Labour Market Imperfections

1. Introduction

- Following distinctive institutional characteristics of the labour market of informal economy of the developing countries are well documented.
- Fragmented labor markets: Large variations in wages within a narrow geographic region, despite the presence of competition.
- Involuntary unemployment: Persistent lack of market clearing despite absence of any regulations that prevent wages from adjusting flexibly.
- Pervasiveness of long-term contracts between employers and employees.
- Unequal treatment of observationally similar workers.
- Dual labor markets where some workers enter into long-term contracts while others carry out similar tasks on a casual basis at substantially lower wages.
- Importance of asset ownership: Limited access of the poor to employment owing to malnutrition and absence of human capital.
- We will focus on imperfections in the labour market such as involuntary unemployment and dual labour markets.
- For a background and for discussion of other issues in the labour market of developing countries refer to the following:

1. Ray, Debraj (1998), Development Economics, Princeton University Press, Chapter 13.
2. Bardhan, Pranab and Christopher Udry (1999), Development Microeconomics, Oxford University Press, Chapter 4.
3. Basu, Kaushik (1997), Analytical Development Economics: The Less Developed Economy Revisited, MIT Press, Chapters 9 and 10.

2. Malnutrition and Efficiency Wages

- Following Dasgupta and Ray $(1986,1987)$ we consider the phenomenon of nutritionbased efficiency wages, and its resulting implications for the labour market.
- This topic goes back to earlier works by Leibenstein (1957), Prasad (1970), Mirrless (1976), Stiglitz (1976) and Bliss and Stern (1978).
- The phenomenon of involuntary unemployment poses a challenge for conventional economic theory.
- If wages are flexible in the downward direction, any excess supply ought to be eliminated by corresponding wage cuts.
- Unemployed workers could undercut the going wage by offering to do the same work for less pay,
- an offer that should be accepted by profit-maximizing employers.
- What prevents such arbitrage?
- The efficiency wage theory provides one answer to this conundrum:
- if the productive efficiency of the worker depends on the wage, a wage cut will be accompanied by a drop in the worker's efficiency,
\circ thus rendering the arbitrage worthless to the employer.
- Dasgupta and Ray $(1986,1987)$ embed this story into a general equilibrium setting,
- permitting analysis of the effects of land endowment patterns on unemployment and productivity.
- The theory provides a link between persistent involuntary unemployment and the incidence of undernourishment,
- relates them in turn to the production and distribution of income and thus ultimately to the distribution of assets.

2.1 Dasgupta and Ray (1986)

- The theory is founded on the much-discussed observation that
- at low levels of nutrition-intake there is a positive relation between a person's nutrition status and his ability to function;
- a person's consumption-intake affects his productivity.
- The central idea is that unless an economy in the aggregate is richly endowed with physical assets, it is the assetless who are vulnerable in the labour market.
- Potential employers find attractive those who enjoy non-wage income, for in effect they are cheaper workers.
- Those who enjoy non-wage income can undercut those who do not, and
- if the distribution of assets is highly unequal even competitive markets are incapable of absorbing the entire labour force:
- the assetless are too expensive to employ in their entirety, as there are too many of them.
- A simple example:
- Suppose each person requires precisely 2000 calories per day to be able to function;
\circ anything less and his productivity is nil; anything more and his productivity is unaffected.
- Consider two persons; one has no non-wage income while the other enjoys 1500 calories per day of such income.
\Rightarrow The first person needs a full 2000 calories of wages per day in order to be employable; the latter only 500 calories per day.
- It is for this reason the assetless is disadvantaged in the labour market.

2.1.1 The Model

- Consider a timeless construct and abstain from uncertainty.
- Distinguish labour-time from labour-power;
- it is the latter which is an input in production.
- Denote by λ the labour-power a worker supplies over a fixed number of 'hours'.
- Assume that λ is functionally related to the worker's consumption, I, as shown in Figure 1(a).
- The key features of the functional relationship are:
- it is increasing in the region of interest;
- at low consumption levels it increases at an increasing rate, followed eventually by diminishing returns to further consumption.

- The reason for this work capacity - consumption relationship can be explained as follows.
- Initially, most of the nutrition (consumption) goes to maintaining resting metabolism, and so sustaining the basic frame of the body.
- In this stretch very little extra energy is left over for productive work.
- Work capacity in this region is very low, and does not increase too quickly as nutrition levels change.
- Once resting metabolism is taken care of, there is a marked increase in work capacity,
- the lion's share of additional nutrition input can now be funneled to work.
- This phase is followed by a phase of diminishing returns,
- the natural limits imposed by the body's frame restrict the conversion of increasing nutrition into ever-increasing work capacity.
- An alternative specification of the work capacity - consumption relationship (used, for example, by Bliss and Stern (1978)) is drawn in Figure 1(b).
- Work capacity or labour power, λ, is nil until a threshold level of consumption, I^{*}, the resting metabolic rate (RMR).
$-\lambda(I)$ is an increasing function beyond I^{*};
- but it increases at a diminishing rate.

