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THE LIFE CYCLE OF PLANTS IN INDIA AND MEXICO*

Chang-Tai Hsieh and Peter J. Klenow

In the United States, the average 40-year-old plant employs more than
seven times as many workers as the typical plant 5 years or younger. In con-
trast, surviving plants in India and Mexico exhibit much slower growth,
roughly doubling in size over the same age range. The divergence in plant
dynamics suggests lower investments by Indian and Mexican plants in process
efficiency, quality, and in accessing markets at home and abroad. In simple
general equilibrium models, we find that the difference in life cycle dynamics
could lower aggregate manufacturing productivity on the order of 25 percent in
India and Mexico relative to the United States. JEL Codes: O11, O47, O53.

I. Introduction

A well-established fact in the United States is that new busi-
nesses tend to start small and grow substantially as they age.1
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Macia, Siddharth Kothari, Huiyu Li, and Pedro José Martı́nez-Alanis. Ariel
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including Arnaud Costinot, John Haltiwanger, Jim Tybout, and Daniel Xu. We
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Institute for Economic Policy Research for financial support. Any opinions and
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U.S. Census Bureau and Mexico’s INEGI to ensure no confidential information is
disclosed.

1. See, for example, Dunne, Roberts, and Samuelson (1989) and Davis,
Haltiwanger, and Schuh (1996). Cabral and Matta (2003) provide similar evidence
for Portugal.
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Atkeson and Kehoe (2005) suggest that this life cycle is driven by
the accumulation of plant-specific organization capital. In this
interpretation, establishments grow with age as they invest in
new technologies, develop new markets, and produce a wider
array of higher quality products. Foster, Haltiwanger, and
Syverson (2013) show that even in commodity-like markets, es-
tablishment growth is largely driven by rising demand for the
plant’s products as it ages.

This article examines the importance of establishment-
specific intangible capital accumulation over the life cycle for
understanding differences in aggregate manufacturing total
factor productivity (TFP) between the United States, India,
and Mexico. We choose these three countries because they have
some of the most comprehensive micro-data on manufacturing
establishments. Importantly, the data we use capture the large
informal sector as well as formal establishments in these coun-
tries. Many available data sets, such as the data on Chinese
manufacturing we used in Hsieh and Klenow (2009), are inad-
equate for measuring the life cycle because they only survey large
establishments.

As preliminary evidence, consider the relationship between
establishment employment and age in India and Mexico shown in
Figure I. In the United States, 40-year-old manufacturing plants
are more than seven times larger than plants under the age of 5 in
terms of employment. In India, by contrast, 40-year-old manufac-
turing plants are only 40 percent larger than young plants. In
Mexico, 25-year-old plants are more than twice the size of new
plants, not far from the U.S. pattern. What differs between the
United States and Mexico is that 40-year-old plants in Mexico are
no larger than 25-year-old plants, while 40-year-old U.S. plants
are almost twice as large as their 25-year-old counterparts.
These facts are consistent with establishments accumulating
less organization capital in India and Mexico than in the
United States.2

Why would plants in India and Mexico invest less in organ-
ization capital? The returns to such investments might be lower
in India and Mexico for a multitude of reasons. Large plants could

2. We briefly present more limited evidence for the United Kingdom, Canada,
France, Italy, and Spain. The United States exhibits faster life cycle growth than
any of these countries, and India slower growth than any of these countries. Life
cycle growth in the United Kingdom and Canada is, surprisingly, similar to Mexico.
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face higher taxes or higher labor costs. Levy (2008) argues that
payroll taxes in Mexico are more stringently enforced on large
plants. Bloom et al. (2013) suggest that contract enforcement
problems make it costly to hire the skilled managers necessary
to grow in India. Financial constraints are another possibility.
Many authors have modeled the U.S. life cycle as the result of
relaxed financial constraints as the firm grows.3 If large estab-
lishments in India and Mexico still face financial constraints, this
would diminish their ability and incentive to grow. Another force
might be higher transportation and trade costs within India and
Mexico that make it more difficult to reach more distant markets.

FIGURE I

Plant Employment by Age in the Cross-Section

Data from 2010–2011 ASI-NSS (India), 2003 Economic Census (Mexico),
and the 2002 Manufacturing Census (United States). Employment in the
youngest group (age< 5 years) is normalized to 1 in each country. The figure
gives employment per operating plant versus plant age in the cross-section.
In Mexico, employment includes paid and unpaid workers at fixed-location
establishments. For the United States, employment covers all manufacturing
establishments with at least one employee.

3. Cooley and Quadrini (2001), Cabral and Matta (2003), Albuquerque and
Hopenhayn (2004), and Clementi and Hopenhayn (2006) are examples.
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Consistent with these stories, we find that the gap in the average
revenue product of inputs between high- and low-productivity
establishments is five to six times larger in India and Mexico
than in the United States—as if more productive establishments
face higher taxes, factor costs, or shipping barriers in India and
Mexico.

To gauge the potential effect of the life cycle on aggregate
productivity, we examine simple general equilibrium (GE)
models based on Melitz (2003) and Atkeson and Burstein
(2010). We focus on three mechanisms. First, if postentry invest-
ment in intangible capital is lower in India and Mexico, the prod-
uctivity of older plants will be correspondingly lower. Second,
lower life cycle growth reduces the competition posed by incum-
bents for young establishments. For this reason, slower life cycle
growth can boost the flow of entrants, increase variety, and reduce
average establishment size. Third and related, a larger flow of
entrants may bring in marginal entrants who are less productive
than inframarginal entrants. Based on illustrative model calcu-
lations incorporating these forces, moving from the U.S. life cycle
to the Indian or Mexican life cycle could plausibly account for a 25
percent drop in aggregate TFP. When we try to explain the life
cycle patterns as endogenously arising from tax-like wedges, we
account for about one-third of the U.S.-Indian difference but over-
explain by one-half the U.S.-Mexican difference.

The article proceeds as follows. Section II describes the data.
Section III presents the basic facts about the life cycle of plant
employment in India, Mexico, and the United States. Section IV
provides evidence on whether slower productivity, steeper bar-
riers, or both account for the life cycle of employment in India and
Mexico. Section V lays out a GE model of heterogeneous firms
with life cycle productivity to illustrate the potential conse-
quences for aggregate productivity. Section VI concludes.

II. Data

To measure the life cycle of a cohort of establishments, we
need data that are representative across the age distribution.
A typical establishment-level data set has information only on
plants above a certain size threshold. This is problematic for
measuring the life cycle if most new establishments are small.
Our analysis focuses on the United States, Mexico, and India
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because these countries have data covering almost the entire dis-
tribution of employment by establishment age.

For the United States, we use data from the Manufacturing
Census every five years from 1963 through 2002. The U.S.
Manufacturing Census is a complete enumeration of manufactur-
ing establishments with paid employees. It does not include man-
ufacturing establishments that do not have paid employees.4 The
variables we use from the U.S. Census are the wage bill, number
of workers, value added, establishment identifier, book value of
the capital stock, and industry (four-digit SIC from 1963 to 1997
and six-digit NAICS in 2002). In each year, there are slightly
more than 400 industries. The census does not provide informa-
tion on the establishment’s age. We impute an establishment’s
age based on when the establishment appeared in the census for
the first time.5 We have data every five years starting in 1963, so
we group establishments into five-year age groupings. For our
analysis, we use the censuses from 1992, 1997, and 2002 because
these are the years with the most complete age information. We
also keep the administrative records in our sample. These are
small plants where the Census Bureau imputes plant employ-
ment and output from payroll data (using industry-wide averages
of the ratio of output and employment to the wage bill). In Hsieh
and Klenow (2009) we omitted administrative records because
our focus there was on the dispersion of the ratio of plant
output to inputs. Here, our main focus is on plant employment,
which is not likely to be significantly biased in the administrative
record establishments.

The data sets we use for Indian manufacturing are the
Annual Survey of Industries (ASI) and the Surveys of
Unorganized Manufacturing conducted by the National Sample
Survey Organization (which we abbreviate as NSS). The ASI is a
census of manufacturing establishments with more than 100 em-
ployees and a random sample of formally registered establish-
ments with fewer than 100 employees.6 The NSS is a sample of

4. Such nonemployee establishments accounted for only 0.29% of total manu-
facturing sales in 2007.

5. Establishments are defined by a specific physical location. The establish-
ment identifier remains the same even when the establishment changes ownership.

6. According to India’s Factories Act of 1948, establishments with more than
20 workers (the threshold is 10 or more workers if the establishment uses electri-
city) are required to be formally registered. One third of the formal plants with
fewer than 100 workers were surveyed in the ASI prior to 1994–1995. The sampling
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the self-employed with fewer than 10 employees. The ASI and the
NSS collect data over the fiscal year (April 1 through March 30).
We have the ASI every year from 1980–1981 to 2009–2010.
The NSS data on unorganized manufacturing is available for
five years: 1989–1990, 1994–1995, 1999–2000, 2005–2006, and
2010–2011.

Establishment age is critical to our analysis. The plant’s year
of initial production is self-reported in the Indian data. This vari-
able is available for all years in the ASI and in three years in the
NSS (1989–1990, 1994–1995, and 2010–2011). In the ASI, the
year of initial production is defined as the year production
began at the specific physical location. In addition the ASI’s in-
struction manual states that the ‘‘year of initial production is to
be decided irrespective of ownership changes or new registra-
tion.’’ In the NSS, the year of initial production is defined in the
same manner for establishments with a fixed physical location.
For establishments in the NSS that do not have a fixed physical
location, the birth year is defined as the year when the establish-
ment’s owner began production (not necessarily in the same phys-
ical location). We focus on the three years (1989–1990, 1994–
1995, and 2010–2011) for which the NSS provides age
information. We combine the NSS data for 1989–1990 and
1994–1995 with the ASI data for the same years and the 2010–
2011 NSS with the 2009–2010 ASI. We refer to the combined data
set as the ASI-NSS.

