Development From the Viewpoint of Nonconvergence: History: Inequality and Markets

1. Introduction

• Recall our hypothesis of **historically conditioned divergence**:

Two societies with the same fundamentals can evolve along very different paths depending on

- past expectations
- aspirations
- actual history.
- So far we have considered inertial self-reinforcement:

Multiple equilibria (associated with differing levels of development) that are driven by alternative degrees of optimism or pessimism, with the equilibria in turn 'justifying' these beliefs – *expectations* or *aspirations*.

• This view of underdevelopment may be usefully complemented by a related, though distinct approach:

Historical self-reinforcement: Historically given initial conditions can persistently influence current outcomes, thereby reinforcing historical legacies.

- Historical legacies need not be limited to a nation's inheritance of capital stock or GDP from its ancestors.
 - Various diverse factors may serve as initial conditions with a long reach:
 - \circ the distribution of economic or political power,
 - ∘ legal structure,
 - \circ traditions,
 - \circ group reputations,
 - o colonial heritage,
 - o specific institutional settings.
 - Factors that have received special attention in the literature include
 - o historical inequalities,
 - o nature of colonial settlement,
 - \circ character of early industry and agriculture,
 - \circ early political institutions.

- But, of all these factors, perhaps the darkest shadow is cast by *initial inequalities in the distribution of asset ownership*.
 - With imperfect capital markets, the poor are limited in their access to credit necessary for production and investment.
 - Hence, increased inequality can exert negative effects on both levels and growth rates of per capita income.
 - High initial inequalities may also create conditions for self-perpetuation,
 generating a lock-in effect with economic stagnation.
 - The very same fundamental economy would perform differently
 - \circ faced with a different level of initial inequality, or
 - \circ jolted by a one-time redistribution.
- The three readings that will be discussed in the lectures emphasize various aspects of this connection between inequality and development:
 - Galor and Zeira (1993); Banerjee and Newman (1993); and Ghatak and Jiang (2002).

2. Galor and Zeira (1993)

- Analyzes the role of *wealth distribution* in explaining the *persistent differences in per-capita output across countries* through investment in *human capital*.
- Shows that the initial distribution of wealth affects aggregate output and investment both in the short and in the long run in the presence of
 - credit market imperfections, and
 - indivisibilities in investment in human capital.
- Shows how the convergence prediction of the neoclassical growth model can be overturned by dropping the assumptions of a convex technology and perfect capital markets.
 - With setup costs in the acquisition of certain occupations or skills, and borrowing constraints for poor agents,
 - the initial distribution of wealth will influence the aggregate skill composition of the economy and total output, resulting in self-reinforcement.

- Poor families will not find it worthwhile to invest in the education of their children,
 o locking their descendants into a poverty trap.
- High initial inequalities thus tend to perpetuate themselves.
- Moreover, countries with a historically higher poverty rate will have a persistently lower per capita income.

2.1 The Basic Model

- A small open economy in a one-good world.
 - The good can be used for either consumption or investment.
- The good can be produced by two technologies:
 - Production in skilled labour sector:

$$Y_t^S = F\left(K_t, L_t^S\right); \tag{1}$$

- $\circ Y_t^S$: output in skilled labour sector at time t;
- $\circ K_t$: amount of capital;
- $\circ L_t^S$: labour input in skilled labour sector at time t.
- \circ F is concave with constant returns to scale.
- Investment in human and physical capital is made one period in advance.
- No adjustment costs to investment and no depreciation of capital.

- Production in *unskilled* labour sector:

$$Y_t^n = w_n \cdot L_t^n; \tag{2}$$

- $\circ Y_t^n$: output in unskilled labour sector at time *t*;
- $\circ L_t^n$: labour input in unskilled labour sector at time t;
- $\circ w_n > 0$ is marginal product of unskilled labour.
- Individuals live for two periods each in overlapping generations.
 - *Either* work as unskilled in both periods of life,
 - Or invest in human capital when young, and be skilled workers in the second period of life.
 - \circ Amount of (indivisible) investment in human capital: h > 0.
 - Indivisibility of the amount of investment implies that there is a region of increasing returns to scale.
 - An individual supplies one unit of labour in each of the working periods.

