is the economic meaning of the case illustrated in Figure III?
 - Note that the spirals define a range of values of L_X from L_X^C to L_X^X , from which either long-run equilibrium can be reached.
 - Which one is reached depends on expectations.
 - For any initial position in this range, there exists at least one set of self-fulfilling expectations leading to either long-run outcome.

 In particular, there are the simple paths defined by the outer arms of the two spirals that lead most rapidly to either long-run position.

- ⇒ The case of complex roots, which corresponds to Figure III, is also the case in which over some range *expectations rather than history are decisive*.
- We refer to this range of L_X from which either equilibrium can be reached, $[L_X^C, L_X^X]$, as the *overlap*.
- Outside the overlap, *history is decisive*:

• For $L_X < L_X^C$, there is a unique path leading to E_C ; • For $L_X > L_X^X$, there is a unique path leading to E_X .

- Inside the overlap there may be more than one set of expectations that leads to each equilibrium.
 - If people expect a direct path to E_X , that will happen.
 - \circ But, for some values of L_X , there are also self-fulfilling cyclical paths.
 - \circ Indeed, as L_X gets close to L_X^* , there is an infinite number of possible paths in each direction.
 - Thus, the possible dynamics are surprisingly complex.
- In general, many things can happen if there is an overlap and the initial position of the economy is inside it.
 - All that we can usefully say is that when there is an overlap,

the economy must eventually go to one equilibrium or the other;
self-fulfilling expectations can lead it in either direction.

- It is clear from the above analysis that the basic question of the respective roles of history and expectations resolves itself in this model into the question of the overlap:
 - Does an overlap exist, and how wide is it?

2.4 Existence and Size of the Overlap

- If there is no overlap, then history is always decisive in this model.
- If there is an overlap, then
 - history determines the outcomes if L_X lies outside the overlap, but
 - expectations decide the outcome if L_X lies inside.
- So we must be interested in the factors determining the existence and width of the overlap.
- Recall that an overlap exists if and only if $r^2 < 4\beta\gamma$.
- The existence of an overlap depends on three parameters:
 - -r: the interest rate,
 - β : represents the strength of the external economies,
 - γ : measures the speed of adjustment.

- 1. If r is sufficiently large, then there will be no overlap, and history will dominate expectations.
 - r is sufficiently large \Rightarrow the future is heavily discounted,
 - ⇒ individuals will not care much about the future actions of other individuals, and
 this will eliminate the possibility of self-fulfilling prophecies.
- 2. A small β eliminates the possibility of self-fulfilling expectations.
 - β small \Rightarrow external economies are small.
 - \Rightarrow there will not be enough interdependence among decisions.
- 3. If γ is small, so that the economy adjusts slowly, then history is always decisive.
 - If adjustment is slow, factor rewards will be near current levels for a long time whatever the expectations,
 - \Rightarrow factor reallocation always follows current returns.

- We expect that the same factors r, β and γ will also determine the width of the overlap.
 - Determining the width of the overlap explicitly, even in the linear case, is an algebraic nightmare.
- \bullet The effect of γ on the width of the overlap may be demonstrated using a simple geometric argument.
 - Figure IV shows the outermost part of a spiral converging to E_X .
 - Point A on this spiral where it crosses q = 0 determines the lower boundary of the overlap.
 - Suppose $\gamma\uparrow$.
 - \circ (8) $\Rightarrow \dot{q}$ remains unaffected.
 - \circ But (5) \Rightarrow at any positive q, the rate at which L_X rises would be increased.
 - \Rightarrow A path starting at point *A* would start to diverge to the right of the original path leading to E_X , and
 - \cdot would do so increasingly over time.

FIGURE IV

1

- \Rightarrow In order to reach E_X with a higher γ we would have to start somewhere farther to the left of A, say at A'.
- \Rightarrow Width of the overlap increases.
- The result that as $\gamma \uparrow$, width of the overlap increases, should not be surprising.
 - We noted at the beginning that in the absence of adjustment costs history is irrelevant:

 \circ any equilibrium can be reached through convergent expectations.

- We now see that the slower the rate at which the economy adjusts, the more likely it is that history matters;

 \circ if adjustment is slow enough, history is always decisive.