To make the Indian data comparable to the U.S. data, we
restrict the analysis to sectors that are also classified as manu-
facturing in the U.S. data.7 The variables we use from the ASI
and the NSS are establishment age, the number of paid em-
ployees, contract workers, unpaid workers, wage and nonwage
compensation, total capital stock, value added, and four-digit
industry code. Wage and compensation data are only available
for establishments with paid employees or contract workers. The
NSS separately provides the number of full-time and half-time
workers. The ASI and the NSS use the same industry

probability of the smaller plants in the ASI decreased to roughly one-seventh after
1994–1995.

7. This primarily removes auto and bicycle repair shops, which are classified
as manufacturing in the Indian data. Repair shops account for roughly 20 percent of
all establishments in the Indian data.
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classification (about 400 industries each year). Establishment
identifiers are provided in the ASI starting in 1998–1999; the
NSS does not have establishment identifiers.

For Mexico, we use data from the Mexican Economic Census,
conducted every five years by Mexico’s National Statistical
Institute (known by its Spanish acronym INEGI). The census is
a complete enumeration of all fixed establishments in Mexico.
The only establishments not in the Economic Census are street
vendors. We have access to the micro-data of the Mexican
censuses in 1998, 2003, and 2008. To make the Mexican data
comparable to the U.S. data, we restrict our attention to estab-
lishments in the manufacturing sector.8 The variables we use
from these data are the number of paid employees, contract work-
ers, unpaid workers, hours worked (for each type of worker), the
wage bill, labor taxes (paid to Mexico’s Social Security Agency)
and other nonwage compensation, total capital stock, value
added, year of initial production (from which we impute
establishment age), and industry (roughly 350 industries in man-
ufacturing). The year of initial production in the Mexican data
is self-reported by the establishment. The Mexican census de-
fines this variable as ‘‘the year in which the establishment
began operation, regardless of whether or not there has been an
ownership change since the year in which production began’’ (our
translation). There are no establishment identifiers in the
Mexican data, and although the data are a census, there is not
enough information in the data to link establishments between
census years.

Table I presents the number of establishments and total em-
ployment in our data. We focus on establishments rather than
firms. We do not have information on firms in the Indian and
Mexican data. The number of workers in India and Mexico in-
cludes unpaid and contract workers. According to Table I, most
Indian manufacturing establishments are in the informal sector
(i.e., in the NSS). Though informal establishments are smaller,
they still account for around 75 percent of total manufacturing
employment in India.

8. There are two industries classified as manufacturing in the 1998 Mexican
Census (CMAP 311407 and 321201) but later reclassified as agriculture in 2003 and
2008. We drop these industries from the 1998 sample.
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III. The Life Cycle of Manufacturing Plants

This section presents the stylized facts on the life cycle of
manufacturing establishments in India, Mexico, and the United
States. We control for four-digit industries—all the facts we show
are within-industry patterns, averaged across all the industries
using the value-added share of each industry as weights.

We begin by presenting evidence from the cross-sectional
relationship between employment per surviving plant and plant
age (Figure I). The data are from the 2010–2011 ASI-NSS
for India, 2003 Economic Census for Mexico, and 2002
Manufacturing Census in the United States. In the U.S. cross-
section, the average operating plant over the age of 40 is more
than seven times larger than the average plant under the age of 5.
In contrast, 40-year-old Indian plants are no larger than young
plants. Mexico is an intermediate case: average employment dou-
bles from age< 5 to age 25 but remains unchanged after age 25.

The fact that older plants in India and Mexico are small may
not have a large effect on aggregate outcomes if there are fewer
surviving old plants in India and Mexico. Exit rates could be
higher in India and Mexico so that fewer plants survive to old
age. Figure II plots exit rates by age in the three countries, which
we computed from two separate years for each country (1992 to
1997 from the U.S. Manufacturing Census, 1994–1995 to 2010–
2011 from the Indian ASI-NSS, and 1998 to 2003 from the
Mexican Manufacturing Census).9 Exit rates in India and
Mexico are generally no higher than in the United States.

Relatedly, old plants may not matter much for aggregates in
any of our countries. Figure III shows the distribution of employ-
ment by establishment age in the cross-section for all three coun-
tries. The employment share of each age group is a function of
employment per surviving plant of each age, the fraction of plants
surviving to each age, and the size of each cohort at birth. As
Figure III indicates, employment shares decline with age in all

9. For India the 15 years between observations entailed some imputation.
Specifically, we assume that the number of plants of cohort a in 2010–11 relative
to the number of plants of the same cohort in 1994–1995 is given by
ð1� �aþ1Þ

5
� ð1� �aþ2Þ

5
� ð1� �aþ3Þ

5 where a denotes five-year groupings of age in
1994–1995 and �aþ1denotes the average annual exit rate from age a to age a + 1
(�aþ2 and �aþ3 are defined analogously). We assume that exit rates are constant after
age 40. We have data from eight age cohorts from which we impute the eight exit
rates shown in Figure II.
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three countries (the spike in the last age group is due to pooling of
plants 40 and older). But the decline is steeper in India and
Mexico than in the United States. The employment share of
plants 40 years or older is less than 5 percent in India and
Mexico versus almost 30 percent in the United States. Thus old

FIGURE II

Exit Rate by Age

Exit rates are calculated from 1992 to 1997 (U.S. Manufacturing Census),
from 1994–1995 to 2010–2011 (Indian ASI-NSS), and 1998 to 2003 (Mexican
Manufacturing Census). See text for details.
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plants seem important enough in the United States relative to
India and Mexico to affect aggregate productivity.10

FIGURE III

Employment Share by Age in the Cross-Section

2010–2011 ASI-NSS (India), 2003 Economic Census (Mexico), and 2002
Manufacturing Census (United States). For India, employment includes paid,
unpaid, and contract workers. In Mexico employment includes paid and unpaid
workers at fixed-location establishments. For the United States, employment
covers all manufacturing establishments with at least one employee.

10. Figure III also diminishes the concern that our data do not include street
vendors in Mexico and nonemployee establishments in the United States. Although
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These patterns are remarkably robust. Older plants are
bigger relative to younger plants in the United States compared
to India or Mexico in all years for which we have data, and when
using U.S. industry value-added shares to weight industries in all
countries. The pattern also holds up across most sectors. In 17 out
of the 19 two-digit industries in India, average employment is less
than 20 percent higher for plants more than 40 years old com-
pared with plants under the age of 5. In the United States, con-
versely, average employment is more than seven times higher in
older plants (more than 40 years old) in 17 out of 19 two-digit
industries. Also, size is flat with respect to age in the formal
plants of the Indian ASI alone, just as in the pooled NSS-ASI
data.11

Establishment age might measure different things in the
United States, India and Mexico. For example, respondents of
the Indian ASI could report their establishment’s age from
when it became formal.12 This might understate the age of
larger ASI plants relative to smaller NSS plants, biasing our por-
trait of life cycle growth. Furthermore, better functioning mar-
kets might allow new firms in the United States to take over the
facilities of firms that went out of business, whereas this type of
reallocation might be less common in India and Mexico. If either
force were important we would expect higher exit rates in Indian
and Mexican plants than for U.S. plants, ceteris paribus. We do
not see this pattern in the exit rates shown in Figure II. Another
concern is that NSS respondents that do not produce in a fixed
location report their age from the time the owner began produc-
tion. However, establishments without a fixed location account
for only 5.7 percent of all establishments and 3.8 percent of total

there are many such establishments, they are probably less important in terms of
employment so that including them would not materially change the distribution of
employment by age.

11. An interesting question is whether the life cycle of firm employment differs
from the life cycle of an establishment. The Mexican and Indian data do not identify
the owner of the plant. However, starting in 2001–2002, the Indian ASI provides
information on the number of other establishments owned by the parent company.
These data indicate that the parent company of a formal Indian plant under the age
of 5 also owns 0.85 additional plants. In turn, the parent company of a 40-year-old
plant also operates 1.2 additional plants.

12. In a study of informal enterprises in 13 developing countries (including
India), however, La Porta and Shleifer (2008) find that the vast majority of
formal businesses were never informal.
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employment in Indian manufacturing. Not surprisingly, when we
restrict the 2010–2011 Indian data to only fixed establishments,
the relationship between establishment size and age is identical
to that shown in Figure I.

Although suggestive, the relationship between plant employ-
ment and age in the cross-section conflates size differences
between cohorts at birth with employment growth of a cohort
over its life cycle. Ideally, we want to measure a cohort of
plants over time. However, we do not have a panel. For the
United States, we have establishment data from 1963 to 2002
so we can follow a synthetic cohort over 40 years. In India, we
have data on establishment age for 1989–1990, 1994–1995, and
2010–2011 so we can follow cohorts over 20 years. In Mexico, we
have data for 1998, 2003, and 2008 so we can follow cohorts for up
to 10 years.