Fig. 1

- The aggregate production function is $F(E, T)$.
- E denotes the aggregate labour-power employed in production;
- It is the sum of individual labour powers employed.
$-T$ denotes the quantity of land.
- Land is homogeneous; workers are not.
- $F(E, T)$ is assumed to be concave, twice differentiable, constant returns to scale, increasing in E and T, and displaying diminishing marginal products.
- Total land in the economy is fixed at \hat{T}.
- Aggregate labour power in the economy is endogenous.
- Total population, assumed to be equal to the potential labour force, is $N ; N$ is large.
- Approximate and suppose that people can be numbered along the interval $[0,1]$.
- Each person has a label, n, where n is a real number between 0 and 1 .
- Population density is constant and equal to N.
- Normalize $N=1$, so as not to have to refer to the population size.
- The proportion of land an n-person owns is $t(n)$;
\Rightarrow total amount of land he owns is $\hat{T} t(n)$.
- We label people such that $t(n)$ is non-decreasing in n.
- So $t(n)$ is the land distribution and is assumed to be continuous.
- In Figure 2 a typical land distribution is drawn.
- All persons labelled 0 to \underline{n} are landless.
- From \underline{n} the $t(n)$ function is increasing.

Fig. 2

- Assume one either does not work in production sector or works for one unit of time.
- There are competitive markets for both land and labour power; let r denote the competitive land rental rate. \Rightarrow The n-person's non-wage income is $r \hat{T} t(n)$.
- Each person has a reservation wage which must as a minimum be offered if he is to accept a job in the competitive labour market.
- For high n-persons this reservation wage is high as they receive a high rental income.
- Their utility from leisure is high.
- For low n-persons (say the landless), reservation wage is low, but possibly not nil.
- We are concerned with malnutrition, not starvation.
- The landless do not starve if they fail to find jobs in the labour market.
- They beg, do odd jobs outside the economy under review, which keep them undernourished; but they do not die.
- Thus the reservation wage of even the landless exceeds their RMR.
- All we assume is that at this reservation wage a person is malnourished.
- Denote by $\bar{w}(R)$ the reservation wage function; R denotes non-wage income.
- Assume the $\bar{w}(R)$ function is exogenously given (continuous and non-decreasing).
- Of course, non-wage income is endogenous to the model.
- This reservation wage function is depicted in Figure 3.
- For a given $r>0, \bar{w}(r \hat{T} t(n))$ is constant for all $n \in[0, \underline{n}]$ since all these n-persons are identical.
- After that $\bar{w}(r \hat{T} t(n))$ increases in n.

Fig. 3

- Malnutrition:

For concreteness choose the consumption level \hat{I} in Figure 1 as the cut-off consumption level below which a person is said to be undernourished.

- At \hat{I} marginal labour power equals average labour power.
$-\hat{I}$ is then the food-adequacy standard.
- Nothing of analytical consequence depends on this choice.
- All that is needed is the assumption that the reservation wage of a landless person is one at which he is undernourished, and thus less than \hat{I}.
- Involuntary Unemployment:

A person is involuntarily unemployed if he cannot find employment in a market which does employ a person very similar to him and if the latter person, by virtue of his employment in this market, is distinctly better off than him.

- Involuntary unemployment has to do with differential treatment meted out to similar people.

2.1.2 Efficiency Wage

- To keep the exposition simple rest of the paper specializes somewhat and assume that $\lambda(I)$ is of the form given in Figure 1(b).
- The efficiency-wage, $w^{*}(n, r)$, of n-person is defined as

$$
\begin{equation*}
w^{*}(n, r) \equiv \arg \min _{w \geq \bar{w}(r \hat{T} t(n))} \frac{w}{\lambda(w+r \hat{T} t(n))} \tag{1}
\end{equation*}
$$

- $w^{*}(n, r)$ is the wage per unit of labour-time which, at the rental rate r, minimizes the wage per unit of labour power of n-person, conditional on his being willing to work at this wage rate.
- Since the n-person's reservation wage $\bar{w}(r \hat{T} t(n))$ depends on the rental rate, his efficiency-wage depends, in general, on r.
- The minimization problem in (1) is equivalent to:

$$
\underset{w \geq \bar{w}(r \hat{T} t(n))}{\operatorname{Maximize}} \frac{\lambda(w+r \hat{T} t(n))}{w} .
$$

