Midterm Exam: Question 1 (13 June 2021)

- Maximum marks: 50
- Time allotted (including uploading on Moodle): 90 minutes
- Consider a less developed country with N sectors, each sector producing a distinct commodity. There is one representative price-taking consumer who supplies L units of labour inelastically. The consumer's utility function is given by

$$
u=x_{1} \cdot x_{2} \cdot \ldots \cdot x_{N}
$$

(a) [3 marks]

Show that if the aggregate income is y, then the demand function for any good i is

$$
x_{i}=\frac{y}{N \cdot p_{i}},
$$

where p_{i} is the price of good i.

- Let us treat the wage as numeraire. Now if the aggregate profit earned in the economy is given by $\bar{\pi}$, the aggregate income is

$$
y=\bar{\pi}+L .
$$

Note that L is the total wage income in the economy because the wage is assumed to be equal to 1 .

- The market structure within each sector is as follows. There exists a competitive fringe of firms that can convert 1 unit of labour into 1 unit of output. These are the "traditional" producers. In addition each sector has one (potential) "modern" firm that has to first incur a fixed cost of "burning up" F units of labour and then can convert each unit of labour into $\alpha>1$ units of output. Here "industrialization" of a sector is synonymous with the monopolist entering production in that sector.
- Assumption: The fixed cost, F, depends on how many sectors have already industrialized, n, that is, F is a function of $n, F(n)$.
- It means that the economy has technological externalities between its various sectors. The externality is positive if $F^{\prime}(n)<0$ and negative if $F^{\prime}(n)>0$.
- Assume that the competitive firms can enter and exit from the industry costlessly. Therefore, the competitive fringe of each sector has a perfectly elastic supply at price $=1$ (recall that wage $=1$, by definition) .
- The monopolist in each sector decides whether to industrialize or to abstain from production. The monopolist maximizes profit taking the demand curve as given.
(b) [4 marks]

If a monopolist decides to industrialize, what is the optimal price it will charge? Give a clear explanation for your answer.
(c) [4 marks]

Suppose aggregate income is y, and the monopolist in some sector decides to industrialize. Derive, with a clear explanation, the expression for profit of the monopolist in that sector.
(d) [7 marks]

Let $y(n)$ be the aggregate income when n sectors industrialize. Derive, with a clear explanation, that

$$
y(n)=\left(\frac{N}{N-n a}\right) \cdot(L-n F(n)),
$$

where $a \equiv \frac{\alpha-1}{\alpha}$. Provide a clear economic interpretation of the term $\left(\frac{N}{N-n a}\right)$.
(e) [4 marks]

When n sectors have industrialized, let $\pi(n)$ denote the monopolist's profit in each of these sectors. Derive, with a clear explanation, that

$$
\pi(n)=\frac{a L-N F(n)}{N-n a}
$$

(f) [6 marks]

Suppose that the technological externality is negative, that is, $F^{\prime}(n)>0$. Can there exist multiple equilibria with both no-industrialization and full-industrialization being equilibrium possibilities? Give a clear explanation for your answer.
(g) [22 marks: $10+12]$

Suppose that there exist multiple equilibria with both no-industrialization and fullindustrialization being equilibrium possibilities. The ideas of the "big push" and the "critical minimum effort" were widely discussed in the literature on economic development in the fifties. For example, Leibenstein (1957) (Economic Backwardness and Economic Growth, New York: Wiley) had suggested that (a) there exists a certain minimum level of investment or effort such that a smaller investment is not sustainable and that (b) once this investment is undertaken, the economy will grow on its own.
(i) Explain clearly how the above model gives us insights into the idea of the "critical minimum effort".
(ii) Sketch a "balanced-budget tax and subsidy" policy of the government to implement the "critical minimum effort" that can eliminate the no-industrialization equilibrium.

Midterm Exam: Question 2 (13 June 2021)

- Maximum marks: 10
- Time allotted (including uploading on Moodle): 20 minutes
- Take a very careful look at Table 2 and Table 3 (that are prepared from Table 1) along with Table 1. Does the evidence in Table 2 support the prediction of the convergence hypothesis? Give a clear explanation for your answer.