Given these data limitations, we measure the life cycle by fol-
lowing synthetic cohorts over time. For Mexico, we compare the
average employment of operating establishments of each cohort in
1998 with the average employment of the surviving plants from
the same cohort in 2003. We do this for all the cohorts grouped into
five-year age bins. If we assume that every cohort experiences the
same employment growth and exit rate over its life cycle, we can
impute the life cycle from the change in average plant employment
from 1998 to 2003 for each cohort. We do the same for the United
States by comparing average employment of each cohort in 1992 to
the average employment of its surviving members in 1997.13 In
India, we measured growth of each cohort (defined as five-year
groupings of age) from 1994–1995 to 2010–2011 (the most recent
years with plant age information in the ASI-NSS).14

Figure IV presents the cumulative growth in average plant
employment with age calculated in this manner. In India, the

13. We did not use 2002 versus 1997 U.S. data here because the U.S. industry
classification changed from 1997 to 2002. Recall that we calculate statistics within
four-digit industries, then take weighted averages across industries.

14. Because the Indian samples are further apart than our five-year
age bins, some imputation is necessary. We assume the growth rate from
1994–1995 to 2010–2011 of a given cohort is a polynomial in age
ga ¼

P3
j¼1 �1ðaþ jÞ þ �2ðaþ jÞ2 þ �3ðaþ jÞ3 þ �4ðaþ jÞ4

� �
where a represents the

age of the cohort (in five-year bins) in 1994–1995. We estimate �1, �2, �3, and
�4(the coefficients of the polynomial in age) from the growth rate of eight cohorts
from 1994–1995 to 2010–2011. We then impute the growth of average employment
over the life cycle by cumulating the estimated coefficients of the polynomial in age.
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evidence over time suggests that by age 35, average plant em-
ployment is 40 percent higher compared to average employment
at birth. The evidence from India’s cross-sectional data indicated
a slightly smaller increase in plant size. For the United States,
the evidence over time suggests that average plant size increases
by a factor of 10 from birth to age 35; the cross-sectional evidence
suggested less than an eightfold increase. In Mexico, the evidence
over time is similar to what the cross-section implied for the
increase in plant size with age.

On top of exit, a cohort’s employment share can decline with
age because entering cohorts are growing in size and number.
Figure V plots our estimate of the number of establishments on
birth for each five-year cohort (we normalize the youngest cohort
in our data to 1 in each country). This calculation measures size of
each five-year cohort in the last year for which we have data for
each country (2002 in the United States, 2008 in Mexico, and

FIGURE IV

Average Employment over the Life Cycle

Employment growth imputed from the 1992 and 1997 U.S. Manufacturing
Censuses, the 1998 and 2003 Mexican Economic Censuses, and the 1994–1995
and 2010–2011 Indian ASI-NSS. Employment of the youngest age group is
normalized to 1 in each country. We compare average employment per surviv-
ing plant in a later year to average employment per operating plant in the
same cohort in the earlier year. See text for details.
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2010–2011 in India). We then impute the size of each cohort at
birth by assuming that exit rates by age (shown in Figure II) are
the same for all cohorts. Young cohorts are generally larger in
India and Mexico, perhaps because Mexico and India began to
industrialize after the United States. Thus some of the decline

FIGURE V

Number of Plants by Birth Cohort

Cohort size imputed from cohort sizes in 2002 U.S. Manufacturing Census,
2008 Mexican Economic Census, and 2010–2011 Indian ASI-NSS assuming that
exit rates by age (shown in Figure II) are the same for all cohorts.
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in the employment share with age in the cross-section in
Figure III is due to the more rapid growth of entrants in Mexico
and India relative to the United States. If there is a steady state
in the future with a constant entry rate, we would not expect as
large a difference in the employment share of old cohorts between
the United States and India and Mexico in the cross-section.

Figure VI shows what employment share with age would look
like in a steady state with a constant entry rate. Specifically,
Figure VI assumes that all cohorts are of the same size on birth
and thus abstracts from differences in cohort size. Furthermore,
Figure VI assumes that the growth rate of employment of surviv-
ing establishments is given by Figure V (which control for differ-
ences in cohort quality) and that exit rates are the same for all
cohorts (and given by Figure II).15 A cohort’s employment share
declines with age in all three countries; this can stem from exit
and/or growing size of entering cohorts. Again, exit rates are no
higher in India and Mexico than in the United States. In addition,
the growth rate in the size of new cohorts in the United States
between 1992 and 1997 was no lower than the growth rate in the
size of new cohorts between 1998 and 2003 in Mexico and between
1994–1995 and 2010–2011 in India.16 These two facts suggests
that the steeper decline in the employment share with age in
India and Mexico shown in Figure VI cannot be due to higher
exit rates or higher growth rates of the size of new cohorts in
these two countries.

To drive home that time and cohort effects can matter,
Figure VII presents the life cycle for India imputed from employ-
ment growth in an earlier period: from 1989–1990 to 1994–1995.
This was a period when India undertook major economic reforms,
and all the cohorts we follow over these five years were born
before these reforms. For comparison, the figure reproduces the
life cycle estimated from employment growth from 1994–1995 to
2010–2011. As can be seen, the life cycle before 1994 is remark-
ably different from the behavior after 1994. Although the post-
1994 behavior suggests modest growth over the life cycle, the
pre-1994 evidence suggests that by age 35, average plant size

15. Figure VI also assumes that all plants die by age 100.
16. From Table I and Figure V, the average size of new cohorts grew by 27% in

the United States between 1992 and 1997. In India, the average size of new cohorts
increased by 7% in India between 1994–1995 and 2010–2011 and decreased by 12%
in Mexico between 1998 and 2003.
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fell to one fourth its size at birth. In sum, although life cycle
growth in Indian manufacturing after 1994 is still modest when
compared to the United States, it is still significantly faster than
observed before the Indian reforms in the early 1990s.

FIGURE VI

Employment Share by Age in Steady State

Steady-state employment share by age assumes constant entry rate and
constant average size of entrants. The figure assumes growth in average em-
ployment per surviving plant as given by Figure IV and exit rate by age as
given by Figure II.
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In contrast, the evidence from Mexico and the United States
indicates that the years we focus on are more typical. In the
United States, when we follow the cohort of new establishments
in 1967 (recalling that we have to impute age based on when the
establishment appears in the census for the first time) until 1997,
we get estimates of the life cycle that are similar to that imputed
from employment growth from 1992 to 1997. In Mexico, we get
estimates similar to those shown in Figures IV and VI (based on
1998 to 2003) when we impute the life cycle using the employ-
ment change from 2003 to 2008.

Growth in average employment of operating plants in a
cohort can be driven by survivor growth and/or by the exit of
small establishments. Several authors, including Jovanovic
(1982), Hopenhayn (1992), Ericson and Pakes (1995), and
Luttmer (2007), emphasize the role of selection in survivor
growth in the United States. We now explore whether the selec-
tion effect could explain the difference in the life cycle between
the United States and India. Figure VIII presents the growth of
surviving establishments in India and the United States.

FIGURE VII

Employment Growth in India

Employment growth with age imputed from the ASI and NSS from 1989–
1990 to 1994–1995, and from 1994–1995 to 2010–2011.
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Specifically, the plot with the label ‘‘survivors from previous age’’
is computed from the growth of those establishments who survive
from one sample to the next. To do this we compare average em-
ployment for the 5–9-year-old plants in one year to those same

FIGURE VIII

Employment Growth over the Life Cycle

Employment growth with age is imputed from the 1992 and 1997 U.S.
Manufacturing Censuses and the 1998–1999 and 2003–2004 Indian ASI.
‘‘Survivors from Previous Age’’ are based on comparing plants that operate in
both of the years. ‘‘Current Operating Plants’’ is based on all operating plants,
including those who do not survive to the latter year.
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plants when they were age< 5 in the previous sample. We do the
same for the age 10–14 plants in one year versus the same plants
age 5–9 operating five years earlier, and so on. The U.S. data are
from the Manufacturing Censuses of 1992 and 1997, and the
Indian data are from the ASI (the survey of formal establish-
ments) from 1998–1999 to 2003–2004. (We have establishment
identifiers in the ASI starting in 1998–1999.) The ASI is not rep-
resentative of Indian manufacturing, but we think the ASI evi-
dence is still useful. For comparison Figure VIII also reproduces
the growth in average employment shown in Figure IV (the plot
with the label ‘‘current operating plants.’’)

According to Figure VIII, in both the United States and in
formal Indian plants, survivor growth is lower than overall
growth. This suggests that exit is negatively correlated with
size in both countries. It actually appears that survivor selection
is stronger in India than in the United States. The upshot is that
the flatter life cycle in India is not because larger plants are more
likely to exit (and smaller plants less likely to exit) in India com-
pared to the United States. Instead, what appears to differ be-
tween the countries is the growth of survivors. In the United
States, surviving establishments experience substantial growth.
In India, incumbent plants shrink with age. This fact points to the
anemic growth of survivors in India as the driving force for the
flat life cycle in Indian plants. We reiterate that the Figure VIII
evidence is not conclusive as we do not have evidence from infor-
mal Indian plants.