- Each individual has one parent and one child.
 - Creates the connection between generations.
 - Also \Rightarrow no population growth.
- A continuum of individuals of size *L* in each generation.
- People care about their children and leave them bequests.
- People consume in the second period of life only (simplifying assumption).
- Individual utility function:

$$u = \alpha \log c + (1 - \alpha) \log b, \quad 0 < \alpha < 1, \tag{3}$$

- -c: consumption in second period,
- b: bequest.
- All individuals are born with the same potential abilities and same preferences.
 - Differ only in the amounts they inherit from their parents.

Credit Market Imperfection:

- Capital is perfectly mobile.
 - Free access to international capital markets.
 - World rate of interest, r, is constant over time.
 - Individuals can lend any amount at this rate.
- Credit market imperfection shows up while borrowing.
 - A borrowing individual can evade debt payments.
 - Lenders can avoid such defaults by keeping track of borrowers.
 - If a lender spends z in keeping track of a borrower, the borrower can still evade, but only at a cost of βz , $\beta > 1$.
 - Competitive financial intermediation \Rightarrow zero profit \Rightarrow

$$d \cdot (1+i) = d \cdot (1+r) + z,$$

- $\circ d$: amount of loan,
- \circ *i*: borrowing interest rate.

- Lenders choose high enough z to make evasion unprofitable:

$$d \cdot (1+i) = \beta z.$$

– Follows that borrowing interest rate > lending interest rate:

$$i = \frac{1 + \beta r}{\beta - 1} > r. \tag{7}$$

- Unlike individuals, firms are unable to evade debt payments,
 - due to immobility, reputations, etc.
- \Rightarrow Firms can borrow at the lenders' interest rate, r.
- Capital in skilled labour sector is adjusted in each period so that

$$F_K\left(K_t, L_t^S\right) = r. \tag{4}$$

$$\Rightarrow \frac{K_t}{L_t^S}$$
 is constant (why?).

T 7

- \Rightarrow Wage of skilled labour, w_S , is also constant (why?).
- Both labour markets and the good market are perfectly competitive.

2.2 Wealth Distribution and Short-Run Equilibrium

Individual Optimal Decisions:

• Individual's decision problem in second period of life:

 $\left. \begin{array}{l} \text{Maximize } \alpha \ \log \ c + (1 - \alpha) \ \log \ b, \\ \sup_{\{c,b\}} \text{subject to, } c + b \leq M. \end{array} \right\}$

- M: individual's lifetime income.
- Solution to individual's decision problem:
 - $-c^* = \alpha \cdot M,$
 - $-b^* = (1-\alpha) \cdot M.$
- \Rightarrow Lifetime utility: $U = \log M + \varepsilon$,
 - $\circ \varepsilon = \alpha \, \log \, \alpha + (1 \alpha) \, \log \, (1 \alpha) \, .$
- \bullet Consider an individual who inherits an amount x from his parent.

- If works as unskilled and not invest in human capital,
 - Lifetime income: $M_n = (x + w_n) (1 + r) + w_n;$
 - Lifetime utility: $U_n(x) = \log \left[(x + w_n) (1 + r) + w_n \right] + \varepsilon;$
 - Bequest: $b_n(x) = (1 \alpha) \cdot [(x + w_n)(1 + r) + w_n].$
- If inheritance $x \ge h$, and invests in human capital,
 - Lender in first period of life;
 - Lifetime income: $M_S = (x h) (1 + r) + w_S;$
 - Lifetime utility: $U_S(x) = \log \left[(x h) (1 + r) + w_S \right] + \varepsilon;$
 - Bequest: $b_S(x) = (1 \alpha) \cdot [(x h)(1 + r) + w_S]$.
- If inheritance x < h, but invests in human capital,
 - Borrower in first period of life;
 - Lifetime income: $M_S = (x h)(1 + i) + w_S;$
 - Lifetime utility: $U_S(x) = \log \left[(x h) (1 + i) + w_S \right] + \varepsilon;$
 - Bequest: $b_S(x) = (1 \alpha) \cdot [(x h)(1 + i) + w_S]$.