TAbLE 2-1 Real per Capita GDP for 56 Countries TABLE 1
(in 1990 U.S. Dollars)

	1820	1870	1900	1913	1950	1973	1992
West European Countries							
Austria	1,295	1,875	2,901	3,488	3,731	11,308	17,160
Belgium	1,291	2,640	3,652	4,130	5,346	11,905	17,165
Denmark	1,225	1,927	2,902	3,764	6,683	13,416	18,293
Finland	759	1,107	1,620	2,050	4,131	10,768	14,646
France	1,218	1,858	2,849	3,452	5,221	12,940	17,959
Germany	1,112	1,913	3,134	3,833.	4,281	13,152	19,351
Italy	1,092	1,467	1,746	2,507	3,425	10,409	16,229
Netherlands	1,561	2,640	3,533	3,950	5,850	12.763	16,898
Norway	1,004	1,303	1,762	2,275	4,969	10,229	17,543
Sweden	1,198	1,664	2,561	3,096	6,738	13,494	16,927
Switzerland	na	2,172	3,531	4,207	8,939	17,953	21,036
United Kingdom	1,756	3,263	4,593	5,032	6,847	11,992	15,738
Western Offshoot							
Australia	1.528	3.801	4,299	5,505	7,218	12,485	16,237
Canada	893	1,620	2,758	4,213	7,0-4	13,64.4	18,159
New Zealand	na	3.115	4,320	5,178	8,495	12,575	13,947
United States	1,287	2.457	4,096	5.307	9,573	16.607	21,558
South European Countries							
Greece	na	na	na	1,621	1.951	7.779	10,314
Ireland	954	1.773	2.495	2.733	3.518	7.023	11,711
Portugal	na	1,085	1.408	1.354	2.132	7,568	11,130
Spain	1,063	1,376	2.040	2,255	2.397	8.739	12.498
Turkey	na	na	na	979	1.299	2.739	4.422
East European Countries							
Bulgaria	na	na	na	1.498	1.651	5.28.4	4,054
Czechoslovakia	849	1,164	1,729	2.096	3.501	7.036	6,8+5
Hungary	na	1.269	1,682	2.098	2,480	5,596	5,638
Poland	na	na	na	na	2,417	5.334	4,726
Romania	na	na	na	na	1.182	3.477	2,565
U.S.S.R.	751	1,023	1.218	1.488	2,834	6,058	4,671
Yugoslavia	na	na	na	1,029	1,546	4,237	3,887
Latin American Countries							
Argentina	na	1,311	2.756	3,797	4.987	7,970	7,616
Brazil	670	740	704	839	1,673	3.913	4,637
Chile	na	na	1,949	2.653	3,827	5.028	7,238
Colombia	na	na	973	1,236	2,089	3,539	5,025
Mexico	760	710	1,157	1.467	2,085	4,189	5,002
Peru	na	na	817	1,037	2,263	3.953	2,854
Venezuela	na	783	1,311	1.733	3.478	5,017	5.949
							(continued)

TABLE 1 (continered)
Table 2-1 Real per Capita GDP for 56 Countries (continued) (in 1990 U.S. Dollars)

	1820	1870	1900	1913	1950	1973	1992
Asian Countries							
Bangladesh	na	531	581	617	551	478	720
Burma	na	na	647	635	393	589	748
China	523	523	652	688	614	1,186	3,096
India	531	558	625	663	597	853	1,348
Indonesia	614	657	745	917	874	1,538	2,749
Japan	704	741	1,138	1,334	1,873	11,017	19,425
Pakistan	na	531	687	729	650	981	1,642
Philippines	na	na	1,033	1.418	1,293	1,956	2.213
South Korea	na	na	850	948	876	2,840	10,010
Taiwan	na	na	759	794	922	3,669	11,590
Thailand	na	717	812	846	848	1,750	4,69.4
African Countries							
Cote d'Ivoire	na	na	na	na	859	1,727	1,134
Egypt	na	na	509	508	517	947	1.927
Ethiopia	na	na	na	na	277	412	300
Ghana	na	na	462	648	1,193	1.260	1,007
Kenya	na	na	na	na.	609.	$9+7$	1,055
Morocco	na	na	na	na	1.611	1,651	2.327
Nigeria	na	na	na	na	547	1,120	1.152
South Africa	na	na	na	1.451	2.251	3,844	3.451
Tanzania	na	na	na	na	427	655	601
Zaire	na	na	na	na	636	757	353
World Average	651	895	1,263	1.539	2.138	4.123	5,145

Source: Angus Maddison (1995), Monitoring the World Economy 1820-1992. Paris: OECD. Tables 1-3 and G-3. pp. 23-24. 223.
to understand how we arrived at our present economic conditions. The world averages at the bottom of the table were used in drawing part of Figure 2-1, which depicts the recent explosive improvement in living standards.