We end this section by presenting evidence on the life cycle in
the manufacturing sectors in other countries. Figure IX presents
the average size of manufacturing plants at ages 10–14 and 30–34
(relative to age< 5) in the United Kingdom, Canada, France,
Italy, and Spain. Appendix I provides details on how these stat-
istics were calculated. Figure IX also reproduces the numbers
from our Mexican, Indian, and U.S. data. The United Kingdom
and Canada look similar to Mexico. Spain is somewhere between
the Indian and Mexican life cycle. France and Italy are some-
where between Mexico and the United States. Whereas manufac-
turing plants grow eightfold by age 34 in the United States, the
equivalent number in Italy is a factor of 6.5, a factor of 3.5 in
France, and only a factor of 2 in the United Kingdom and
Canada. Perhaps surprisingly, life cycle growth in the United
Kingdom and Canada looks similar to that in Mexico. Although
the United States and India are at the top and bottom,
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respectively, the patterns in these other countries are a caution-
ary reminder that we need more and better evidence to know
whether life cycle patterns are strongly related to income per
capita across a broad set of countries.

IV. Productivity Over The Life Cycle

In this section, we impose more structure on the data to infer
how much of the low employment growth of Indian and Mexican
plants reflects slow productivity growth with age. Consider a
closed-economy version of Melitz (2003). Suppose that ag-
gregate output at time t is given by a constant elasticity of

FIGURE IX

Employment Growth over the Life Cycle

Employment growth by age 10–14 and age 30–34 relative to age< 5. Indian
data are from plants in the 2009–2010 ASI/NSS. Data for France, Italy, and
Spain are for firms in the 2006–2007 Amadeus Database. U.K. data are for
plants from 1997–2001 to 2002–2006 in the ARD. Canadian data are for
plants from 1999–2001 to 2004–2006 in the Canadian ASM. See Appendix I
for additional details.
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substitution (CES) aggregate of the output of individual
establishments:

Y ¼
X

a

XNa

i¼1

Y
��1
�

a, i

" # �
��1

:ð1Þ

Here i indexes the establishment, a refers to the establishment’s
age, Na is the number of establishments of age a (we suppress the
subscripts for sector and time), Ya,i is value added of the estab-
lishment, and � > 1 is the elasticity of substitution between
varieties.

Each plant is a monopolistic competitor choosing its labor
and capital inputs (and therefore its output and price) to maxi-
mize current profits:

�a, i ¼ ð1� �Ya, i
ÞPa, iYa, i � ð1þ �La, i

ÞwLa, i � ð1þ �Ka, i
ÞRKa, i,ð2Þ

where Pa,i is the plant-specific output price, La,i is the plant’s
labor input, Ka,i is the plant’s capital stock, and w and R are
the common, undistorted costs of labor and capital. Here �Ya, i

de-
notes an establishment-specific revenue distortion, �Ka, i

a capital
distortion, and �La, i

a labor distortion. Such wedges may arise for
any number of reasons, such as taxes, markups, transportation
costs, size restrictions, labor regulations, and financial fric-
tions.17 These wedges could also reflect overhead or adjustment
costs, which could be technological or policy-related.

Suppose, further, that plant output is given by a Cobb-
Douglas production function:

Ya, i ¼ Aa, iK
�
a, iL

1��
a, i ,ð3Þ

where Aa,i is plant-specific productivity. Aa,i is process efficiency
here for concreteness, but it is observationally equivalent to
plant-specific quality or variety under certain assumptions (see
the appendix in Hsieh and Klenow 2009).

The equilibrium revenue, labor allocation, and capital-labor
ratio of the plant are given by:

Pa, iYa, i /
Aa, i

TFP
�

��

�a, i

� ���1

ð4Þ

17. For recent examples see Restuccia and Rogerson (2008), Guner, Ventura,
and Xu (2008), Buera, Kaboski, and Shin (2011), Peters (2012), Moll (2012),
Midrigan and Xu (2009), and Bhattacharya, Guner, and Ventura (2013).
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La, i /
Aa, i

TFP

� ���1 ��

�a, i

� �� 1þ �La, i

1þ �Ka, i

� ���
Lð5Þ

Ka, i

La, i
¼

�

1� �
�
w

R
�
1þ �La, i

1þ �Ka, i

,ð6Þ

where �a, i /
1þ�Ka, i

� ��
1þ�La, i

� �1��

1��Ya, i
, �� is the average value of �, TFP is

aggregate TFP, and L is the total number of workers.18 When the

ratio
�Ka, i

�La, i
does not vary across plants, the capital-labor ratio does

not vary across plants and the allocation of labor is only a function
of A and �. See Hsieh and Klenow (2009) for additional details.

As shown in equations (4) and (5), a plant’s revenue and em-
ployment are increasing in its productivity A and decreasing in
its average revenue product �. For a given �, more productive
plants have lower costs and therefore charge lower prices and
reap more revenue (given � > 1). Plants with a higher � charge
higher prices and earn less revenue, for a given level of product-
ivity. To the extent that resource allocation is driven by � rather
than by A, there will be differences in the marginal revenue prod-
uct of resources across plants. From equations (4), (5), and (6), � is
proportional to the geometric average of the marginal product of
labor and capital:

�a, i

��
/

Pa, iYa, i

Ka, i

� �� Pa, iYa, i

La, i

� �1��

:ð7Þ

We are building on the work of Foster, Haltiwanger, and
Syverson (2008), who distinguish between TFPR (revenue TFP,
or �a, i here) and TFPQ (quantity TFP, or Aa,i here). This distinc-
tion was key in Hsieh and Klenow (2009) and we use the same
idea here. What is different in this article is that we focus on the

18. Aggregate TFP in this model is
P
a

PNa

i¼1
Aa, i �

��
�a, i

� 	��1

 � 1

��1

and average revenue

product �� is proportional to
P
a

PNa

i¼1

1��Ya, i

1þ�Ka, i

� 	
�

Pa, iYa, i

PY

� 	� ��
�
P
a

PNa

i¼1

1��Ya, i

1þ�La, i

� 	
�

Pa, iYa, i

PY

� 	� �1��
" #�1

where Pa, iYa, i

PY denotes the plant’s share of value added. See Hsieh and Klenow (2009)

for additional details.
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variation of plant productivity Aa,i and average revenue product �
with age. Specifically, the growth of plant revenue and employ-
ment with age in this model depends on the growth of plant prod-
uctivity with age and the extent to which plant average revenue
products change with age.

We need data on PY, K, L, and � to measure plant product-
ivity and average revenue products. We measure PY as plant
value added, K as the book value of the plant’s capital stock,
and 1 – � as the U.S. wage-bill share of the sector. In Hsieh and
Klenow (2009), we measure L as the plant’s wage-bill. We do not
do so here because a large number of establishments in India and
Mexico do not have paid workers. For the United States we meas-
ure plant employment as the total number of workers. For India
we measure employment in the ASI plants as the number of
workers and in the NSS plants as the number of full-time equiva-
lent workers (we assume a part-time worker is equivalent to half
a full-time worker). For Mexico we measure employment as the
total number of hours worked.

Figure X plots the evolution of plant productivity Aa,i over the
life cycle. More precisely, Figure X plots life cycle productivity
growth relative to aggregate TFP growth.19 In Mexico and the
United States, productivity grows slightly less than employment
as plants age. By age 35, productivity grows by a factor of 9.3 in
the United States and by a factor of 1.7 in Mexico, whereas em-
ployment grows by a factor of almost 10 in the United States and
by a factor of 2 in Mexico. In India, productivity at age 35 is
1.5 times higher (compared to age<5), while employment in-
creases by a factor 1.4 by age 35.

Figure XI plots the geometric mean of the average revenue
products of capital and labor (‘‘revenue productivity’’) over the
life cycle. In India, revenue productivity is about 10 percent
higher in 35-year-old plants compared to new plants. Older
Indian establishments are thus slightly smaller than they
would be in an economy where marginal products were equalized
across plants by age. In Mexico and the United States, revenue
productivity of 35-year-old plants are slightly lower than those of
new plants. Because of this, in Mexico and the United States,

19. We infer a plant’s relative productivity in a given year using
Aa, i

TFP / Pa, iYa, i

� � 1
��1�

�
a, i

�� /
Pa, iYa, ið Þ

�
��1

K�
a, i

L1��
a, i

(from combining equations (4), (5), and (6)). We

use � ¼ 3 based on Hsieh and Klenow (2009).
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employment grows by less with age than is predicted by product-
ivity alone. But the dominant reason for slower employment
growth with age in Mexico and India is the slower life cycle prod-
uctivity growth in these countries.

Why does productivity grow by less in India and Mexico over
the plant’s life cycle? As a suggestive piece of evidence, Figure XII
plots revenue productivity versus productivity in the cross-
section for each of our three countries. The average revenue prod-
uct of capital and labor rises much more steeply with productivity
in India and Mexico than in the United States. In India and
Mexico, a doubling of establishment productivity is associated
with a 50–60 percent increase in the average revenue product
of factor inputs. In the United States a doubling of productivity
is associated with a 10 percent gap in average revenue products.
In the next section, we assess whether this steeper slope of

FIGURE X

Productivity over the Life Cycle

Productivity growth imputed from the 1992 and 1997 U.S. Manufacturing
Censuses, the 1998 and 2003 Mexican Economic Censuses, and the 1994–1995
to 2010–2011 ASI and NSS in India. Productivity of the youngest age group is
normalized to 1 in each country. We compare average productivity per surviv-
ing plant relative to aggregate TFP in a later year to average productivity per
operating plant relative to aggregate TFP in the same cohort in the earlier
year.
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revenue productivity with respect to productivity in India and
Mexico can explain the low growth of productivity over the life
cycle, as well as the implications for aggregate TFP.