- Note that if $w_S h(1+r) < w_n(2+r)$, then $U_S(x)|_{\text{Borrower}} < U_S(x)|_{\text{Lender}} < U_n(x)$; \Rightarrow all individuals prefer to work as unskilled.
 - Since this is a case with limited interest we assume that

$$w_S - h(1+r) \ge w_n(2+r)$$
. (14)

 $\Rightarrow U_{S}(x)|_{\text{Lender}} \geq U_{n}(x) \Rightarrow \text{lenders prefer to invest in human capital.}$

- Borrowers invest in human capital as long as $U_{S}(x)|_{\text{Borrower}} \geq U_{n}(x)$,
 - that is, as long as $(x h)(1 + i) + w_S \ge (x + w_n)(1 + r) + w_n$,
 - that is, as long as

$$x \ge \frac{w_n (2+r) + h (1+i) - w_S}{i-r} \equiv f.$$
 (15)

- \Rightarrow Individuals who inherit an amount smaller than f would prefer not to invest in human capital but work as unskilled.
 - Education is limited to individuals with high enough initial wealth,
 - \cdot due to a higher interest rate for borrowers.

Wealth Distribution and Short-Run Equilibrium:

- Inheritance of an individual fully determines
 - decisions whether to invest in human capital or work as unskilled,
 - how much to consume and bequeath.
- Let D_t be the distribution of inheritances by individuals born in period t:
 - $D_t(x_t)$ = proportion of individuals born in period t with inheritance $\leq x_t$.
 - This distribution satisfies: $\int_{0}^{\infty} dD_t(x_t) = L.$
- D_t fully determines economic performance in period t:
 - skilled labour: $L_t^S = \int_t^\infty dD_t(x_t)$.

- unskilled labour:
$$L_t^n = \int_0^f dD_t(x_t)$$
.

⇒ Wealth distribution determines aggregate output and has a strong effect on the macroeconomic equilibrium.

2.3 The Dynamics of Wealth Distribution

- The distribution of wealth (D_t) not only determines equilibrium in period t, but also determines next period distribution of inheritances (D_{t+1}).
- From D_t to D_{t+1} :

$$x_{t+1} = \begin{cases} b_n (x_t) = (1 - \alpha) \cdot \left[(x_t + w_n) (1 + r) + w_n \right], & \text{if } x_t < f \\ b_S (x_t) = (1 - \alpha) \cdot \left[(x_t - h) (1 + i) + w_S \right], & \text{if } f \le x_t < h \\ b_S (x_t) = (1 - \alpha) \cdot \left[(x_t - h) (1 + r) + w_S \right], & \text{if } x_t \ge h. \end{cases}$$
(19)

• This dynamic evolution of wealth distribution is illustrated in Figure 1.

- \bullet Individuals who inherit less than f
 - work as unskilled;
 - their descendants in all future generations also work as unskilled;
 - their inheritances converge to a long-run level \bar{x}_n :

$$\bar{x}_n = \frac{w_n \left(1 - \alpha\right) \left(2 + r\right)}{1 - \left(1 - \alpha\right) \left(1 + r\right)}.$$
(20)

- Individuals who inherit *more* than f
 - invest in human capital;
 - not all descendants remain in skilled labour sector in future generations.
 - \circ The critical point in Figure 1 is g:

$$g = \frac{(1-\alpha) \left[h \left(1+i \right) - w_S \right]}{(1+i) \left(1-\alpha \right) - 1}.$$
(21)

- \circ Individuals who inherit less than g
 - may invest in human capital for some generations,
 - but, after some generations, their descendants become unskilled workers,
 - their inheritances converge to \bar{x}_n .
- Individuals who inherit more than g
 - invest in human capital,
 - and so do their descendants, generation after generation;
 - their bequests converge to \bar{x}_S :

$$\bar{x}_{S} = \frac{(1-\alpha) \left[w_{S} - h \left(1 + r \right) \right]}{1 - (1-\alpha) \left(1 + r \right)}.$$
(22)

- In the long run dynasties are concentrated in two groups:
 - rich dynasties: generation after generation invests in human capital;
 - poor dynasties: unskilled workers generation after generation.

