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RESOLVING INDETERMINACY IN DYNAMIC SETTINGS: 

THE ROLE OF SHOCKS* 


This paper shows that the phenomenon of multiple equilibria can be fragile to 
the introduction of aggregate shocks. We examine a standard dynamic model of 
sectoral choice with external increasing returns. Without shocks, the outcome is 
indeterminate: there are multiple rational expectations equilibria. We then 
introduce shocks in the form of a parameter that follows a Brownian motion and 
affects relative productivity in the two sectors. We assume that the parameter can 
reach values at  which working in either sector becomes a dominant choice. A 
unique equilibrium emerges; for any path of the random parameter, there is a 
unique path that the economy must follow. There is no role for multiple, 
self-fulfilling prophecies or sunspots. 

It has long been agreed that expectations play a crucial role in 
determining economic outcomes. Many have also argued that 
expectations are not uniquely determined by the state of the 
economy. Perhaps the most celebrated example is John Maynard 
Keynes's view that economic fluctuations are driven by the 
"animal spirits" of entrepreneurs. In models with rational agents 
this idea has been associated with the phenomenon of multiple 
rational expectations equilibria: cases in which more than one 
prophecy is self-fulfilling. 

This paper shows that the phenomenon of multiple equilibria 
can be fragile to the introduction of aggregate shocks. We consider 
a standard dynamic model with multiple rational expectations 
equilibria. When we introduce exogenous shocks with certain 
properties, the multiplicity disappears: for any path of the exoge- 
nous parameter, there is a unique path the economy must follow. 
Agents' expectations are no longer indeterminate; they are 
uniquely determined by the current state of the dynamic system. 

Our model is a simplification of Matsuyama [1991].Agents 
can work in either of two export sectors. One (cottage production 
or agriculture) has constant returns, while the other (manufactur- 
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ing) has increasing returns that are external to the agent. 
Consequently, an agent's relative payoff from working in the 
increasing returns sector is higher if more people do so. This 
relative payoff is also increasing in an exogenous parameter, 
which may reflect energy costs, weather, technology, or terms of 
trade. There are frictions: agents cannot switch sectors at  will, but 
rather must wait for random opportunities to arrive. 

In line with the findings of Matsuyama [19911, we find 
multiple equilibria when the exogenous parameter is unchanging. 
For a range of initial conditions, if all agents believe that either 
sector will grow, then they will move there and thus make the 
prophecy self-fulfilling. 

We then consider what happens if the parameter changes 
over time according to a Brownian motion. We assume that there 
are dominance regions: if the parameter moves above (below) 
some threshold, an agent will move into the increasing (constant) 
returns sector regardless of what others do. For example, there 
may be a chance that the soil will become so depleted that farmers 
will move to the manufacturing sector regardless of the choices of 
other agents. Conversely, higher energy costs could eventually 
make cottage production or agriculture a dominant choice (if 
manufacturing is more energy intensive). 

The dominance regions may be very remote, making it 
unlikely that they will be reached during the lock-in time of an 
agent who chooses sectors now. However, the prospect that they 
will be reached eventually, even long after the agent receives 
another opportunity to change sectors, can have a large effect on 
her current decision. To see this, let us take the price of oil as the 
exogenous parameter, and suppose that cottage production be- 
comes a dominant choice if oil reaches $1000 per barrel. Suppose 
that the price of oil is $999. If oil had a fixed price, we would not be 
able to draw any firm conclusions: since cottage production is not 
a dominant choice at  $999, if all agents were initially in manufac- 
turing they might simply stay there forever. But this is not the 
case if there are shocks to the price of oil. With shocks an agent 
cannot be sure that all others will stay in manufacturing until she 
gets another chance to change sectors, since the price of oil could 
easily reach $1000 during this period, drawing agents into cottage 
production. Knowing this (and since the price of oil is already 
quite high), at  $999 agents will choose cottage production. But the 
same argument can be repeated: at  $998, they will choose cottage 
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production because they know other agents will do so if the price 
reaches $999. And so on. 

The same argument can be applied for low prices of oil. 
Suppose that manufacturing becomes dominant if oil drops below 
$1 per barrel. Then at $1.01 agents will move out of cottage 
production, because of the chance that the price will drop below $1 
before they get another chance to change sectors. But this means 
that at  $1.02 they will enter manufacturing, and so on. 