V. Impact of The Life Cycle on Aggregate Productivity

We now try to address two questions. First, how does the life
cycle contribute to aggregate productivity differences between
India, Mexico, and the United States? Second, can distortions
(consistent with the average revenue product data) explain
the life cycle patterns in a model with endogenous productivity?
We first consider models with exogenous life cycle productivity.
Then we consider models in which life cycle productivity is
endogenous.20

FIGURE XI

Revenue Productivity over the Life Cycle

Growth of the average revenue product of capital and labor in the 1992 and
1997 U.S. Manufacturing Censuses, the 1998 and 2003 Mexican Economic
Censuses, and the 1994–1995 and 2010–2011 ASI-NSS in India. For the young-
est age, Revenue Productivity is normalized to 1.

20. Cole, Greenwood, and Sanchez (2012) also construct a quantitative model to
fit our facts for India, Mexico, and the United States. In their model financing
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In all the models we consider, we assume that incumbent exit
rates are high enough that life cycle productivity growth only
affects the steady-state level of productivity not the long-run
growth rate (see Luttmer 2010). The long-run growth rate is
driven by increases in entrant productivity. In these models, we
are attempting to quantify the level effect of the life cycle on ag-
gregate productivity. To illustrate, consider the stylized depiction
in Figure XIII. In this hypothetical plot, ‘‘U.S.’’ incumbent prod-
uctivity rises much faster than that of successive cohorts of U.S.
entrants. In ‘‘India’’ incumbent productivity rises only a little
faster than the rate at which entrants improve. As a result, aver-
age firm productivity in the cross-section of plants at a point
in time will be higher in the ‘‘U.S.’’ than in ‘‘India.’’ It is this

FIGURE XII

Revenue Productivity versus Productivity in the Cross-Section

The average revenue product of capital and labor (�) and productivity (A)
are relative to weighted averages of industry � and A in each country. Sources:
2010–2011 ASI-NSS (India), 2003 Economic Census (Mexico), and 1992
Manufacturing Census (United States).

frictions inhibit incumbent technology adoption in India and Mexico. Akcigit and
Peters (2013) pursue the idea that managerial costs account for our empirical
patterns.
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level effect—the proportional difference in bracket heights in
Figure XIII—that we aim to quantify.

We consider a sequence of simple GE models with monopol-
istic competitors whose productivity varies over their life cycle. In
addition to Melitz (2003), we follow Atkeson and Burstein (2010)
in our modeling choices. As detailed in the Online Appendix, we
assume:

(i) a closed economy,
(ii) no aggregate uncertainty,

(iii) additively time-separable isoelastic preferences over per
capita consumption,

(iv) constant exogenous growth in mean entrant
productivity A,

(v) labor as the sole input (including for entry, innovation,
and overhead),

(vi) fixed aggregate supply of labor (equal to the population),
(vii) exit rates as a fixed function of a plant’s age and A,

(viii) average revenue products (T’s) as a fixed function of a
plant’s age and A.

FIGURE XIII

Hypothetical Productivity across Cohorts
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These assumptions imply two convenient properties about
the resulting equilibria:

(i) a stationary distribution of plant size in terms of labor,
(ii) a balanced growth path for aggregate TFP, the real wage,

output, and consumption, and a fixed real interest rate.

See Luttmer (2010) as well as Atkeson and Burstein (2010),
who derive these properties.

For each model, aggregate TFP is the same as output per
capita, as there is no capital. Aggregate TFP can be expressed as

TFP ¼
Y

L
¼

X
a

XNa

i¼1

Aa, i �
��

�a, i

� ���1
" # 1

��1
LY

L
,ð8Þ

where Ya, i ¼ Aa, iLa, i and �a, i ¼
Pa, iYa, i

La, i
¼ Pa, iAa, i. Because these

models do not have capital, we assume at most a single revenue
distortion �a, i hitting each plant, with average value ��.21 In equa-
tion (8), LY

L is the fraction of the labor force working to produce
current output. The total workforce is fixed at L ¼ LY þ LR þ LO

each period. LY is the sum of production labor across all plants, LR

is the number of people working in the research sector to improve
process efficiency for incumbents and come up with new varieties
for entrants, and LO denotes labor used for overhead. It will be
useful to express aggregate TFP in equation (8) as the product of
average A, varieties, and the share of resources used to produce
current output:

TFP ¼ �A �N
1
��1 �

LY

L
:ð9Þ

Average firm productivity is �A �
P

a

PNa

i¼1

Aa, i�
��

�a, i

� 	��1

N

2
64

3
75

1
��1

, and

N ¼
P

a Na is the total number of firms (and varieties). In our
exercises, we will illustrate the effect of the life cycle on aggregate
TFP as well as on the three components in equation (9).

21. In terms of the earlier notation, �a, i ¼
1

1��Ya, i
and �� ¼ 1P

a

PNa

i¼1

Pa, iYa, i
PY

1
�a, i

.
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V.A. Exogenous Life Cycle Productivity

We start by considering models with exogenous life cycle prod-
uctivity. Firms in a given entering cohort have heterogeneous
productivity on entry to fit the entrant productivity distribution
in the United States.22 As firms age, their productivity grows ex-
ogenously at a common, age-specific rate. Exit rates are exogenous
but depend on age and productivity as in the United States. We
first calculate aggregate TFP from equation (9) using U.S. A by
age. We then separately calculate aggregate TFP assuming Indian
and Mexican levels of A by age.

Table II lists the exogenous life cycle productivity models we
consider. Table III lists the parameter values that apply to all
cases. The results for India are shown in Table IV, and for
Mexico in Table V. Based on equation (9), the columns present
aggregate TFP, average firm productivity, the number of vari-
eties, and production workers relative to the workforce.

The first case assumes the flow of entrants is fixed over time.
It further assumes that � does not differ across firms. In this case,
going from the United States to Indian and Mexican life cycle A
growth lowers aggregate productivity by 25% in India and 18% in
Mexico. Because entry is fixed, the mass of firms is fixed and does
not respond to the life cycle. Thus the change in aggregate TFP is
the same as change in average firm productivity. To put the 25%
decline in aggregate TFP in India into perspective, aggregate
TFP in Indian manufacturing is about 62% below that in the

TABLE II

MODELS WITH EXOGENOUS LIFE CYCLE PRODUCTIVITY

Rows in Tables IV and V Entry Entrant quality t variation

Row 1 Fixed Fixed None
Row 2 Free Fixed None
Row 3 Free Endogenous None
Row 4 Free Fixed Overhead costs
Row 5 Free Fixed Adjustment costs
Row 6 Free Fixed Revenue taxes

Notes: A refers to firm productivity, and � to the firm’s average product of capital and labor. In all
cases there is dispersion of A within and across ages, and exit is exogenous and varies by age and
productivity.

22. For the age 35+ cohorts, we estimate the exit rate and the growth rate of A by
comparing the 35+ group to the 30+ group. We assume all plants die by age 100 for
computational convenience.
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United States (Hsieh and Klenow 2009). So slower life cycle prod-
uctivity growth might account for about 30% of the aggregate
TFP difference (ln(0.75)/ln(0.38)& 0.30).

The previous calculation assumed no response of entry to life
cycle growth. In the data, average plant size is smaller in India
and Mexico than in the United States. Figure XIV plots the em-
ployment distribution by plant size in the three countries. As exit
and entry rates are no lower in India and Mexico, their mass of
entrants must be bigger, even in per worker terms. This might be
due in part to the different life cycle growth of Indian and
Mexican plants. In a Melitz-style model with incumbent innov-
ation, Atkeson and Burstein (2010) find that slower productivity
growth of incumbents can encourage entry. Entrants, facing less
competition from efficient incumbents, enjoy higher discounted
profits, all else held constant. Entry therefore increases to

TABLE III

PARAMETER VALUES FOR EXOGENOUS LIFE CYCLE PRODUCTIVITY

Parameter Definition Value or target

� Elasticity of substitution between
varieties

3

� Coefficient of relative risk aversion 2
� Discount rate Annual real interest rate of

5%
N Maximum life span of a firm 100 years (20 periods; 1

period = 5 years)
ge Growth rate of mean entrant A 2.1% per year for all models

(U.S. average TFP growth)
Aa Productivity by age Set to match productivity by

age data in each country
�e Std. dev. of entrant log

productivity
1.01 to match productivity

dispersion of age 0–5 U.S.
plants

�a Exit by age, conditional on
productivity

U.S. exit rates by 5-year age
group

�a, i Exit by productivity, conditional on
age

U.S. semi-elasticity of exit
w.r.t. plant productivity

fe Entry costs (in terms of labor) Average workers per plant
in the U.S.

�a, i Average products by productivity
level

Set to match U.S. elasticity
of average products w.r.t.
productivity

Notes. Average products vary with productivity only in the presence of overhead costs, adjustment
costs, or revenue taxes (rows 4–6 in Tables II, IV, and V). See Section V and the Online Appendix for more
detail.
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maintain the free entry condition (zero discounted profits) in
equilibrium. Atkeson and Burstein (2010) find that in response
to higher trade barriers, the benefits of higher entry can largely
offset the costs of lower average A among operating firms.