2.2.I Recent Economic Growth

In order to better understand the changes in the levels of real per capita GDP since 1820, in Table 2-2 we present the average annual growth rates in real per capita GDP implied by Maddison's estimated levels of real per capita income from Table 2-1. Notice that most West European countries and the countries Maddison labels "Western Offshoots" enjoyed positive rates of growth throughout the 1820-1992 period. These economies have very high levels of real per capita output today because they have been growing relatively more rapidly than other countries for nearly 200 years. The growth rate of the U.S. economy has been quite consistent, ranging from 1.29% during the years 1820-1870 to 1.99% at the beginning of the twentieth century. A high standard of living is not built in a day!

Japan provides an interesting contrast in that it began to grow only after 1870. when it abandoned its long isolation from the rest of the world. The data in Tables 2-1

Table 2: Real Per Capita GDP (in 1990 US Dollars) and its Growth Rates for Selected Countries, 1870-1992

Countries	1870	1950	1992	Growth Rate (1870-1992)	Growth Rate (1950-1992)
South Korea	NA	876	10,010		5.800
Taiwan	NA	922	11,590		6.027
Japan	741	1873	19425	2.677	5.569
Italy	1467	3425	16229	1.970	3.704
Austria	1875	3731	17160	1.815	3.633
Finland	1107	4131	14646	2.117	3.013
Germany	1913	4281	19351	1.897	3.592
Norway	1303	4969	17543	2.131	3.003
France	1858	5221	17959	1.860	2.941
Belgium	2640	5346	17165	1.535	2.777
Netherlands	2640	5850	16898	1.522	2.526
Denmark	1927	6683	18293	1.845	2.398
Sweden	1664	6783	16927	1.901	2.177
UK	3263	6847	15738	1.290	1.982
Canada	1620	7047	18159	1.981	2.254
Australia	3801	7218	16237	1.190	1.930
Switzerland	2172	8939	21036	1.861	2.038
USA	2457	9573	21558	1.780	1.933
For the 16 available countries, the correlation coefficient between growth rate of per capita GDP					
between 1870 and 1992 and the per capita GDP in 1870 is: -0.95. ${ }^{\text {a }}$. ${ }^{\text {a }}$					
For these 18 countries, the correlation coefficient between growth rate of per capita GDP					
between 1950 and 1992 and the per capita GDP in 1950 is: $\mathbf{- 0 . 9 3}$.					

Table 3: Real Per Capita GDP (in 1990 US Dollars) and its Growth rates for 56 Countries, 19501992

Countries	1950	1992	Growth Rate (1950-1992)
Austria	3731	17160	3.633
Belgium	5346	17165	2.777
Denmark	6683	18293	2.398
Finland	4131	14646	3.013
France	5221	17959	2.941
Germany	4281	19351	3.592
Italy	3425	16229	3.704
Netherlands	5850	16898	2.526
Norway	4969	17543	3.003
Sweden	6738	16927	2.193
Switzerland	8939	21036	2.038
United Kingdom	6847	15738	1.982
Australia	7218	16237	1.930
Canada	7047	18159	2.254
New Zealand	8495	13947	1.180
United States	9573	21558	1.933
Greece	1951	10314	3.965
Ireland	3518	11711	2.863
Portugal	2132	11130	3.935
Spain	2397	12498	3.932
Turkey	1299	4422	2.917
Bulgeria	1651	4054	2.139
Czechoslovakia	3501	6845	1.596
Hungary	2480	5638	1.955
Poland	2447	4726	1.567
Romania	1182	2565	1.845
U.S.S.R.	2834	4671	1.190
Yugoslavia	1546	3887	2.195
Argentina	4987	7616	1.008
Brazil	1673	4637	2.427
Chile	3827	7238	1.517
Colombia	2089	5025	2.090
Mexico	2085	5002	2.083
Peru	2263	2854	0.552
Venezuela	3478	5949	1.278
Bangladesh	551	720	0.637
Burma	393	748	1.532
China	614	3096	3.852
India	597	1348	1.939
Indonesia	874	2749	2.728
Japan	1873	19425	5.569
Pakistan	650	1642	2.206
Philippines	1293	2213	1.279
South Korea	876	10010	5.800