If we continue this line of reasoning ad infinitum, we end up 
with two thresholds, say $10 and $50. When oil costs less than 
$10, agents choose manufacturing regardless of the current sizes 
of the two sectors. Above $50 they always choose cottage produc- 
tion. One can also show that for oil prices between $10 and $50, 
agents' choices depend on the current sizes of the two sectors. 
Agents will choose cottage production if this sector is sufficiently 
large; otherwise, they will choose manufacturing. Importantly, 
even between the two thresholds, agents' choices are uniquely 
determined by the current state (which includes both the price of 
oil and the sectoral distribution of agents). 

These results show that once shocks are introduced, there is 
always a unique equilibrium: the evolution of the economy 
depends only on initial conditions and on the sequence of shocks. 
There is no longer any room for multiple, self-fulfilling prophecies. 
Variables such as sunspots, which do not directly affect agents' 
payoffs, can play no role in the economy's development. 

These results hold for shocks of any size. In particular, the 
shocks can be arbitrarily small. This case is perhaps the most 
surprising, since it reveals a discontinuity: there are multiple 
equilibria in a fixed environment, but not in a slightly stochastic 
one. 

Our findings depend on three critical properties of the 
stochastic parameter. First, the existence of dominance regions is 
crucial as it gives our uniqueness argument a place to start. 
Second, Brownian motion is persistent: its current value reveals 
something about future values. For example, the price of oil is 
more likely to be above $1000 in the near future if it is currently 
$999 than if it takes some lower value. Finally, Brownian motion 
has shocks that come frequently. This ensures that an agent who 
chooses sectors will see the oil price change before she gets 
another chance to switch, and must take into account the effects of 
these changes. 

Some of our results use mathematical tools from Burdzy, 
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Frankel, and Pauzner (hereinafter BFP) [19981. These tools were 
applied in BFP [20001 to models of painvise random matching in 
games with two actions. Support was found for the risk-
dominance selection criterion of Harsanyi and Selten [1988]. The 
current paper uses the tools of BFP [I9981 only to analyze the 
limiting cases of small frictions and small sh0cks.l Our main 
result, which permits shocks and frictions of arbitrary sizes, 
cannot be proved using these tools. Instead we use a new 
approach, which has the side benefit of being simpler and more 
intuitive. 

The rest of this paper is organized as follows. In Section I1 we 
present the model. Section I11 analyzes the benchmark case of an 
unchanging environment. In Section IV we show how things 
change with shocks. Section V discusses related literature. Con- 
cluding remarks appear in Section VI. Following Section VI is an 
appendix that contains the more technical proofs. 

We consider a simplified version of the model of Matsuyama 
[1991]. There is a small, open economy with a continuum of 
self-employed agents. Each agent can work in either of two 
sectors, one ( C ) with constant returns and the other (X) with 
increasing returns that are external to the agent. Time t is 
continuous. The economy has frictions: each agent receives oppor- 
tunities to (costlessly) switch sectors according to an independent 
Poisson process with common arrival rate 6. 

Agents are risk-neutral and live forever. The utility of an 
agent equals the integral of her lifetime production, discounted at 
the rate 0. An agent in sector C produces a constant output flow 
whose value (at world prices) is normalized to one. An agent in 
sector Xproduces a variable amount whose value v(LX,z) depends 
positively on both the proportion LX of agents in the sector2 and an 
exogenous parameter z . ~Both LX and z are commonly observed. 
The parameter z can be interpreted as the state of technology, 

1. Even in these limiting cases, the current paper differs technically from BFP 
[I9971 in that an agent's payoff can depend nonlinearly on the sizes of the two 
sectors. In BFP the assumption of painvise interactions implies linearity. 

2. Since the goods in both sectors are traded and the country is small, we take 
prices as exogenous. In particular, a larger X sector does not lower the relative 
price of goods produced in that sector. 

3. In Matsuyama's version, agents' payoffs also depend on a random taste 
parameter. This is essentially the only difference between Matsuyama's model and 
our case of constant z. 
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weather, or the relative price of good X on the world market. If we 
interpret .sr as the agent's profits, z may also reflect the world 
prices of nonlabor inputs in the two sectors. We assume that ifz is 
large enough, X becomes a dominant choice: an agent's expected 
payoff is higher in X than in C even if all agents are expected to 
remain in C forever. Conversely, for small enough z, C becomes a 
dominant ~ h o i c e . ~  is continuously differen- We also assume that 7 ~ .  

tiable in both arguments. 