Form the Lagrangian $\mathcal{L}=\frac{\lambda(w+r \hat{T} t(n))}{w}+\xi \cdot[w-\bar{w}(r \hat{T} t(n))]$, so that the F.O.C. are given by

$$
\begin{equation*}
\frac{w \cdot \lambda^{\prime}(w+r \hat{T} t(n))-\lambda(w+r \hat{T} t(n))}{w^{2}}+\xi=0 \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi \cdot[w-\bar{w}(r \hat{T} t(n))]=0, \xi \geq 0, \text { and } w \geq \bar{w}(r \hat{T} t(n)) . \tag{b}
\end{equation*}
$$

- When the reservation wage constraint is not binding $\left(w^{*}(n, r)>\bar{w}(r \hat{T} t(n))\right)$,
- Then $\xi=0$, so that (a) implies

$$
\begin{equation*}
\lambda^{\prime}\left(w^{*}(n, r)+r \hat{T} t(n)\right)=\frac{\lambda\left(w^{*}(n, r)+r \hat{T} t(n)\right)}{w^{*}(n, r)} \tag{c}
\end{equation*}
$$

- For the landless, that is, for $n \in[0, \underline{n}], t(n)=0$, implying $I=w^{*}(n, r)+r \hat{T} t(n)=$ $w^{*}(n, r)$, so that (c) implies

$$
\lambda^{\prime}(I)=\frac{\lambda(I)}{I} \Rightarrow I=\hat{I} \Rightarrow w^{*}(n, r)=\hat{I} .
$$

- Recall that, by hypothesis, \hat{I} exceeds the reservation wage of the landless.
- This confirms that for the landless we are under the case when the reservation wage constraint is not binding.
- For one who owns a tiny amount of land, that is, n is just above \underline{n} and $t(n)$ is positive but small enough so that the reservation wage constraint continues not to bind, (c) implies

$$
\begin{aligned}
& \lambda^{\prime}(I)=\frac{\lambda\left(w^{*}(n, r)+r \hat{T} t(n)\right)}{w^{*}(n, r)}>\frac{\lambda(I)}{I} \text { since } I=w^{*}(n, r)+r \hat{T} t(n)>w^{*}(n, r), \\
& \Rightarrow I<\hat{I} \\
& \Rightarrow \bar{w}(r \hat{T} t(n))<w^{*}(n, r)<\hat{I} .
\end{aligned}
$$

- That is, for one who owns a tiny amount of land, $w^{*}(n, r)<\hat{I}$, and, at the same time, $I<\hat{I}$.
- What happens to $w^{*}(n, r)$ and I as n increases further, that is, for those who owns larger amounts of landholding?
- Note that as long as the reservation wage constraint is not binding, (c) continues to hold.
- Total differentiating (c) we derive the following:

$$
\frac{d w^{*}}{d n}=r \hat{T} t^{\prime}(n)\left[\frac{\lambda^{\prime}(I)}{\lambda^{\prime \prime}(I)}-1\right]<0, \text { and } \frac{d I}{d n}=\frac{d w^{*}}{d n}+r \hat{T} t^{\prime}(n)=r \hat{T} t^{\prime}(n)\left[\frac{\lambda^{\prime}(I)}{\lambda^{\prime \prime}(I)}\right]<0 .
$$

- That is, the efficiency wage decreases with increase in landholding and, as a result, income of these small landowners decline.
\Rightarrow For these small landowners also we continue to have

$$
I<\hat{I}, \text { and } \bar{w}(r \hat{T} t(n))<w^{*}(n, r)<\hat{I}
$$

- But how long will it continue?
- Note we started with the landless for whom $w^{*}(n, r)=\hat{I}>$ their reservation wage.
- Then as $n \uparrow, \bar{w}(r \hat{T} t(n)) \uparrow$, but $w^{*}(n, r) \downarrow$.
\Rightarrow Continuing this way we can identify an n_{0} such that $w^{*}\left(n_{0}, r\right)=\bar{w}\left(r \hat{T} t\left(n_{0}\right)\right)$.
- So we conclude one with considerable amount of land, $n>n_{0}$,

$$
w^{*}(n, r)=\bar{w}(r \hat{T} t(n))
$$

- Finally, for one who owns a great deal of land we would expect,

$$
w^{*}(n, r)=\bar{w}(r \hat{T} t(n))>\hat{I}
$$

- Define $\mu^{*}(n, r)$ as

$$
\begin{equation*}
\mu^{*}(n, r) \equiv \frac{w^{*}(n, r)}{\lambda\left(w^{*}(n, r)+r \hat{T} t(n)\right)} \tag{2}
\end{equation*}
$$

- Given $r, \mu^{*}(n, r)$ is the minimum wage per unit of labour power for n-person, subject to the constraint that he is willing to work.
- Bliss and Stern (1978) interpreted $\lambda(I)$ as the (maximum) number of tasks a person can perform by consuming I.
- In this interpretation we may regard $\mu^{*}(n, r)$ as the efficiency-piece-rate of n person.
- In what follows we will so regard it.
- In Figure 4(a) a typical $\mu^{*}(n, r)$ curve has been drawn.
$-\mu^{*}(n, r)$ is 'high' for the landless because they have no non-wage income.
- For the landless, $\mu^{*}(n, r)=\frac{\hat{I}}{\lambda(\hat{I})}$.
- It is relatively 'low' for 'smallish' landowners because they do have some non-wage income and because their reservation wage is not too high.
- It is 'high' for the big land-owners because their reservation wages are very high.