Two Assumptions in Drawing Figure 1:

- 1. Slopes of b_n and b_s in Figure 1 are less than 1 at \bar{x}_n and \bar{x}_s respectively.
 - That is, we assume that α and r satisfy:

$$(1-\alpha)(1+r) < 1.$$
 (23)

- This assumption guarantees that the process of bequest formation from generation to generation is stable and does not explode.
- 2. Slope of b_S in Figure is greater than 1 for $f < x_t < h$:

$$(1-\alpha)(1+i) > 1$$
, that is, $\frac{\beta}{\beta-1}(1-\alpha)(1+r) > 1$. (24)

- That is, enforcement costs are rather high so that the spread between the lending and borrowing interest rates is high too.
- If (24) does not hold, all long-run distributions of labour are concentrated in either the unskilled labour sector or in the skilled sector.

The Long-Run Equilibrium:

- The dynamic evolution of the aggregate economy can be deduced from the individual dynamics, as presented in Figure 1.
 - The economy converges to a long-run equilibrium in which the population is divided into two groups:
 - \circ *skilled workers* with wealth \bar{x}_S , and
 - \circ unskilled workers with wealth \bar{x}_n .
 - Relative size of the two groups in the long-run depends on *initial wealth distribution*: \circ poor (unskilled): $L_{\infty}^{n} \equiv \lim_{t \to \infty} L_{t}^{n} = \int_{0}^{g} dD_{0}(x_{0}) \equiv L_{0}^{g}$. \circ rich (skilled): $L - L_{\infty}^{n}$.
 - The long-run level of average wealth is:

$$\frac{1}{L} \left[L_{\infty}^n \cdot \bar{x}_n + \left(L - L_{\infty}^n \right) \cdot \bar{x}_S \right] = \bar{x}_S - \frac{L_0^g}{L} \left(\bar{x}_S - \bar{x}_n \right) \cdot \frac{L_0^g}{L_0^g} \left(\bar{x}_N \right$$

• The long-run level of average wealth is *decreasing* with $\frac{L_0}{L}$.

Characterizing the Long-Run Equilibrium:

- Long-run levels of income and wealth are *positively* related to the *initial* number of individuals who inherit more than g.
 - Initially poor economy ends up poor in the long-run.
 - Initially rich economy, with relatively equal wealth distribution, ends up rich.
 - Economy with large amount of initial wealth, but held by just a few, ends up poor.
- A country has better growth prospects if it has a relatively larger middle class.
- The long-run equilibrium depends on initial wealth distribution;
 - history dependence.
- Multiple long-run equilibria:
 - the specific equilibrium an economy converges to depends on initial wealth distribution.

2.4 The Two Major Assumptions

- 1. Credit markets are imperfect:
 - the interest rate for individual borrowers is higher than that for lenders.
- 2. Investment in human capital is indivisible:
 - there is a *technological non-convexity*.
- The result that wealth distribution affects economic activity in the short run is due to the assumption that credit markets are imperfect.
 - This result is quite intuitive.
 - If borrowing is difficult and costly, those who inherit a large initial wealth and do not need to borrow have better access to investment in human capital.
 - Hence the distribution of wealth affects the aggregate amounts of investment in human capital and of output.

- This result was first shown by Loury (1981).
 - But, in Loury (1981), although credit markets are imperfect, the production function of human capital is smooth and convex.
 - o As a result the effect of wealth distribution disappears in the long-run,
 - all initial wealth distributions in Loury's model converge to a unique ergodic distribution.
- Galor and Zeira (1993) shows that if we add the second assumption, that technology is non-convex,
 - the inherited distribution of wealth affects the economy not only in the short run but in the long run as well.
 - As a result of this second assumption there are multiple long-run equilibria and dynamics are no longer ergodic.