We now consider what happens with endogenous entry when
moving from the U.S. to Indian and Mexican life cycle growth. We
assume that in equilibrium, the expected discounted value of
profits for entrants is equal to the entry cost. This formulation
of the free entry condition, from Hopenhayn (1992), assumes that
potential entrants only observe their productivity after they pay
the entry cost (we relax this assumption shortly). We denominate

TABLE IV

PERCENT CHANGE FROM U.S. TO INDIAN LIFE CYCLE IN MODELS WITH EXOGENOUS LIFE

CYCLE PRODUCTIVITY

Cases
Aggregate

TFP
Weighted
average A Entry

Workers/
workforce

Baseline �25.1 �25.1 0 0
Free entry �23.3 �25.1 +11.3 �3.6
Endogenous entrant quality �28.9 �46.4 +100.7 0
Overhead costs �16.5 �24.8 +26.1 �2.6
Adjustment costs �22.3 �24.6 +12.5 �3.5
Revenue taxes �23.4 �25.1 +9.9 �3.2

Notes. Table entries are % changes when going from U.S. to Indian productivity (A) by age. Aggregate

TFP is the product of three terms (TFP ¼ Y
L ¼

�A N
1
��1

LY
L ), weighted average A, a variety term involving the

mass of firms, and the fraction of the population producing current output (as opposed to supplying
overhead labor or generating entry).

TABLE V

PERCENT CHANGE FROM U.S. TO MEXICAN LIFE CYCLE IN MODELS WITH EXOGENOUS

LIFE CYCLE PRODUCTIVITY

Cases
Aggregate

TFP
Weighted
average A Entry

Workers/
workforce

Baseline �18.2 �18.2 0 0
Free entry �16.7 �18.2 +7.8 �2.5
Endogenous entrant quality �23.5 �42.4 +101.5 0
Overhead costs �13.0 �17.9 +14.9 �2.1
Adjustment costs �16.0 �18.0 +9.3 �2.7
Revenue taxes �16.8 �18.2 +6.7 �2.2

Notes. Table entries are % changes when going from U.S. to Mexican productivity (A) by age.
Aggregate TFP is the product of three terms (TFP ¼ Y

L ¼
�A N

1
��1

LY
L ), weighted average A, a variety term

involving the mass of firms, and the fraction of the population producing current output (as opposed to
supplying overhead labor or generating entry).
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entry costs in units of labor in light of Bollard, Klenow, and Li
(2013). We set the level of entry costs to fit the average plant size
in the United States.23 We then calculate aggregate TFP with

FIGURE XIV

Distribution of Establishments by Employment

Sources: 2010–2011 ASI-NSS (India), 1998 Economic Census (Mexico), and
1997 Manufacturing Census (United States). Plants are weighted by the per-
plant value-added share of each four-digit industry.

23. Average employment per plant in the United States is 45 workers (see
Table I and Figure XIV).
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Indian and Mexican life cycle productivity growth, allowing entry
to endogenously respond.

The second row of Tables IV and V presents the endogenous
entry case. Intuitively, there will now be two effects. First, as
in the baseline case, average firm A falls by construction
(column (2)). What is new is that entry rises (column (3)): by
11% in India and 8% in Mexico. The net effect on aggregate
TFP is still negative, at �23% in India and �17% in Mexico.
Even with our low substitutability (� ¼ 3) and therefore strong
love of variety, 11% more variety in India lifts aggregate TFP less
than 6%. The additional entry diverts some labor from goods pro-
duction, lowering the share of people producing current output
(column (4)) by 3.6% in India and 2.5% in Mexico. On net the
variety response does offset some of the TFP loss from lower life
cycle productivity growth, but it is not a major offset. Fattal Jaef
(2012) obtains a similar result when considering the costs of
rising � with age in a closely related model.

Two comments about the variety offset deserve mention here.
First, the model assumes a linear entry technology. Doubling
entry with the same quality of entrants requires twice as much
entry labor. If there are instead diminishing returns to entry,
then the outcome would be different. We provide a specific ex-
ample shortly. Second, the model assumes a final goods sector
which buys some of every variety. Yet many small manufacturers
in India—for example those making food, textiles, and furni-
ture—may sell to only a small set of local consumers. Li (2011)
provides evidence that households in India do not consume all
varieties of food, though richer and urban families consume
more varieties than poorer and rural households do. Arkolakis
(2010) posits convex costs of accessing buyers within countries;
see the model in Appendix II inspired by his work.

So far we have set the initial entrant A distribution to match
the U.S. data. But across young plants, A is more dispersed in India
and Mexico than in the United States. The standard deviation of log
A across age 0–4 plants is 1.27 in India and 1.46 in Mexico, versus
1.01 in the United States.24 Greater entrant productivity dispersion
in India and Mexico could be a by-product of greater entry there.
To illustrate, suppose there is a fixed mass of potential entrants

24. The U.S. number is for 1997. In 1987 and 1992, the standard deviation of ln
TFPQ in the United States is 0.87 and 0.88, respectively. The Mexican number is for
1998 and for 1994–1995 for India.

QUARTERLY JOURNAL OF ECONOMICS1068



as in Chaney (2008). These potential entrants observe their A
ex ante. Instead of a free entry condition, wherein expected profits
are zero for all entrants, there is a marginal A entrant with zero
discounted profits. All those with initial A above the zero-profit
threshold enter and earn positive discounted profits.

To consider the case with endogenous entrant quality, we
need to know the distribution of potential entrants as well as
the entry cost. We continue to calibrate the entry cost to match
average employment per plant in the United States. We calibrate
the mass of potential entrants to match the A dispersion in India
when we go from U.S. life cycle A to Indian life cycle A. The
implied entry cost from this exercise is much smaller because
the zero profit condition only holds for the marginal entrant.

The third row of Tables IV and V shows the effect, under
endogenous entrant quality, of moving from U.S. to Indian or
Mexican productivity with age. As in the previous two cases,
lower life cycle growth directly lowers average A. As before,
entry increases—variety more than doubles when moving from
the U.S. life cycle to the Indian and Mexican life cycles. Marginal
entrants are lower productivity firms, whereas our previous case
assumed that marginal entrants were no different from the aver-
age entrant. Here, more entry (i) lowers the average A among
entrants, and (ii) increases the dispersion of A among entrants.
Previously both were held fixed. Taking into account the slower
life cycle productivity growth and the lower quality of entrants,
the result is 46% lower average plant productivity (versus the
25% fall with a constant quality of entrants) in the Indian case.
Because the calibrated entry cost is now extremely small to ex-
plain why the low A marginal entrant has zero profits, the surge
of entry in this counterfactual requires little extra labor devoted
to entry. The net effect on overall TFP in the Indian simulation,
including the variety gain, is �29%.

We have so far assumed no � variation across firms. But we
reported earlier that � varies with productivity in all three coun-
tries (Figure XII). We now consider the effect of productivity
growth with age in models with � variation. We entertain three
interpretations of �: overhead costs, adjustment costs, and
taxes.25 In all three cases, we assume that entry is endogenous

25. Bartelsman, Haltiwanger, and Scarpetta (2012) model � as coming from
overhead costs, and Asker, Collard-Wexler, and De Loecker (forthcoming) and
Midrigan and Xu (2009) model � as arising from adjustment costs.
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but revert to assuming the zero profit condition holds in expect-
ation for all entrants.

We begin by assuming that � reflects overhead costs. If over-
head costs do not vary across firms and average 14% of employ-
ment as in Barteslman, Haltiwanger, and Scarpetta (2013), then
we cannot come close to generating the productivity dispersion
seen among entering plants in the United States (a standard de-
viation of 1.01 in ln A). This is because if overhead costs are big
and common to all firms, then smaller firms should shut down.
We thus allow overhead costs to increase with firm productivity,
though not of course with firm labor. (We assume that the mar-
ginal value of production labor is equalized across firms.) This
seems plausible—more advanced technology could require bigger
overhead costs—and it can explain why so many small firms oper-
ate. We choose the maximum slope of overhead costs such that we
can match U.S. entrant productivity dispersion. In the presence of
these overhead costs, we see the effect of going from U.S. product-
ivity by age to Mexican and Indian productivity by age in row four
of Tables IV and V. The aggregate TFP losses are 16.5% in India
and 13% in Mexico—more modest than without overhead costs
(23% and 17%) because there is a bigger variety offset here.
When overhead costs are low for low-productivity firms, slower
productivity growth with age has a bigger effect on entry.

Row five of Tables IV and V illustrate the case when we in-
terpret � as adjustment costs. Here, we assume that firm prod-
uctivity growth is stochastic and half of the firm’s labor is
predetermined one period ahead (prior to the realization of the
productivity shock). The impact on entry is smaller here, so the
results with adjustment costs are closer to the baseline case with
no adjustment costs than to the case with overhead costs.

The last row in Tables IV and V considers the case when we
interpret � as reflecting productivity-dependent tax rates on firm
revenue. The effect of lower life cycle productivity growth on ag-
gregate TFP here is similar to the case that abstracts from � vari-
ation (second row).

To recap, going from U.S. to Indian or Mexican exogenous life
cycle productivity growth lowers aggregate TFP by between 13%
and 24% depending on the model.

V.B. Endogenous Life Cycle Productivity

In the preceding simulations, life cycle growth arose exogen-
ously. In this subsection, we simulate models in which life cycle
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productivity growth is endogenous to innovation by firms. We
assume that the marginal cost of innovation is the same in all
countries and examine the consequence of lower marginal
returns to innovation. To impose discipline on how much the
marginal return to innovation might differ between India and
Mexico versus the United States, we interpret the variation in �
in the data as reflecting variation in revenue tax rates.26

With this interpretation of �, the steeper � by A slopes in India
and Mexico (Figure XII) suggests that the marginal return to
innovation is lower in India and Mexico.27 We then simulate
the effect of a lower marginal return to innovation implied by
a steeper � by A slope on life cycle productivity growth and
aggregate TFP.