- While a 'typical' shape of $\mu^{*}(n, r)$, as in Figure 4(a) is used to illustrate the arguments in the main body of the paper,
- the assumptions do not, in general, generate this 'U-shaped’ curve.
- For a given r, the common features of $\mu^{*}(n, r)$ are:
(a) $\mu^{*}(n, r)$ is constant for all landless n-persons and falls immediately thereafter.
(b) $\mu^{*}(n, r)$ continues to decrease in n as long as the reservation wage constraint is not binding.
\Rightarrow Whenever $\mu^{*}(n, r)$ increases with n, the reservation wage constraint is binding.
$\circ \frac{d \mu^{*}(n, r)}{d n}=\frac{\frac{d w^{*}(n, r)}{d n}\left[\lambda(\cdot)-w^{*}(n, r) \lambda^{\prime}(\cdot)\right]-w^{*}(n, r) \lambda^{\prime}(\cdot) r \hat{T} t^{\prime}(n)}{[\lambda(\cdot)]^{2}}$.
- When the reservation wage constraint is not binding, $\lambda(\cdot)=w^{*}(n, r) \lambda^{\prime}(\cdot)$, implying that $\frac{d \mu^{*}(n, r)}{d n}<0$.
(c) Once the reservation wage constraint binds for some n-person, it continues to bind for all n-person with more land.
- We have argued that the reservation wage constraint start binding at n_{0} defined by

$$
w^{*}\left(n_{0}, r\right)=\bar{w}\left(r \hat{T} t\left(n_{0}\right)\right),
$$

where $w^{*}(n, r)$ satisfies equation (c) so that, as argued earlier, $\frac{d}{d n} w^{*}(n, r)<0$.

- Since both $\bar{w}^{\prime}(\cdot)>0$ and $t^{\prime}(n)>0$, it follows that the constraint continues to bind for all $n \geq n_{0}$.
(d) $\mu^{*}(n, r)$ finally rises as the effect of increasing reservation wage ultimately outweighs the diminishing increments to labour power associated with greater landownership.

2.1.3 Market Equilibrium

- Markets are competitive, and there are two factors - land and labour power.
\Rightarrow Two competitive prices to reckon with: rental rate on land, r, and price of a unit of labour power, that is, the piece rate, μ.
- $D(n)$: the market demand for the labour time of n-person;
$S(n)$: the n-person's labour (time) supply.
- By assumption $S(n)$ is either zero or unity.
- $w(n)$: the wage rate for n-person; G : the set of n-persons who find employment.
- Production enterprises are profit maximizing.
- Each n-person aims to maximize his income given the opportunities he faces.
- A rental rate \tilde{r}, a piece rate $\tilde{\mu}$, a subset \tilde{G} of $[0,1]$ and a real-valued function $\tilde{w}(n)$ on \tilde{G} sustain a competitive equilibrium if and only if:
(i) for all n-persons for whom $\tilde{\mu}>\mu^{*}(n, \tilde{r})$, we have $S(n)=D(n)=1$;
(ii) for all n-persons for whom $\tilde{\mu}<\mu^{*}(n, \tilde{r})$, we have $S(n)=D(n)=0$;
(iii) for all n-persons for whom $\tilde{\mu}=\mu^{*}(n, \tilde{r})$, we have $S(n) \geq D(n)$, where
- $D(n)$ is either 0 or 1 and
$\circ S(n)= \begin{cases}1 & \text { if } \tilde{w}(n)>\bar{w}(\tilde{r} \hat{T} t(n)), \\ \text { either } 0 \text { or } 1 & \text { if } \tilde{w}(n)=\bar{w}(\tilde{r} \hat{T} t(n)) ;\end{cases}$
(iv) $\tilde{G}=\{n: D(n)=1\}$ and $\tilde{w}(n)$ is the larger of the (possibly) two solutions of $\frac{w}{\lambda(w+\tilde{r} \hat{T} t(n))}=\tilde{\mu}$, for all n with $D(n)=1$;
(v) $\tilde{\mu}=\partial F(\tilde{E}, \hat{T}) / \partial E$, where \tilde{E} is the aggregate labour power supplied by all who are employed; and
(vi) $\tilde{r}=\partial F(\tilde{E}, \hat{T}) / \partial T$.
- Conditions (v) and (vi):

Since producers are competitive, \tilde{r} in equilibrium must be equal to the marginal product of land and $\tilde{\mu}$ the marginal product of aggregate labour power.