We first analyze the benchmark case in which the environ- 
ment does not change (z is constant over time). Suppose that Cis a 
dominant choice for z <g andxis  a dominant choice for z >Z.5 For 
z between g and Z, both all-X and all-C are steady state equilibria. 
That is, if all agents are initially in one sector, it is an equilibrium 
for them to stay there. However, whether a given steady state can 
be reached depends on the initial value of LX. 

Figure I shows the set of long-run outcomes for each z and for 
each initial value of LX.The size of the Xsector is measured on the 
vertical axis; the parameter z appears on the horizontal axis. In 
the rightmost region all agents choose the X sector when they get 
the chance. This means that the economy converges to all-X. In 
the leftmost region everyone chooses C at his first opportunity, so 
all-C is the only long-run outcome. 

FIGUREI 
A World without Shocks (Proposition 1) 

4. Xis  a dominant choice if the average discounted wage in the X sector when 
LX= 0 exceeds the wage in the C sector: if E [(B + 6) J;==,ee-(e+8)t~(0,zt)d t  zo = zl > 
1.Analogously, Cis  a dominant choice i fE [(B + 6) J;='=,e-(e+8)tn(l,zt)d t zo = zl < 1. 

5 .  Since z is constant, 2 is defined by n ( 1 , ~ )  = 1and 2 is defined by T(O,Z) = 1. 
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In the region between 3 and Z, there are multiple equilibria. 
All agents may choose X, then the X sector will grow, raising 
productivity there and making it indeed optimal to choose X. Or 
they may all choose C, lowering productivity in the shrinking X 
sector and making C the best choice. These results are summa- 
rized in Proposition 1. 

PROPOSITION1. There are decreasing functions Z(LX) < Z(LX) 
such that if z >Z(LX), there is a unique equilibrium, in which 
agents always choose X. Ifz <Z(LX), agents always choose C. 
For z between Z (LX) and Z(LX) there are multiple equilibria; 
both all-X and all-C are long-run outcomes. 

Proof: see the Appendix. 

Note that Z(0) = 2: if all agents are in the C sector, it is an 
equilibrium to remain so long as X is not a dominant choice. 
Likewise,Z(1)= 2. 

The dotted curve Z* in Figure I is the myopic indifference 
line, given by r(LX,z) = On this curve, current productivity in 
the two sectors is equal. As agents become more impatient relative 
to the speed at which they can change sectors (i.e., as 018 grows), 
they put more weight on current conditions and less weight on 
their expectations for the future. Hence, the curves Z and Z both 
converge to Z*:  in the limit of complete myopia, the equilibrium 
becomes unique. On the other hand, as agents become relatively 
more patient (as 8/13shrinks), the area of multiplicity grows. 

IV. A WORLD WITH SHOCKS 

We now examine what happens if z changes randomly. We 
assume that z follows a Brownian motion. This is essentially the 
continuous time version of a random walk. It is characterized by a 
variance cr2 and a trend p.The variance measures the size of the 
random component; i.e., how fast z spreads out. The trend 
captures the deterministic part of z; i.e., how its mean changes 
over time.7 For example, a positive trend might reflect steady 
improvements in the technology of sector X. For now we assume 
that the trend p is a constant. We later relax this assumption in 
analyzing the limiting cases of small noise and small frictions. 

6. This curve is downward sloping since is increasing in both arguments. 
7. More precisely, the change inz over a brief period of length E is normal with 

variance u2 . E and mean p . E. 
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All choose C All choose X 

FIGVREI1 
A World with Shocks (Theorem 1) 

THEOREM1. With shocks the equilibrium is unique. There is a 
decreasing function Z(LX) such that agents choose X when-
ever z >Z(LX) and C whenever z <Z(LX). 

Theorem 1 shows that there is a unique division line Z 
(Figure 11). This division line is downward sloping, so it divides 
the z axis into three regions. If z exceeds Z(O), agents must choose 
the X sector when they get chances to switch. If z is below Z(l), 
they must pick C. In the intermediate region there is history 
dependence: the agents' choice depends on the current size of the 
X sector. They must choose the X sector if it is sufficiently large; 
otherwise, they must choose C. 

Proof of Theorem 1. Recall our assumption that if z is 
sufficiently high, the X sector is a dominant choice, while C is 
dominant ifz is low enough. These "dominance regions"may be far 
from the current value of z, making it very improbable that z will 
reach one of these regions before an agent changes sectors again. 
However, the mere existence of these regions starts an iterative 
contagion effect that spreads throughout the parameter space. 