Table 3: Real Per Capita GDP (in 1990 US Dollars) and its Growth rates for 56 Countries, 19501992

Countries	1950	1992	Growth Rate (1950-1992)
Taiwan	922	11590	6.027
Thailand	848	4694	4.074
Cote d'Ivorie	859	1134	0.661
Egypt	517	1927	3.133
Ethiopia	277	300	0.190
Ghana	1193	1007	-0.404
Kenya	609	1055	1.308
Morocco	1611	2327	0.876
Nigeria	547	1152	1.773
South Africa	2251	3451	1.017
Tanzania	427	601	0.814
Zaire	636	353	-1.402
For all these 56 countries, the correlation coefficient between growth rate of per capita GDP between 1950 and 1992 and the per capita GDP in 1950 is: 0.01 .			

Midterm Exam: Question 3 (13 June 2021)

- Maximum marks: 40
- Time allotted (including uploading on Moodle): 90 minutes
- Consider the following model to explore the possibility of multiple equilibria and the role of history versus expectations in determining the equilibrium dynamics.
- Over an infinite horizon households supply L units of labor inelastically and consume the homogeneous final good (taken as the numeraire). At any moment t, households choose consumption $\left(C_{t}\right)$ so as to maximize $U_{t}=\int_{t}^{\infty} e^{-\rho(\tau-t)} \log C_{\tau} d \tau$, subject to, $\int_{t}^{\infty} e^{-\int_{t}^{\tau} r_{s} d s} C_{\tau} d \tau \leq L \int_{t}^{\infty} e^{-\int_{t}^{\tau} r_{s} d s} w_{\tau} d \tau+W_{t}$, where $\rho>0$ is the subjective discount rate, r_{t} is the rental rate, w_{t} is the wage rate, and W_{t} is the value of asset holding consisting of ownership shares of profit making firms. The solution to this maximization problem is characterized by the Euler condition: $\frac{\dot{C}_{t}}{C_{t}}=r_{t}-\rho$, and the binding budget constraint: $\int_{t}^{\infty} e^{-\int_{t}^{\tau} r_{s} d s}\left(C_{\tau}-w_{\tau} L\right) d \tau=W_{t}$.
- On the production side there are two sectors: a final consumer good sector and an intermediate goods sector. The final consumer good is produced by competitive firms who share the identical constant returns to scale production function $C_{t}=$ $F\left(X_{t}, H_{t}\right)$, where H_{t} is the labour input and X_{t} is the composite of differentiated intermediate inputs or 'producer services', which has a form of symmetric CES, $X_{t}=$ $\left[\int_{0}^{n_{t}}\left[x_{t}(i)\right]^{1-\frac{1}{\sigma}} d i\right]^{\frac{\sigma}{\sigma-1}}, \sigma>1$, where $x_{t}(i)$ is the amount of variety i used, and σ is the elasticity of substitution between every pair of intermediate inputs. At any moment only a subset of differentiated products, $\left[0, n_{t}\right]$, is available.
- Each intermediate input is supplied by a single, atomistic firm. Due to the CES specification, the demand for each intermediate input i is $x_{t}(i)=\left[\frac{p_{t}(i)}{P_{t}}\right]^{-\sigma} X_{t}$, where P_{t} is the price index of the intermediate goods composite, that is, $P_{t} X_{t} \equiv \int_{0}^{n_{t}}\left[p_{t}(i) x_{t}(i)\right] d i$.

Producing a unit of each intermediate input requires a_{x} units of labor, so that the marginal cost is constant and equal to $w_{t} a_{x}$. We use the normalization: $a_{x} \equiv 1-\frac{1}{\sigma}$.