- Condition (ii):

We conclude from (v) that the market demand for the labour time of an n-person whose efficiency-piece-rate exceeds $\tilde{\mu}$ must be nil.

Equally, such a person cannot, or, given his reservation wage, will not, supply the labour quality the market bears at the going piece rate $\tilde{\mu}$.

- Suppose he were employed at wage $w \geq \bar{w}(\tilde{r} \hat{T} t(n))$.
- He can earn this wage only if he is physically capable of delivering the job, that is, $\tilde{\mu} \cdot \lambda(w+\tilde{r} \hat{T} t(n)) \geq w$.
$\Rightarrow \frac{w}{\lambda(w+\tilde{r} \hat{T} t(n))} \leq \tilde{\mu}<\mu^{*}(n, \tilde{r})$, contradicting the definition of $\mu^{*}(n, \tilde{r})$.
- Conditions (i) and (iv):

Every enterprise wants an n-person whose efficiency-piece-rate is less than $\tilde{\mu}$.

- His wage rate is bid up by competition to the point where his piece rate is $\tilde{\mu}$.
- Demand for his labour time is positive.

$$
\begin{aligned}
& \frac{\tilde{w}(n)}{\lambda(\tilde{w}(n)+\tilde{r} \hat{T} t(n))}=\tilde{\mu}>\mu^{*}(n, \tilde{r})=\frac{w^{*}(n, \tilde{r})}{\lambda\left(w^{*}(n, \tilde{r})+r \hat{T} t(n)\right)} \\
& \Rightarrow \tilde{w}(n)>w^{*}(n, \tilde{r}), \operatorname{since} \frac{d \mu}{d w}=\frac{\lambda(\cdot)-w \cdot \lambda^{\prime}(\cdot)}{[\lambda(\cdot)]^{2}} \geq 0 ; \\
& \Rightarrow \tilde{w}(n)>w^{*}(n, \tilde{r}) \geq \bar{w}(\tilde{r} \hat{T} t(n)),
\end{aligned}
$$

that is, the wage he is paid exceeds his reservation wage.
\Rightarrow He most willingly supplies his unit of labour time which, in equilibrium, is what is demanded.

- Condition (iii):

What of an n-person whose efficiency-piece-rate equals $\tilde{\mu}$?

- Enterprises are indifferent between employing and not employing such a worker.
- He is willing to supply his unit of labour time:
- with eagerness if the wage he receives in equilibrium exceeds his reservation wage, and as a matter of indifference if it equals it.
- Theorem 1. Under the conditions postulated, a competitive equilibrium exists.
- A competitive equilibrium is not necessarily Walrasian.
- It is not Walrasian when, for a positive fraction of the population, condition (iii) holds; otherwise it is.
- If in equilibrium, condition (iii) holds for a positive fraction of the population, the labour market does not clear, and
- we take it that the market sustains 'equilibrium' by rationing:
- of this group a fraction is employed while the rest are kept out.

2.1.4 Simple Characteristics of Market Equilibrium

- We will characterize the equilibrium diagrammatically.
- There are three different regimes depending on the size of \hat{T}.
- Theorem 2. A competitive equilibrium is in one of three possible regimes, depending on the total size of land, \hat{T}, and the distribution of land. Given the latter:
(1) If \hat{T} is sufficiently small, $\tilde{\mu}<\hat{I} / \lambda(\hat{I})$, and the economy is characterized by malnourishment among all the landless and some of the near-landless;
(2) There are ranges of moderate values of \hat{T} in which $\tilde{\mu}=\hat{I} / \lambda(\hat{I})$, and the economy is characterized by malnourishment and involuntary unemployment among a fraction of the landless;
(3) If \hat{T} is sufficiently large, $\tilde{\mu}>\hat{I} / \lambda(\hat{I})$, and the economy is characterized by full employment and an absence of malnourishment.
- Before discussing the equilibrium regimes we note that
- among those in employment, persons owning more land are doubly blessed:
o the not only enjoy more rental income, their wages are also higher.
- Theorem 3. Let $n_{1}, n_{2} \in \tilde{G}$ with $t\left(n_{1}\right)<t\left(n_{2}\right)$. Then $\tilde{w}\left(n_{1}\right)<\tilde{w}\left(n_{2}\right)$.
- A strong implication of this result is that competition, in some sense, widens the initial disparities in asset ownership by offering larger (employed) land-owners a higher wage income.