To implement this model, we also need to parameterize the
cost of innovation. We adapt the cost specification of Atkeson and
Burstein (2010).28 Here incumbents choose the probability q of
taking a proportional step up versus down in their A. (We use
Atkeson and Burstein’s step size, chosen to match the 25 percent
standard deviation of employment growth of large plants in the
United States.) The cost of this investment is

C Aa, i, qa, i

� �
¼ hA��1

a, i exp b � qa, i

� �
:ð10Þ

In this formulation, it is exponentially more costly for higher A
plants to boost their A by a given percentage. Atkeson and
Burstein make this assumption to satisfy Gibrat’s law (a plant’s
growth rate is uncorrelated with its initial size) for large plants.
This convex cost of process innovation is counterbalanced by the
greater incentive of big plants to innovate, as gains are propor-
tional to a plant’s size. We choose values of the ‘‘scale’’ and ‘‘con-
vexity’’ parameters h and b to roughly fit A by age in the United
States while generating the � by A slope seen in the U.S. with

26. Of course we do not literally mean tax rates, as � can also reflect forces such
as contractual frictions in hiring nonfamily labor, higher tax enforcement on larger
firms, financial frictions, difficulty in buying land or obtaining skilled managers,
and costs of shipping to distant markets. See Appendix II for models of two specific
barriers, namely, managerial costs and transportation costs that generate vari-
ation in revenue productivity (�) in the data.

27. In a one-period model the marginal increase in profits from a marginal in-
crease in A is proportional to A

�

� ���1
, where � is the revenue tax rate.

28. For simplicity we revert to zero expected profits for all entrants in this
subsection.
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revenue tax rates.29 See Figure XV. See Table VI and the Online
Appendix for details on how we implemented this.

Fixing the innovation cost function parameters and other
parameters at U.S. baseline values, we evaluate the effect of
moving from the � by A slope in the United States (0.09) to the
slopes seen in India (0.50) or Mexico (0.66). Figures XVI and XVII
present the resulting model versus data life cycles for India and
Mexico. In India, rising tax rates have some success in replicating
the slow life cycle productivity growth there, accounting for 30%
of the difference in cumulative growth from age 0–4 to age 30–34
(expressed as relative log points). In Mexico, in contrast, rising
tax rates overexplain the sluggish life cycle there, accounting for
153% of the difference in cumulative life cycle growth.

Table VII shows the effect on aggregate TFP of increasing the
slope of the tax rate with A. This has four effects. First, rising tax
rates with A discourages innovation and lowers life cycle prod-
uctivity growth (as shown in Figures XVI and XVII). Second,
greater tax rate dispersion generates misallocation, which
lowers aggregate TFP for a given distribution of productivity
(as in Hsieh and Klenow 2009). These two effects lower average
A by 40% in India and 56% in Mexico (column (2)), which is larger
than in the exogenous life cycle growth case because of the effect
of greater misallocation on TFP (which was not present in the
exogenous growth simulations where we kept the � versus A
slope fixed at the U.S. slope.) Third, firms must invest labor in
R&D to achieve life cycle growth, so less life cycle growth frees up
R&D labor. Fourth, as in the exogenous growth case, entry in-
creases when life cycle productivity growth declines. The net
effect of these four effects is to lower aggregate TFP by 36.5%
and 53% (in India and Mexico, respectively).

It is worth contrasting our results with Atkeson and Burstein
(2010). They find second-order losses from trade barriers with
endogenous incumbent productivity in an otherwise Melitz-
style model. In their setting, trade barriers undermine the incen-
tive of incumbents to innovate. But such trade barriers also

29. We do not report results with overhead costs or adjustment costs because
they cannot come close to mimicking the steep � by A slopes seen in India and
Mexico. With overhead costs the problem is the firms would rather shut down
than endure high overhead costs. Even entirely predetermined labor over a
five-year period, meanwhile, generates only a mild upward slope in revenue prod-
uctivity with respect to productivity, given that most firm productivity variation is
persistent over time.
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FIGURE XV

Productivity by Age in the United States, Data and Models

TABLE VI

PARAMETER VALUES FOR ENDOGENOUS LIFE CYCLE PRODUCTIVITY

Parameter Definition Value or target

h Level parameter in the R&D
cost function

Set with b to match U.S.
productivity by age group

b Convexity parameter in the
R&D cost function

Set with h to match U.S.
productivity by age group

�a, i Average products by prod-
uctivity level

Set to match elasticity of
average products w.r.t.
productivity in each
country

Notes. The following parameters are the same as in the simulations with exogenous productivity by
age (see Table III): � = 3 (the elasticity of substitution between varieties); � = 2 (the coefficient of relative
risk aversion); � (the discount rate) to yield an annual real interest rate of 5%; N = 100 (maximum life
span of a firm in years); ge = 0.021 (growth of mean entrant productivity); A0,i (entrant productivity
dispersion) to match productivity dispersion of young U.S. plants; �a (exit rate by age conditional on
productivity) to match U.S. exit by age data; �a, i (exit rate by productivity for a given age) to match
U.S. semi-elasticity of exit w.r.t. productivity; and fe (entry costs in terms of labor) to match average
employment per plant in the United States. Average products vary with productivity due to revenue taxes.
Entry is free, productivity growth is stochastic and endogenous, and there are no overhead costs or
adjustment costs. See Section V and Appendix I for more detail.
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FIGURE XVI

Productivity by Age in India, Data and Models

FIGURE XVII

Productivity by Age in Mexico, Data and Models
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stimulate entry. The benefits of additional variety almost exactly
offset the slower life cycle growth in their calculations. We obtain
big net losses, in contrast, because the incumbent distortions we
consider are large. This is driven by the steeply increasing rev-
enue productivity data with respect to productivity we observe in
India and Mexico. We, too, find trivial aggregate TFP losses if we
start from an economy with no incumbent distortion (i.e., no slope
of � by A) and move to a small slope (e.g., a 0.01 elasticity of �
by A).

Finally, it is worth asking whether big TFP losses would
occur under other, nontax explanations for revenue productivity
dispersion in India and Mexico. Motivated by Peters (2012), we
explored variable price-cost markups in particular. In the U.S.
baseline, we kept markups the same across firms but did allow
tax rates to vary with productivity. In the Indian and Mexican
counterfactuals, we kept the tax schedule the same as in the
United States, but allowed markups to vary—starting at 0% for
the lowest productivity firm and rising to 50% (the monopoly
markup) for the highest productivity firm. Even this extreme
markup variation only increased the � by A slope from 0.09 (the
U.S. baseline) to 0.12. (The � by A slope is 0.50 in India and 0.66 in
Mexico.) Rising markups over this range implied faster life cycle
productivity growth in the counterfactuals compared to the U.S.
baseline. The reason is going from a suboptimal to profit-
maximizing markup is further incentive to invest in R&D.

To recap, if we interpret the variation in � in the data as
variation in tax rates, the steeper higher � by A slope in India
and Mexico can generate the slower life cycle productivity growth
in these countries in a simple model of endogenous innovation.
But it should be clear that this is just a first pass at explaining the
differences in firm dynamics in India and Mexico versus the

TABLE VII

PERCENT CHANGE FROM THE U.S. TO INDIAN AND MEXICAN AVERAGE PRODUCTS IN

MODELS WITH ENDOGENOUS LIFE CYCLE PRODUCTIVITY

Cases Aggregate TFP Weighted average A Entry Workers/workforce

India �36.5 �39.7 +14.3 �1.5
Mexico �53.0 �55.7 +16.4 �1.3

Notes. Table entries are % changes when going from U.S. to Indian average products (t) by age.
Aggregate TFP is the product of three terms (TFP ¼ Y

L ¼
�A N

1
��1

LY

L ): weighted average A, a variety term
involving the mass of firms, and the fraction of the population producing current output (as opposed to
supplying overhead labor, generating entry, or doing research).
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United States. For example, we assumed that the innovation cost
function is the same in all countries, but the marginal cost of
innovation could be higher in India and Mexico. Additional evi-
dence on this would be useful.

VI. Conclusion

In Hsieh and Klenow (2009) we provided suggestive evi-
dence that, holding the distribution of plant productivity
fixed, resource misallocation between existing plants can ac-
count for about one third of the gaps in aggregate manufactur-
ing TFP between the United States and countries such as
China and India. One way to interpret this evidence is that,
although differences in the extent of resource misallocation are
important, the differences in plant productivity (which we held
fixed) account for most of the gap in aggregate TFP between
poor and rich countries.

In this article, we took up a question left unanswered in
our previous work: why is average plant productivity lower in
poor countries? We argue that a certain type of misallocation—
specifically misallocation that harms large establishments—can
discourage investments that raise plant productivity, resulting
in lower productivity of the average plant in poor countries. A
key fact consistent with this interpretation is that manufactur-
ing plants in the United States grow with age while manufac-
turing plants in Mexico and India exhibit little growth in terms
of employment. We use some simple GE models to show that
lower life cycle growth in Mexico and India can have important
effects on aggregate TFP. Moving from the U.S. life cycle to the
Indian or Mexican life cycle could plausibly produce a 25 per-
cent drop in aggregate TFP.