- Profit maximization implies each intermediate goods producer sets the price so as to equate marginal revenue with marginal cost, implying

$$
p_{t}(i)=\frac{w_{t} a_{x}}{1-\frac{1}{\sigma}}=w_{t} .
$$

Using this, the price index of the intermediate goods composite becomes

$$
P_{t}=\left[\int_{0}^{n_{t}}\left[p_{t}(i)\right]^{1-\sigma} d i\right]^{\frac{1}{1-\sigma}}=n_{t}^{\frac{1}{1-\sigma}} w_{t}
$$

implying that the effective relative factor price, $\frac{P}{w}$, decreases with n. It is easy to see that the factor share of intermediate inputs, $\alpha_{t} \equiv \frac{P_{t} X_{t}}{C_{t}}$, is a function of $\frac{P_{t}}{w_{t}}$.
Since $\frac{P_{t}}{w_{t}}$ is a function of the product variety $\left(n_{t}\right), \alpha_{t}$ is also a function of n_{t}; define it by $\alpha_{t} \equiv A\left(n_{t}\right)$. It follows that $A\left(n_{t}\right)$ is increasing (decreasing) in n_{t} whenever the elasticity of substitution between H_{t} and X_{t} is greater (less) than one.

- Since $p_{t}(i)=w_{t}$, for all i, it follows that $p_{t}(i)=p_{t}(j), x_{t}(i)=x_{t}(j)$, and $\pi_{t}(i)=\pi_{t}(j)$, for all i, j, where π_{t} stands for operating profit, $\pi_{t}=\left(p_{t}-w_{t} a_{x}\right) x_{t}$. It can be shown (you don't need to show this) that

$$
\begin{equation*}
\pi_{t}=\frac{A\left(n_{t}\right)}{\sigma n_{t}} C_{t} \tag{1}
\end{equation*}
$$

- The number of the specialist firms (and the range of producer services available) increases over time through the process of entry. Initially, the economy inherits a given number of firms, n_{0}. At any moment firms may enter freely into the intermediate goods sector, except that they need a start-up operation which requires the use of a_{n} units of labor per variety. The entering firms finance start-up costs by issuing ownership shares. Because of free entry, the value of an intermediate goods firm, v_{t}, never exceeds the start-up cost, $w_{t} a_{n}$, and whenever some entry occurs, they are equalized. Furthermore, the operating profit is always positive, so that no incumbent firm has an incentive to exit. That is, in equilibrium, we have

$$
\begin{equation*}
w_{t} a_{n} \geq v_{t}, \dot{n}_{t} \geq 0, \quad\left(w_{t} a_{n}-v_{t}\right) \dot{n}_{t}=0 \tag{2}
\end{equation*}
$$

The market value of an intermediate goods producer is equal to the present discounted value of profits, $v_{t} \equiv \int_{t}^{\infty} e^{-\int_{t}^{\tau} r_{s} d s} \pi_{\tau} d \tau$, from which we obtain

$$
\begin{equation*}
\frac{\pi_{t}+\dot{v}_{t}}{v_{t}}=r_{t} \tag{3}
\end{equation*}
$$

- It can be shown (you don't need to show it) that the labour market clearing condition implies that

$$
\begin{equation*}
L=a_{n} \dot{n}_{t}+H_{t}+n_{t} a_{x} x_{t}=a_{n} \dot{n}_{t}+\left(1-\frac{A\left(n_{t}\right)}{\sigma}\right)\left(\frac{C_{t}}{w_{t}}\right) . \tag{4}
\end{equation*}
$$

- Finally, it can be checked (you don't need to check it) that the transversality condition of the households' maximization problem also holds:

$$
\begin{equation*}
\lim _{T \rightarrow \infty} n_{T} v_{T} e^{-\int_{0}^{T} r_{s} d s}=0 \tag{5}
\end{equation*}
$$

- We describe the dynamic evolution of the economy in terms of two variables, n and $V=$ $\frac{v}{C}$, where V represents the value of an intermediate inputs producing firm, measured in utility.

It can be shown (you don't need to show it) that, for any initial number of firms (n_{0}) the economy inherits, a market equilibrium of this economy is a path of $\left\{V_{t}, n_{t}\right\}$ that satisfies

$$
\begin{gather*}
\dot{V}_{t}=\rho V_{t}-\frac{A\left(n_{t}\right)}{\sigma n_{t}} \tag{6a}\\
\dot{n}_{t}=\max \left\{\frac{L}{a_{n}}-\left(1-\frac{A\left(n_{t}\right)}{\sigma}\right)\left(\frac{1}{V_{t}}\right), 0\right\}, \tag{6b}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} n_{t} V_{t} e^{-\rho t}=0 \tag{6c}
\end{equation*}
$$