2.1.4.1 Regime 1: Malnourishment among the Landless and Near-landless

- Figure 5(a) depicts a typical equilibrium under regime 1.
- Condition (i) \Rightarrow all n-persons between n_{1} and n_{2} are employed in production.
- Typically for the borderline n_{1}-person $\tilde{w}\left(n_{1}\right)>\bar{w}\left(\tilde{r} \hat{T} t\left(n_{1}\right)\right)$.
- Condition (ii) \Rightarrow all n-persons below n_{1} and above n_{2} are out of the market:
- the former because their labour power is too expensive,
- the latter because their reservation wages are too high - they are too rich.
- In this regime all the landless are malnourished.
- They enjoy their reservation wage which is less than \hat{I}.

- All persons between \underline{n} and n_{1} are also malnourished;
- their rental income is too meagre.
- Some of the employed are also malnourished;
- the employed persons slightly to the right of n_{1} consume less than \hat{I}.
- Although there are no job queues in the labour market; nevertheless, there is involuntary unemployment.
- $\tilde{w}\left(n_{1}\right)>\bar{w}\left(\tilde{r} \hat{T} t\left(n_{1}\right)\right) \Rightarrow$ We also have $\tilde{w}(n)>\bar{w}(\tilde{r} \hat{T} t(n))$ for all n in a neighbourhood to the right of n_{1}.
- Since such people are employed, they are distinctly better off than the n-persons in a neighbourhood to the left of n_{1},
- who suffer at their reservation wage.
- Finally, the n-persons above n_{2} are voluntarily unemployed.
- Call them the pure rentiers, or the landed gentry.
- They are capable of supplying labour at the piece-rate $\tilde{\mu}$ called for by the market, but choose not to;
- their reservation wages are too high.
- They are to be contrasted with the unemployed people below n_{1} who are incapable of supplying labour at $\tilde{\mu}$.

2.1.4.2 Regime 2: Malnourishment and Involuntary Unemployment among the Landless

- The relevant curves are drawn in Figure 5(b).
- Here $\tilde{\mu}=\hat{I} / \lambda(\hat{I})$.
- It is not a zero-measure event: it pertains to certain intermediate ranges of \hat{T}.
- The economy equilibrates by rationing landless people in the labour market.
- Condition (i) \Rightarrow all n-persons between \underline{n} and n_{2} are employed.
- Condition (ii) \Rightarrow all n-persons above n_{2} are out of the labour market because their reservation wages are too high.

- A fraction of the landless, $\frac{n_{1}}{\underline{n}}$, is involuntarily unemployed;
- the remaining fraction, $1-\frac{n_{1}}{\underline{n}}$, is employed.
- The size of this fraction depends on \hat{T}.
- The employed among the landless are paid $\hat{I} \Rightarrow$ not malnourished.
- The unemployed among the landless suffer their reservation wage.
\Rightarrow They are malnourished.
- Under this regime, the group of unemployed and malnourished coincide
- This is to be contrasted with Regime 1.

2.1.4.2 Regime 3: The Full Employment Equilibrium

- Figure 5 (c) presents the third regime pertinent for large values of \hat{T}.
- Here $\tilde{\mu}>\hat{I} / \lambda(\hat{I})$.
- Condition (i) \Rightarrow all n-persons from 0 to n_{2} are employed.
- Condition (ii) \Rightarrow all n-persons above n_{2} are out of the labour market.
- They are the landed gentry, not involuntarily unemployed.
- This regime is characterized by full employment and no malnourishment.
- This corresponds to a standard Arrow-Debreu equilibrium.

2.2 Dasgupta and Ray (1987)

- The analysis in Dasgupta and Ray (1986) shows the precise way in which asset advantages translate themselves into employment advantages.
- This suggests strongly that certain patterns of egalitarian asset redistributions may result in greater employment and aggregate output.
- Dasgupta and Ray (1987) confirm such possibilities and
- explores public policy measures which ought to be considered in the face of massive market-failure of the kind identified in Dasgupta and Ray (1986).
- Dasgupta and Ray (1986) study the implications of aggregate asset accumulation in the economy in question.
- The distribution of assets was held fixed.
- Dasgupta and Ray (1987) study the implication of asset redistribution.
- Dasgupta and Ray (1987) hold the aggregate quantity of land fixed and alter the land distribution.
- They first check that redistributive policies are the only ones that are available.
- This is confirmed by the following theorem.
- Theorem 1. Under the conditions postulated, a competitive equilibrium is Paretoefficient.
\Rightarrow There is no scope for external interventions to improve the welfare of the poor and malnourished, without making the non-poor worse off.