Let Zo be the boundary of the region where an agent will 
choose the X sector even in the worst case for sector X: if she 
expects all agents who choose after her to select the C sector. (See 
Figure 111.) If an agent receives an opportunity to switch sectors 
when the current state is to the right of Zo, she will choose sector 
X. Note that Zo is the curve on which an agent is indifferent if she 
believes that in the future, each agent will choose the C sector 
when she gets the chance. Zo is downward sloping since on this 
belief, a higher initial value of LX makes the X sector larger at  all 
future dates. This makes the agent willing to choose X at lower 
values of z. 
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Knowing that other agents must pick X to the right of Zo, an 
agent actually wants to pick X slightly to the left of the curve as 
well. Why? On Zo she was indifferent in the worst case: if all 
agents who choose after her were to pick C under any circum-
stances. But now she knows that they will actually choose X 
when they are to the right of 2,. Since z changes stochastically, 
it may spend some time to the right of Z0 while the agent 
is committed to her choice. At such times other agents who 
choose sectors will pick X. Since this raises her assessment of 
the future size of the X sector, the agent is no longer indifferent 
on Zo; she strictly prefers X. Therefore, there is a new boundary 
Z1, to the left of Zo, such that agents must choose the X sector 
when to the right of Z1 (Figure IV). Note that Z1 is the curve 
on which an agent is indifferent between the two sectors on the 
worst case belief consistent with agents choosingx to the right of 
Zo. This is simply the belief that all future agents will play 
according toZo; that they will choose C to the left ofZo andXto the 
right. 
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This reasoning can be repeated, giving curves Z2, Z3, and so 
on ad infinitum. Let Zm be the limit of this sequence (Figure IV). 
We know that agents must choose theX sector when to the right of 
2,. We cannot yet say what they will do when to the left. 

Note that Z, is actually an equilibrium: if an agent expects all 
others to play according to Z,, then it is optimal for her to do so as 
well. This is because Z, is the limit of the iterative process, and on 
each Z,, an agent is indifferent between the two sectors if she 
expects all future agents to play according to 

We now start another iteration from the left side (Figure V). 
This iteration is somewhat different: we use translations of 2,. 
(The reason will soon be apparent.) We begin with a translation Zb 
of Zm that is far enough over that the C sector is a dominant choice 
anywhere to the left of Zb. We then construct Z i as the rightmost 
translation of Z 6 such that an agent must choose C to the left o f2  i 
if she believes that other agents will play according to Zb. Let Zk 
be the limit; agents must choose C when to the left ofZL. 

What does it mean that the limit is Zk? Zk is not necessarily 
an equilibrium, since we limited ourselves to translations of 2,. 
However, if an agent expects all others to play according to ZL, 
then there must be at  least one point A on Zk where she is 
indifferent between the sectors. Otherwise, if she strictly pre- 
ferred the C sector everywhere on Z i ,  then the iterations would 
not have stopped at 2L8Let B be the point on Z, that is at  the 
same height as A (Figure VI). 

8. This argument implicitly assumes that payoffs are continuous. This holds 
since the behavior of the system (Lf,zt) t,o changes continuously as either the 
starting point ( ~ t , z o )  or the division lineZ, is moved (see Lemma 2 in BFP [19981). 
Since a is also continuous in its two arguments, the relative payoff to choosingxis 
a continuous function of (Lf,zo) and of the division line. So as the division line is 
shifted to the right, the payoffs at  all points on the line must change continuously. 
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To show that the equilibrium is unique, we need to establish 
that points A and B (and hence curves 2, and 2;) must coincide. 
This implies that an agent's choice is uniquely determined by the 
current state, so that there is no scope for multiple outcomes that 
depend on agents' expectations. 

The reasoning is as follows. Let us compare two players, one 
("A") choosing at point A and believing that others will play 
according to 2; and the other ("B") choosing at point B and 
expecting others to play according to 2,. Since2, and Z L have the 
same shape, A and B expect the state (LX,z) to have the same 
relative dynamics. That is, they expect the changes in the state, 
relative to its starting point (A or B), to have the same distribu- 
tion. Why? First, the changes in z follow the same distributiong by 
our assumption that the trend 1-1 of z is a constant. But for any 
given path of changes in z, the resulting path of LX is the same for 
A as for B. It is the unique solution to the dynamical system 
illustrated in Figure VII.1° When to the right of the curve (2, or 
Z&), LX rises at  the rate LX = S ( l  - LX): every agent who is still in 
C leaves at  her first chance, there are 1 - LX such agents, and 
chances to leave arrive at  the rate 6. When to the left of the curve, 
agents switch from X to C. The proportion of X workers is LX, so 
LX = -SLX 

Hence, if there were no point of indifference, we could continue the iteration 
further. 