An important question left for future research is identify-
ing the specific barriers facing larger plants in India and
Mexico. In an earlier version (Hsieh and Klenow 2012) we
provided suggestive evidence on a number of possible barriers,
such as contractual frictions in hiring nonfamily labor, higher
tax enforcement on larger firms, financial frictions, difficulty in
buying land or obtaining skilled managers, and costs of ship-
ping to distant markets. In this spirit, Table VIII shows that
most plants are informal in both India and Mexico, with a
majority of employment at informal establishments in India.
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Appendix II briefly sketches models of two specific barriers,
namely, managerial costs and transportation costs. Akcigit and
Peters (2013) pursue the managerial explanation in more theor-
etical and quantitative detail. We hope to investigate these
potential driving forces systematically in future work.

Appendix I: Data Sets

In this appendix we do two things. First, we compare the
information provided by the ASI-NSS data with data from
India’s Labor Force Survey and Economic Census, respectively.
Second, we discuss the data used for the United Kingdom,
Canada, France, Spain, and Italy presented in Figure IX.

We checked that the total number of workers in the combined
ASI-NSS data set is consistent with data on manufacturing
employment from India’s Labor Force Survey (Schedule 10 of
the NSS). The two years for which we have data for both data
sets are 1999–2000 and 2004–2005. According to the establish-
ment level data in the ASI-NSS, the total number of workers in
the manufacturing sector was 37 million in 1999–2000 and
45 million in 2005–2006. When we use the labor force survey,
we get 37 million workers in manufacturing in 1999–2000 and
46 million in 2005–2006.

Next, we compare data from the ASI-NSS with the informa-
tion provided from India’s Economic Census. We have the micro-
data from the 2005 Economic Census so we compare this data

TABLE VIII

INFORMAL WORKERS AND ESTABLISHMENTS IN INDIA AND MEXICO

Unpaid workers Informal establishments

% Workers % Establishments % Workers % Establishments

India
1989–90 73.4 94.2 80.5 99.4
2010–11 54.2 90.8 78.5 99.4

Mexico
1998 10.2 55.0 14.8 75.6
2008 29.7 60.0 30.4 87.1

Notes. ‘‘% Workers’’ is the percent of unpaid workers or workers in informal establishments as a share
of total workers. ‘‘% Establishments’’ is percent of establishments with only unpaid workers or that are
informal as share of total number of establishments. Informal establishments are defined as establish-
ments not formally registered (in India) or not registered with the Social Security Agency (in Mexico).
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with the 2005–2006 ASI-NSS. The Economic Census is a complete
enumeration of all economic establishments, but it reports only
total employment; it contains no data on output or value added.
In the absence of output data in the census, we cannot compute
the same weighted value-added share-weighted average across
four digit industries that we present in the rest of the article
(e.g., Figure XIV). We instead weight each establishment by its
employment in Figure A.I, which presents the size distribution of
employment by establishment size in manufacturing establish-
ments in the 2005 census and the 2005–2006 ASI-NSS. As can
be seen, the two distributions are not identical. There is more
employment in very small establishments (with one and two
employees) in the census. Nonetheless, the distribution of
employment by establishment size—in particular, the dominance
of employment by small establishments—is similar in the two
data sets.

We now turn to a description of the data used to estimate the
life cycle of employment in the United Kingdom, Canada, France,
Italy, and Spain. The U.K. data are from the Annual Respondents
Database (ARD) from 1997 to 2006. The ARD is an annual census
of large manufacturing establishments and a survey of smaller
establishments conducted by the U.K. Office for National
Statistics. We focus on cohorts born before 2001. In 2002, there
was a change in the corporate tax law that set the corporate
income tax rate to 0 for the first £10,000 of earnings. This tax
change may have led to creation of new incorporated establish-
ments that previously were registered as self-employed busi-
nesses. We follow cohorts defined in five-year age bins in each
year from 1997 to 2001 over five years (from 1997 to 2002, 1998
to 2003, 1999 to 2004, 2000 to 2005, and 2001 to 2006). Since we
did not have direct access to the data, the estimates of cohort
growth give equal weight to each establishment (i.e., we did not
weight by industry value added as we did for India, Mexico, and
the United States). We then take an average of the implied
growth rates by age for each five-year period as the average
employment growth by age.

The Canadian data are from tabulations from the Canadian
Annual Survey of Manufacturing (ASM) reported in Kueng and
Yang (2014). Kueng and Yang use a random stratified sample of
roughly 1,500 plants in the Canadian ASM from 1999 to 2006.
They report the average size of manufacturing plants for cohorts
defined in five-year age bins for each year. Their estimates use
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the sampling weights to obtain population means but do not
weight by industry value added. From their estimates, we can
follow cohorts defined in five-year age bins in each year from
1999 to 2001 over five years (from 1999 to 2004, 2000 to 2005,
and 2001 to 2006). As with the British data, we compute the
implied growth rate by age for each five-year period as the aver-
age employment growth by age.

The data for France, Italy, and Spain are from the Amadeus
database. These are the only Amadeus countries in Western
Europe with a usable manufacturing sample, but there remain
important limitations of the Amadeus data for France, Italy,
and Spain. First, the unit of observation is a registered firm
(not an establishment). Second, the database provides employ-
ment for only 40–50% of the sample, although it provides
the wage-bill for most of the firms (roughly 90% of the sample).
For firms with missing information on employment, we impute
employment from the coefficients of a regression of log employ-
ment on a fourth-order polynomial in the log wage-bill and
firm age (from the sample with nonmissing data on the
wage-bill and employment). Third, the sample appears to

FIGURE A.I

Distribution of Employment by Establishment Size (2005 Census versus 2005–
2006 ASI-NSS)

LIFE CYCLE OF PLANTS 1079



be most complete in 2006 and 2007. Specifically, when we
estimate the exit rate from 2006 to 2007 by age, we get a reason-
able estimate (around 10%). In contrast, estimates of the ‘‘exit
rate’’ on the sample prior to 2006 yield negative exit rates,
which suggests that coverage of the data was improving leading
up to 2006.

Using the Amadeus data for France, Italy, and Spain, we
calculate average employment of each cohort, this time defined
as one-year age bins, in 2006. We calculate the growth rate of
average employment of each one-year cohort from 2006 to 2007.
Based on the growth rate of each cohort from 2006 to 2007, we
then calculate the implied life cycle growth of firms between the
ages 0 to 4 and 10–14, and between 0 to 4 and 30–34, respectively.
The results are shown in Figure IX, alongside the same statistics
for Canada, India, Mexico, the United States, and the United
Kingdom.

Appendix ii: Managerial and Transportation Costs

Here we sketch two models that endogenously generate
a positive elasticity of average revenue product with
respect to underlying productivity. In the first model the
number of management ‘‘layers’’ of the firm is determined endo-
genously as a function of firm productivity. In the second model,
high-productivity firms sell to a larger number of domestic
markets.

Management Costs

Aggregate output is a CES aggregate of individual firm
output:

Y ¼

Z
i

Y
��1
�

i di

0
@

1
A

�
��1

:

Firm i output is given by:

Yi ¼ Ai

Zni

j¼0

ajLji

� �	�1
	 dj

0
B@

1
CA

	
	�1

:

Here j indexes the management ‘‘layer’’ of the firm and ni denotes
the total number of layers. We order j such that it is increasing in wj

aj
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where wj is the price of layer j labor. We parameterize this
relationship as wj

aj
/ j
wþ
a where wj / j
w and 1

aj
/ j
a . Bloom et al.

(2013) suggest the cost of adding management layers may be high in
India. We model this as a large value of 
a or 
w in India. ‘‘Higher’’
management layers may be less productive in India or Mexico than
in the United States (a larger value of 
a) or simply more expensive
there relative to lower management layers (higher 
w).

The marginal increase in profit from an increase in ni is

MB ðniÞ /
A��1

i

n
1þð
wþ
aÞ ��1ð Þ���1

	�1

i

:

Assuming a fixed cost of each management layer and equat-
ing this cost with the marginal benefit, we get:

ni / A

��1

1þð
wþ
a Þð��1Þ���1
	�1

i :

This says that high-productivity firms establish more manage-
ment layers (e.g., 
w þ 
a > 0 and 	 � �). Importantly for our pur-
poses, the elasticity of ni with respect to Ai is decreasing in 
a and

w. Correspondingly, the increase in profit from a proportional
increase in Ai is lower when 
a or 
w are larger.

Average revenue per worker and the average wage at firm i are

PiYi

Li
/ A

1

1

wþ
a

	��
ð	�1Þð��1Þ

� 	
þ1

i

�wi / L
1þ
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1�
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w

i :

The elasticity of average revenue with respect to Ai and the
elasticity of the average wage with respect to firm employment
are therefore increasing in 
a and 
w.

Transportation Costs

Consider a country with a number of symmetric markets
indexed by j. In each market, aggregate output is given by:

Yj ¼

Z
i

Y
��1
�

ji di

0
@

1
A

�
��1

,
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where Yji is output of firm i sold in market j. Total output of firm
i is:

Yi ¼

Zni

j¼0

Yjidj,

where ni denotes the number of markets to which firm i sells.
Firm i profits from selling in market j are

�ji /
Ai

1þ �j

� �ð��1Þ

,

where �j is the cost of transportation to market j. We rank j such
that transportation costs are increasing in j, which we parame-
terize as 1þ �j

� �ð��1Þ
/ j
. The idea is that some markets are closer

and others further away, where distance is indexed by j and 

parameterizes how transportation costs increase as a function
of distance. Assuming a fixed cost of accessing each market, the
number of markets firm i sells to is proportional:

ni / A
��1



i :

The number of markets firm i serves is increasing in Ai with an
elasticity that is inversely related to how rapidly transportation
costs rise with distance (
). High transportation costs therefore
lower the profits from investing in higher Ai.
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