2.2.1 Partial Land Reforms

- Consider land transfers from the landed gentry (those who do not enter the labour market because their reservation wage is too high) to those who are involuntarily unemployed.
- In Figure 2, a partial land reform is depicted;
- land is transferred to some of the unemployed as well as those 'on the margin' of being unemployed.
- People between n_{a} and n_{b} gain land;
o for them, the $\mu^{*}(\cdot, \tilde{r})$ function shifts downward; that is, their efficiency-piece-rate is lowered.
- The losers, between n_{c} and n_{d}, also experience a downward shift in $\mu^{*}(\cdot, \tilde{r})$,
- but for entirely different reasons - their reservation wages have been lowered.

Fig. 2. Partial land reform: n-persons between n_{a} and n_{b} gain land, and rentiers between n_{c} and n_{d} lose land.

- Can the equilibrium before the partial land reform be compared with the one after land reform?
- Theorem 2. Suppose that for each parametric specification, the competitive equilibrium is unique. Then a partial land reform of the kind just described necessarily leads to at least as much output in the economy (strictly more, if $\mu^{*}(n, \tilde{r})$ is of the form in Figure 2).
- The result implies there is no necessary conflict between equality-seeking moves and aggregate output in a resource-poor economy.
- Such redistributions have three effects.
- The unemployed become more attractive to employers as their non-wage income rises.
- The employed among the poor become more productive to the extent that they too receive land.
- By taking land away from the landed gentry, their reservation wages are lowered;
- if this effect is strong enough, this could induce them to forsake their state of voluntary unemployment and enter the labour market.
- For all these reasons, the number of employed efficiency units in the economy rises, pushing it to a higher-output equilibrium.
- Theorem 2 is silent on how the set of employed persons changes.
- There is a natural tendency for employment to rise because of the features mentioned above.
- However, there is a 'displacement effect' at work: newly productive workers are capable of displacing previously employed, less productive workers in the labour market.

2.2.2 Full Land Reforms

- This displacement effect cannot exist in the case of full land reforms.
- Recall that total land of the economy is fixed at the level \hat{T}.
- Let \hat{T}_{1} be smallest value of \hat{T} such that at \hat{T}_{1} the economy is productive enough (just about) to feed all adequately,
- that is, at the level of food adequacy standard \hat{I}.
- Theorem 4. There exists an interval $\left(\hat{T}_{1}, \hat{T}_{2}\right)$ such that if \hat{T} is in this interval, full redistributions yield competitive equilibria with full employment and no malnourishment. Moreover for each such \hat{T}, there are unequal land distributions which give rise to involuntary unemployment and malnourishment.
- Theorem 4 has identified a class of cases, namely, a range of moderate land endowments, where
- inequality of asset ownership can be pin-pointed as the basic cause of involuntary unemployment and malnourishment.
- In such circumstances judicious land reforms can increase output and reduce both unemployment and undernourishment.
- If land were equally distributed, the market mechanism would sustain this economy in regime 3 in which
\circ undernourishment and unemployment are things of the past.

3. Incentive-based Efficiency Wages: Eswaran-Kotwal (1985)

- Eswaran and Kotwal (1985) analyzes an alternative source of efficiency wages,
- stemming from the problem of eliciting trustworthy behaviour from employees.
- Certain tasks in agriculture require application of effort which is difficult to monitor:
- water resource management, application of fertilizers, maintenance of draft animals and machines.
- Certain other tasks are routine and menial and less subject to worker moral hazard as the product of the worker's effort is easily monitored:
- weeding, harvesting, threshing.
- Piece rates may suffice for the second type of tasks, but not for the first type.
- Performance of the worker on these tasks can be ascertained only much later,
\circ at the end of the year or in future years; whereas wages have to be paid upfront.
- Moreover workers' performance may not be verifiable by third-party contract enforcers.
- For either of these reasons, wages for the first category of tasks will be independent of performance levels;
- accordingly trust plays a significant role.
\Rightarrow The employer will seek to employ family members or other kins for these tasks.
- If hired hands are employed for these tasks, they have to be induced to behave in a trustworthy fashion.
- This is made possible by an implicit long-term contract, which is renewed in future years only upon verification of the employee's satisfactory performance.
- To give the employee a stake in the continuation of the employment relationship,
- long-term workers have to be treated better than short-term workers hired for harvesting tasks.
- This implies in turn that the market for long-term contracts will be characterized by involuntary unemployment:
- all workers will queue up for long-term contracts;
- but employers will typically be willing to employ a fraction of the entire labour force in long-term contracts,
- the remaining workers being forced into the residual short-term sector.
- The unemployment will not be eliminated despite wage flexibility,
- since wage cuts will reduce the stake of long-term workers in the subsequent continuation of the relationship,
- inducing them to abuse their employers' trust.
- This explanation for long-term contracts is similar to earlier theories advanced by
- Simon (1951), Klien and Leffler (1981), Shapiro (1983) and Shapiro and Stiglitz (1984).
- What is of particular interest in Eswaran and Kotwal (1985) is the explanation of coexistence of long-term and short-term workers, and
- how the composition of the work force shifts in response to demand and technology changes.