9. More precisely, if the current value is zt, the distribution of paths of changes 
(z, - zt)u>tis independent ofz,. 

10. The fact that the path of LX is unique given a path of z, while intuitively 
obvious, requires a rather technical proof that is deferred to the Appendix 
(Lemma 1). 
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iX= - 6 ~ ~  i x = 6 ( 1 - ~ x )1 \I 

LX=O z 

FIGUREVII 

Now consider a given path of changes in z. Given this path, 
agents A and B expect the same path of LX. If A and B were 
different, the z that B expects would at all times exceed the z that 
A expects by an amount equal to the initial difference in the 2's. 
Since the relative payoff to being in the X sector is increasing in z, 
B's payoff from choosing X would be higher than A's. But this 
cannot be, since both A and B are indifferent between the two 
sectors. Therefore, the curves coincide, and the equilibrium is 
unique. 

We conclude by showing that the division curve 2, is down- 
ward sloping. We do this by induction. On the assumption that all 
agents will choose the C sector, an agent's relative productivity in 
the X sector is increasing in the initial values of both z and LX. 
Hence, Zo is downward sloping. Now, on the assumption that all 
agents choose according to the downward sloping Z,-l, relative 
productivity in the X sector is again increasing in both the initial 
values of z and LX.To see why, consider any given path of changes 
in z. If we raise the initial value of either z or LX,this can only lead 
us to spend more time to the right of ZnP1 (since it is downward 
sloping). Hence, raising either zo or L t  increases productivity in 
the X sector at  all future dates. Thus, 2, must also be downward 
sloping. 

Limiting Cases: Small Shocks or Small Frictions 

While Theorem 1shows that there is a unique equilibrium, 
the proof does not show how to calculate the division line 2,. This 
problem becomes tractable in two limiting cases: when either the 
shocks or the frictions shrink to zero. Another benefit of examin- 
ing these cases is that we do not need to assume a constant trend. 



296 QUARTERLY JOURNAL OF ECONOMICS 

We now let the trend depend on t and z. The dependence on 
time t permits us to capture phenomena such as seasonality. 
Properties such as mean reversion can be captured through the 
dependence on z .  For example, if p = -cz for some positive c, the 
trend always pulls z toward 0. We will see that the equilibrium is 
unique even if c is arbitrarily large relative to the variance a2. 
This means that while the iterative procedure is driven by the 
persistence of the shocks, arbitrarily little persistence is sufficient 
when shocks or frictions are small. 

We first consider the case of small shocks. Suppose that z has 
variance u2and trend X . p(t,z). Assume that p(t,z) is continuously 
differentiable and that for any given z, p(t,z) is a bounded function 
oft. Theorem 2 shows that in the limit as a2and X shrink, there is 
again a unique division line. Importantly, the relative rate at 
which u2 and X shrink does not matter, so that the trend can 
become very large relative to the variance. 

The division line Z in this case is given by the following 
formula. For any LX, Z(LX) is the value of z at which the weighted 
average productivity in the two sectors is equal: 

where the weight wlequals [lILX] if 1 5 LX and [( 1- 1)I(1-LX)I 
if 1 2LX. Note that the integral takes into account the productivity 
differential for all possible proportions of agents in the X sector. 
The weights are single peaked at LX, so that the current productiv- 
ity differential has the most weight. 

THEOREM -- 01,2. In the limit as the shocks shrink ( A  0 and u2--
agents choose X whenever z > Z(LX) and C whenever z < 
Z(LX), where Z(LX) is given by (1). 

Proof See the Appendix. 

Theorem 2 can be interpreted as a negative robustness result. 
While there can be multiple equilibria in a completely static 
world, the introduction of very small shocks leads to uniqueness. 
These shocks must satisfy fairly mild assumptions. They must 
come frequently.ll They must have some persistence, but there 

11. More precisely, there need only be a component that changes frequently: 
see Section VI. 
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All choose C All choose X 

FIGUREVIII 
Small Frictions (Theorem 3) 

can be arbitrarily little since X can become very large relative to 
u2.The shocks must have the potential to make either sector a 
dominant choice, but with small shocks this event is very remote. 