2.5 The Model with Variable Wages

- Now the basic model is extended to include variable wages for unskilled workers.
 - Additional Assumptions:
 - 1. Production by unskilled labour involves a second factor of production, land.
 - 2. The unskilled work only in first period of life (simplifying assumption).
 - Production by unskilled labour and land is described by:

$$Y_t^n = G\left(L_t^n, N\right); \tag{27}$$

- \circ N: land; aggregate amount fixed at \bar{N} ;
- \circ G is a constant return to scale production function.
- \Rightarrow Wages of unskilled workers are:

$$w_t^n = G_L\left(L_t^n, N\right) = P\left(L_t^n\right),\tag{28}$$

- $P(L_t^n)$ describes the diminishing marginal productivity of unskilled labour.
- (28) is the inverse demand function for unskilled labour.

The Supply of Unskilled Workers:

• Since w_t^n is endogenous, f, the threshold level for investment in human capital defined in equation (15), is now a function of w_t^n :

$$f(w_t^n) = \frac{w_t^n (1+r) + h (1+i) - w_S}{i-r}.$$
(30)

- Compared with (15), w_t^n is now multiplied by (1 + r) instead of (2 + r) reflecting the fact that the unskilled work only in the first period of life.
- The supply of unskilled workers is determined by the number of individuals whose inheritance falls short of the threshold level $f(w_t^n)$:

$$S_{t} = \int_{0}^{f(w_{t}^{n})} dD_{t}(x_{t}).$$
(29)

• The supply curve, S_t , is depicted in Figure 2.

- Note that if $w_t^n > \frac{w_S}{(1+r)} - h$, then $U_S(x)|_{\text{Borrower}} < U_S(x)|_{\text{Lender}} < U_n(x)$, $\Rightarrow S_t = L$.

- At
$$w_t^n = \frac{w_S}{(1+r)} - h$$
, $U_n(x) = U_S(x)|_{\text{Lender}} > U_S(x)|_{\text{Borrower}}$

 \Rightarrow the supply curve becomes flat at this wage.

- The supply curve is upward sloping.

• As $w_t^n \uparrow$, $f(w_t^n) \uparrow$, and hence $S_t = \int_0^{f(w_t^n)} dD_t(x_t)$ increases.

- The supply curve can contain horizontal as well as vertical segments.
 - Horizontal segment if there is a group of positive measure who inherit the same amount.
 - Vertical between w_0 and w_1 , if the distribution D_t is such that there are no inheritances between $f(w_0)$ and $f(w_1)$.

ł

- Figure 2 presents demand P, supply S_t and the equilibrium in the unskilled labour market.
 - This equilibrium in the unskilled labour market determines
 - \circ the wage of unskilled,
 - \circ the number of unskilled, and
 - \circ the number of investors in human capital.
 - And the number of skilled and unskilled workers determine the aggregate output.
- It is clear from Figure 2 that this short-run macroeconomic equilibrium depends on the distribution of inheritances D_t .
- Next we show that the historically given initial distribution of wealth D_0 affects the equilibrium not only in the short run, but in the long run as well.

2.6 Wealth Distribution and National Income

• We first describe the dynamic evolution of wealth within dynasties:

$$x_{t+1} = \begin{cases} b_n (x_t) = (1 - \alpha) \cdot [(x_t + w_n) (1 + r)], & \text{if } x_t < f(w_t^n) \\ b_S (x_t) = (1 - \alpha) \cdot [(x_t - h) (1 + i) + w_S], & \text{if } f(w_t^n) \le x_t < h \\ b_S (x_t) = (1 - \alpha) \cdot [(x_t - h) (1 + r) + w_S], & \text{if } x_t \ge h. \end{cases}$$
(31)

- These dynamics are similar to those in the basic model with one exception, $\circ w_t^n$ is no longer fixed, but is endogenous and depends on the wealth distribution.
- This significantly complicates the dynamic analysis,
 but the diagrams enable us to describe these dynamics in a fairly simple way.
- Figure 3 describes this individual bequest dynamics;
 - \circ differs from Figure 1 in that the b_n line is not fixed, shifts with the endogenous w_t^n .