- The qualitative property of the equilibrium dynamics crucially depends on the shapes of the following two loci:
- the VV locus (corresponds to $\left.\dot{V}_{t}=0\right): V_{t}=\frac{A\left(n_{t}\right)}{\rho \sigma n_{t}}$, and
- the NN locus (corresponds to $\left.\dot{n}_{t}=0\right): V_{t}=\frac{a_{n}}{L}\left(1-\frac{A\left(n_{t}\right)}{\sigma}\right)$.
- To explore the possibility of multiple equilibria and the role of history versus expectations in determining the equilibria let $F(X, H)$ be a CES of the following form:

$$
\begin{equation*}
F\left(X_{t}, H_{t}\right)=\left[X_{t}^{1-\frac{1}{\epsilon}}+\beta^{\frac{1}{\epsilon}} H_{t}^{1-\frac{1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}}, \epsilon>1 \tag{7}
\end{equation*}
$$

- It can be shown (you don't need to show it) that with this CES specification the expression for $A\left(n_{t}\right)$ is given by

$$
\frac{1}{A\left(n_{t}\right)}=1+\beta n_{t}^{\frac{1-\epsilon}{\sigma-1}}
$$

- Then the NN locus is given by

$$
V_{t}=\frac{a_{n}}{L}-\frac{\frac{a_{n}}{L}}{\sigma\left(1+\beta n_{t}^{\frac{1-\epsilon}{\sigma-1}}\right)},
$$

and the VV locus is given by

$$
V_{t}=\frac{1}{\rho \sigma\left[n_{t}+\beta n_{t}^{\frac{\sigma-\epsilon}{\sigma-1}}\right]}
$$

(a) [12 points] Consider the case when $\sigma>\epsilon>1$.

Draw the phase diagram showing the NN and VV loci clearly plotting n_{t} on the x-axis and V_{t} on the y-axis. You must show the horizontal and vertical arrows demonstrating the movements of n_{t} and V_{t} in all the different regions generated by the NN and VV loci.

Describe the dynamic evolution of the economy for any initial number of firms (n_{0}) that the economy inherits.

Is there any possibility of multiple equilibria? Explain clearly. [Recall that for any initial number of firms $\left(n_{0}\right)$ the economy inherits, a market equilibrium of this economy is a path of $\left\{V_{t}, n_{t}\right\}$ that satisfies (6a), (6b) and (6c).]
(b) [15 points] Consider the case when $\epsilon>\sigma>1$.
(i) Consider first the subcase where a_{n} and ρ are so high that the NN locus lies above the VV locus everywhere.

Draw the phase diagram with the horizontal and vertical arrows in all the different regions generated by the NN and VV loci.

Describe the dynamic evolution of the economy for any initial number of firms $\left(n_{0}\right)$ that the economy inherits.

Is there any possibility of multiple equilibria? Explain clearly.
(ii) Consider next the subcase where a_{n} and ρ are moderate so that the NN locus intersects the VV locus twice, both at the downward sloping part of VV.

Draw the phase diagram with the horizontal and vertical arrows in all the different regions generated by the NN and VV loci.

Describe the dynamic evolution of the economy for any initial number of firms $\left(n_{0}\right)$ that the economy inherits.

Is there any possibility of multiple equilibria? Explain clearly.
(iii) Consider finally the subcase where a_{n} and ρ are small enough so that the NN locus intersects the VV locus once at the upward sloping part of VV and then again at the downward sloping part of VV.

Draw the phase diagram with the horizontal and vertical arrows in all the different regions generated by the NN and VV loci.

Describe the dynamic evolution of the economy for any initial number of firms $\left(n_{0}\right)$ that the economy inherits.

Is there any possibility of multiple equilibria? Explain clearly.
(c) $[13$ points $]$

Recall that Krugman (1991) ("History versus Expectations", Quarterly Journal of Economics, 106, 651-667) has identified three factors deciding the roles of history versus expectations in determining the nature of equilibrium dynamics: rate at which agents discount the future, strength of the external economy and speed of adjustment.

Identify the counterparts of the above three factors in terms of the parameters of the model described above.

Discuss clearly how these three factors explain the roles of history vis à vis expectations in determining the nature of equilibrium dynamics for the model described above.