Theorem 3 concerns the case of shrinking frictions. Again, a 
unique outcome is obtained (Figure VIII). However, this outcome 
has a new feature: there is no history dependence. The division 
line is vertical at  z*,  defined by 

z* is the value of z at  which productivity in the two sectors is the 
same, on average, if LXis thought of as uniformly distributed 
between 0 and 1. 

Suppose that z has variance u2and trend p(t,z), where p(t7z) 
satisfies the assumptions of Theorem 2. 

THEOREM3. In the limit as frictions shrink (as 6 -a),  agents 
chooseXwhenever z >z* and C whenever z <z". 

Proof: see Appendix. 

Remark. The division line becomes vertical at  z* also in the 
case of Theorem 2 (small shocks) as agents become very patient 
(0 -01, since then the weights w lconverge to 1. 

Multiple equilibria often arise in models with strategic 
complementarities, when an agent's incentive to take an action is 
stronger if others do so. In our model, these complementarities 
come from sector-specific increasing returns, as in Chacoliades 
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[19781, Ethier [19821, Helpman and Krugman [19851, Krugman 
[19911, and Matsuyama [19911. Other examples of strategic 
complementarities include trade frictions [Diamond 19821, knowl- 
edge spillovers [Romer 19861, and public goods such as infrastruc- 
ture [Murphy, Shleifer, and Vishny 19891.l2 

It is relatively straightforward to see how strategic comple- 
mentarities can give rise to multiple steady state equilibria. There 
may be more than one state such that, if the economy starts there, 
it is an equilibrium to remain. However, a more interesting 
question is whether for given initial conditions there is more than 
one equilibrium path. Only if this is so can we say that extraneous 
factors (such as sunspots) can influence the economy. 

For this question to be nontrivial, the economy must have 
some frictions that prevent it from jumping among steady states. 
For example, agents may have to search for jobs or trading 
opportunities. Or there might be state variables, such as capital, 
that can change only gradually. Without frictions the dynamic 
model would be just a sequence of disconnected static models, so 
multiple steady states would translate automatically into mul- 
tiple dynamic paths. Dynamic models with frictions have been 
studied by many authors, including Benhabib and Farmer [19941, 
Diamond and Fudenberg [1989], Drazen [19881, Drugeon and 
Wigniolle [19961, Krugman [1991], Matsuyama [19911, Weil[19891, 
and Zilibotti [1995]. These models all find that from given initial 
conditions, there can be multiple equilibria. 

The above models assume a fixed environment. Our model 
differs in that it has shocks, which lead to a unique equilibrium. 
One property of our shocks that is crucial for this result is that the 
shocks have the potential to make any action a dominant choice. 
Without this assumption, one can still have multiple equilibria, as 
shown, e.g., by Benhabib and Farmer [I9961 and Farmer and Guo 
[19941. 

VI. CONCLUDINGREMARKS 

Coordinating Agents' Expectations 

When a model has multiple equilibria, it is unclear how 
agents' expectations become coordinated. If we as economists 

12. See also Ball and Romer [1991], Bryant [19831, Cooper and John [1988], 
Diamond [1990], Gali [1994], Romer [19871, and Shleifer [19861. Caballero and 
Lyons [I9921 present evidence for the empirical importance of strategic complemen- 
tarities. 
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cannot predict what will happen, how do the agents know? 
Instead, they may differ in their predictions or simply be confused. 
If so, the outcome may not coincide with any equilibrium. Our 
model shows how exogenous shocks can cause agents to coordi- 
nate their expectations on a particular outcome. This solves the 
coordination problem, but at  a price. While our agents do not need 
to be able to guess which equilibrium will be played, they must be 
able make complicated calculations and trust others to do the 
same. More importantly, they must agree on fine details of the 
economy, including the structure of the exogenous shocks. 

Critical Properties of the Shocks 

Our shocks have three key properties. The first is the 
existence of dominance regions: extreme values of the random 
parameter at  which a given choice is optimal regardless of what 
other agents do. We need such regions to start our iterative 
process that determines how agents behave throughout the 
parameter space. 

The two other key features of the shocks come from our 
assumption that z follows a Brownian motion. One is persistence: 
the value of the parameter at one point in time is positively 
correlated with its future values. As a result, an agent who 
chooses sectors at  some value of z cares about what others will do 
at nearby values of z. The other property is that the shocks come 
frequently. (With Brownian motion, z is constantly changing.) 
These two properties imply that if the random parameter is close 
to a region where we know how agents behave, the probability is 
high that it will soon enter that region, at  least temporarily. 
Hence, an agent who chooses sectors when just to the left of an 
area where all others choose the X sector must expect a nontrivial 
proportion of others to pick X in the near future. 