- An economy is defined as "developed" if the equilibrium wage of unskilled workers in period 0, w_0^n , is high and satisfies $f(w_0^n) > g$, where g is given by equation (21).
 - Intuitively an economy is developed if the number of individuals who have high inheritances in 0 is large.
 - Such a case is described by the b_n^2 line in Figure 3.
 - It can be shown that an economy is developed if and only if $w_t^n > w_g$, where w_g is defined by:

$$w_g = \frac{\left(\alpha + \alpha r - r\right)\left[w_S - h\left(1 + i\right)\right]}{\left(1 + r\right)\left(\alpha + \alpha i - i\right)}.$$
(32)

• Similarly an economy is defined as "less developed" if $w_0^n \leq w_g$.

Dynamics of a Less Developed Economy:

- Individual bequests in this economy in period 0 are described by the lines b_n^1 and b_s in Figure 3.
- Observation:
 - individuals who inherit more than *g* leave a bequest which is larger than what they have inherited,
 - individuals who inherit less than g leave a bequest which is smaller than what they have inherited.
- \Rightarrow The supply curve of unskilled labour in period t + 1, S_{t+1} , is rotated relative to S_t around w_g , as described in Figure 4.
 - \Rightarrow The wage of unskilled workers falls and b_n shifts downward.

FIGURE 4

- This process continues and the economy converges to the long-run equilibrium at point A in Figure 4, where
 - \circ the wage is w^n_∞ ,
 - \circ the number of unskilled workers is L_{∞}^{n} , and
 - $\circ S_{\infty}$ is the supply curve.
- The long-run wealth of the unskilled is \bar{x}_n , given by point A in Figure 3.
- Notice that the long-run number of unskilled workers L_{∞}^{n} equals precisely the number of those who inherit less than g in the initial period, $\int_{0}^{g} dD_{0}(x_{0}) \equiv L_{0}^{g}$.
 - This number is time independent and remains constant for all t.
 - \Rightarrow The above results are time-consistent.

Dynamics of a Developed Economy:

- Individual bequests in this economy in period 0 are described by the lines b_n^2 and b_s in Figure 3.
 - Every individual (in the relevant domain) bequeaths more than she has inherited.
- \Rightarrow The supply curve in next period shifts everywhere to the left.
- \Rightarrow wages rise: $w_{t+1}^n > w_t^n$, as shown in Figure 5.
- This process continues until equilibrium is reached at B, where the unskilled wage rate is

$$w_{\infty}^n = \frac{w_S}{(1+r)} - h,$$

 \circ and b_n coincides with b_s .

- This is an egalitarian long-run equilibrium:
 - net life-time incomes of skilled workers and of unskilled workers are equal.

- The long-run economic dynamics in this model, therefore, crucially depend on the number of individuals who inherit less than g in period 0, L_0^g .
 - A country is developed if and only if $w_0^n > w_g$, that is, if and only if $P(L_0^g) > w_g$.
- Theorem 1 summarizes the long-run economic dynamics.

• Theorem 1.

If an economy satisfies $0 < g < \bar{x}_S$, its dynamics depend on the number of individuals who inherit less than g in period 0, L_0^g :

(a) A less developed economy, where $P(L_0^g) \le w_g$, converges to an unequal distribution of income, where

$$w_{\infty}^n < \frac{w_S}{(1+r)} - h.$$

(b) A rich economy, where $P(L_0^g) > w_g$, converges toward an equal distribution of lifetime income, where

$$w_{\infty}^n = \frac{w_S}{(1+r)} - h.$$

- This model shows that wealth and equality are highly correlated and affect one another.
 - On the one hand, countries with greater income per capita have a more equal distribution of income and smaller wage differentials.
 - On the other hand, countries with a more equal initial distribution of wealth grow more rapidly and have a higher income level in the long run.