To see this more clearly, consider an agent who chooses 
sectors while just to the left of the downward sloping division 
curve 2. If shocks are infrequent, then while waiting for a shock 
all agents will choose C (see the dynamics in Figure VII). During 
this time the state will move farther away from 2. It may even 
move far enough that a shock, when it comes, will not be strong 
enough to mope the state into the Xregion. Hence, the agent need 
not expect any others to choose the X sector in the foreseeable 
future. With frequent shocks this cannot happen: LXdoes not have 
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time to change much before the shocks move the state to the right, 
into the X region.13 

Discontinuous Stochastic Processes 

Brownian motion has continuous sample paths. One may also 
wonder about parameters that are usually continuous but jump 
occasionally, such as the price of oil. To model this, consider a 
process that is the sum of a Brownian motion and a process with 
discrete jumps that occur at  random times. All of our results hold 
for any such process.14 This is because the continuous component 
ensures the key properties (persistence and frequency) discussed 
above. 

Other Dynamics 

We assume that agents receive chances to switch according to 
Poisson processes. This leads to dynamics that are particularly 
easy to analyze. However, there are other plausible dynamics. For 
example, Krugman [19911 assumes that agents can switch sectors 
at  any time, but at  a cost that is increasing in the overall 
switching rate. The analysis of how other dynamics perform in the 
presence of exogenous shocks remains an interesting open issue. 

Proof o f  Proposition 1. Let us take the initial proportion L t  of 
Xworkers as given. When is it an equilibrium for all agents in the 
C sector to move to X? It suffices to check that an agent who 
chooses at  time zero gains from doing so if she expects all other 
agents to follow. This is because the growth of the X sector raises 
relative productivity in X, thereby strengthening the incentive to 
choose X. Under these expectations, LX grows at the rate LX = 

6(1 - LX): every agent who is still in C leaves at her first chance, 
there are 1- LX such agents, and chances to leave arrive at  the 

13. This is because the change in z over a short time interval E has a large 
random component: its standard deviation is of order &. (Its variance must be of 
order E for the variance of changes in z over a fixed, longer interval to be nontrivial; 
this is just a consequence of z having independent increments.) Since LX changes 
approximately linearly with time, its effect is only of order c and thus is swamped 
by the shocks. Hence, the shocks govern the short-run behavior of the system. 

14. For Theorem 1the process must have i.i.d. increments. For Theorems 2 
and 3 this is not needed, but for Theorem 2 we must explain how the shocks go to 
zero. This can happen in two ways: the discrete jumps may become less and less 
frequent, or they may retain their frequency but become smaller and smaller. 
Theorem 2 holds in both cases. 



RESOLVING INDETERMINACY IN DYNAMZC SETTINGS 301 

rate 6. Therefore, choosing X rather than C raises an agent's 
payoff by the amount, 

where Ll = 1- (1- Lf)epst. (Note that the discount rate is the 
product of e-Ot, the agent's pure discount rate, and epst, the 
probability that she has not received another switching opportu- 
nity.) Moving tox i s  an equilibrium iff _U 2 0. Since C i s  increasing 
in both arguments, there is decreasing function Z(LX) such that 
moving to X is an equilibrium whenever z 2 Z(LX).(Z satisfies 
-U(LX, Z(LX)) = 0.)A similar argument shows that moving to C is 
an equilibrium whenever 

where L L  = LfeSt .  DefineZ by u(LX, Z(LX)) = 0. since L! is always 
below L t  and Lj  is always above, whenever U (which is propor- 
tional to a weighted average of n ( ~ j , z )  - 1for all t > 0) equals 
zero, _U (which is proportional to a weighted average of 
~ ( L l , z )- 1)must be positive. This implies that Z(LX) <Z(LX). 

LEMMA1(used in the proof of Theorem 1).Suppose that agents 
choose according to Z, or Z i .  For almost every path of z there 
is a unique path of LX. 

Proof: Let the curve according to which agents choose be 
given by z = Z(LX). By Theorem 1in BFP [19981, there is a unique 
path ofLX if Z is a Lipschitz function: if there is a finite constant c 
such that for any I and I t ,  lZ(1) - Z(It)l< cll - I' 1 .  Every curve Z, 
is contained in the compact set (LX,z) E [0,11 X [z,Zl.Hence, since 
n is continuously differentiable and strictly increasing in both 
arguments, there are finite, positive constants a and b such that 
anlaLx <a and adaz >b at all points on each 2,. We will show by 
induction that all curves Z, (and hence the limit 2,) must be 
Lipschitz with constant c = alb <a. 

To see why this holds for Zo, consider two distinct points on Zo, 
(1 ,~ )and (1 ' ,zl ), where I ' >1 and z' <z. We will compare payoffs at 
the two points path by path. That is, for any path of the Brownian 
motion (z,),,, starting at z, = z, we will compare the payoff at (1 ,~ )  
with the payoff at  (L1,z') when the Brownian motion follows the 
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path (z, + z'  - z),,,. Since Zo is computed assuming that agents 
always choose C , the difference in future values of LX is no greater 
than I' - I. (In particular, it equals (I' - 1)e - s ( U - t ) . )  The difference 
in the payoff parameter is constant at z '  - z. Hence, the difference 
inX sector payoffs at any future date when starting at ( 1 , ~ )  versus 
(l ' ,zr) is always greater than -(I1 - 1)a + (z - zl)b. So the only 
way an agent can be indifferent at  both points is if -(Ir - 1)a + 
(Z - z r )b  (O,orif(z -z')l(l '  - I )  ~ a l b  = c.ThisshowsthatZois 
Lipschitz with constant c. 

Now suppose that Z,-l is Lipschitz with constant c. We prove 
that Z, has the same property. Otherwise there would be two 
points (1 ,~ )  and (ll ,z ')  on Z, with I '  > I and z '  < z, satisfying 
(z' - z)/(ll - I )  > c. We again compare payoffs at  the two points 
path by path. The key is noticing that the difference in future 
values of LX is still no greater than I '  - I. The difference could 
grow only if there were a time at which the state (L$,z,) on the 
path that started at ( 1 , ~ )  was to the left of Z,-l while the state 
(LF,z:) on the other path was to the right. But this cannot be: up 
until the first such time u at which this were to happen, the 
difference in LX could only shrink while the difference in the payoff 
parameter would remain constant. Hence, the ratio (z, - z:)/ 
(Lif' - Lf) would have to be greater than c while the slope of ZnP1 
is less than c. Knowing that the difference in LX can only shrink, 
we can apply the same calculation as in the case of Zo. 

Proof of Theorem 2. To show this, we perform the iterative 
procedure from the right using translations of the curve Z defined 
in equation (1). Let Z, be the limit. As in the proof of Theorem 1, 
there must be a point on Z, at  which an agent is indifferent 
between X and C if she expects all other agents to pick X to the 
right and C to the left. 

Now let us consider an agent who chooses sectors at  the 
indifference point (LX,Z,(LX)). She expects the dynamics shown in 
Figure VII. These dynamics are unstable, since the movement in 
LX always pulls the state away from 2,. (With a bit of algebra, one 
can verify that Z and hence Z, is strictly downward sloping if 
0 > 0.) When the trend and the variance in z are small, the 
movement in LX is fast relative to the movement in z, so the 
system very quickly bifurcates, either upward (sending all agents 
to the X sector) or downward (sending them all to C). 
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By Theorem 2 and Corollary 1in BFP [1998], as the variance 
and trend of z shrink to zero, the amount of time that passes 
before a bifurcation occurs goes to zero. Moreover, the chance of 
bifurcating up (to X) converges to 1 - LX, while the chance of 
bifurcating down (to C) goes to LX. Hence, the agent's relative 
payoff from choosingx is approximately 

where L[ = 1- (1- LX)e" and Lf = LXe". This must equal zero 
since the agent is indifferent. By performing the changes of 
variables I = L! and I = Lj, one can verify that Z,(LX) = Z(LX). 
Since the two curves have the same shape, in the limit X must be 
chosen to the right of Z. An analogous argument shows that C 
must be selected to the left of Z. 

QED 

Proof of Theorem 3. This is proved by a simple rescaling of 
time that permits us to apply Theorem 2. The new time unit is t = 

tIS. In the new time units the parameters are 6 = 1 ,8  = 018, e2= 

(r2/S, and fi(t,z) = p(t,z). By Theorem 2, in the limit as 8 - a, 

agents choose X whenever z > Z(LX) and C whenever z < Z(LX). 
Moreover, since 8 = 018 - 0, the weights w lconverge to 1, which 
implies that Z(LX) -z* for all LX. 
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