3.1 The Model

- A single crop is produced each year;
- the crop takes two periods to produce, each period lasting for one-half year.
- The first period requires such activities as soil preparation, tiling, sowing, etc.,
\circ the second requires activities such as harvesting, threshing, etc.
- Demand for labour and capital is considerably higher in the second period.
- Production process entails the use of three inputs: land (h), labour, and capital (K).
- Disaggregate labour into two categories according to the nature of the tasks:
- Type 1 tasks involve considerable care and judgement such as
- water resource management, application of fertilizers, plowing, maintenance of draft animals and machines, etc.
- Such tasks do not lend themselves to easy on-the-job supervision.
- Type 2 tasks are those that are routine and menial such as
- weeding, harvesting, threshing, etc.
- These tasks are by their very nature easy to monitor.
- All workers are assumed to have identical abilities;
- but the tasks to which they are assigned are not necessarily the same
- Distinguish between length of employment (l) and the intensity of effort (e).
- Efficient performance of any task requires an effort level $\bar{e}>0$.
- An efficiency unit of labour is taken to be one worker hired for a whole period ($l=1$) at an effort level \bar{e}.
- Type 1 tasks are performed by workers on long-term contracts, while casual workers are entrusted with only Type 2 tasks.
- Assume that no casual workers are hired in period 1.
- The tasks to be performed in period 1 are mainly of Type 1 variety.
- Empirically, casual workers are hired mainly in the peak season (period 2).
- L_{p} : number of efficiency units of permanent labour employed per period on a farm.
- A permanent worker's contract is over the infinite horizon unless he is found to shirk.
- L_{c} : number of efficiency units of casual labour employed on the farm in period 2.
- A casual worker's contract lasts for the whole or part of period 2.
- Production function for period 1 output, q_{1}, is:

$$
\begin{equation*}
q_{1}=a \cdot \min \left\{g_{1}\left(K_{1}, L_{p}\right), b \cdot h\right\} ; \tag{1}
\end{equation*}
$$

- K_{1} : amount of capital used in period 1 ;
- $g_{1}\left(K_{1}, L_{p}\right)$ is a twice continuously differentiable, linearly homogeneous function that is increasing and strictly quasi-concave in its arguments.
- (1) implies that there is no substitutability between land and the other two factors.
- Potential output is determined entirely by the amount of land.
- $g_{1}\left(K_{1}, L_{p}\right)$ is an aggregate of the capital and labour inputs in period 1.
- Assume labour is an essential input in period $1, g_{1}\left(K_{1}, 0\right)=0$, for all K_{1}.
- $a, b>0$ are technology parameters;
$-b$ is introduced to capture land-augmenting technical change;
- a is introduced to simulate Hicks-neutral technical change.
- Production function for period 2 output, q_{2}, is:

$$
\begin{equation*}
q_{2}=\min \left\{g_{2}\left(K_{2}, L_{p}+L_{c}\right), q_{1}\right\} \tag{2}
\end{equation*}
$$

- K_{2} : amount of capital used in period 2 ;
- $g_{2}(\cdot)$ is a twice continuously differentiable, linearly homogeneous function that is increasing and strictly quasi-concave in its arguments.
- In period 2, tasks performed by labour are mostly Type 2 variety.
- Casual and permanent labour are perfect substitutes and both will be employed to do Type 2 tasks.
- Period 2 output depends crucially on period 1 output.
- Interpret q_{1} as the quantity of unharvested crop and q_{2} as the quantity of the final product, that is, the harvested and threshed crop.
- q_{1} is thus a natural upper bound on q_{2}.
- Output price is exogenously fixed and is normalized to unity.
- All farmers are price takers in the labour and capital markets.
- Assume, for convenience, that all farms are identical.
- Then, by linear homogeneity of (1) and (2), we can aggregate all farmers into a single price-taking farmer.
- h now represents the total arable land in the economy,
- assumed to be fixed.
- $L_{p}, L_{c}, K_{1}, K_{2}, q_{1}$ and q_{2} can similarly be interpreted as aggregates.
- w_{p} : wage rate of a permanent worker per period;
w_{c} : wage rate of a casual worker per period;
r_{i} : per period (exogenous) rental rate on capital equipment, $i=1,2$.

3.2 Demand Side

- We now turn to the optimal choices of $L_{p}, L_{c}, K_{1}, K_{2}, q_{1}$ and q_{2}.
- We adopt the convention that all expenses are incurred at the end of the period.
- Note that the optimal choices of factor inputs in period 2 depends on L_{p} and the decisions of the first period.
- Farmer's decision making must be foresighted and made with full awareness of
- how L_{p} and his period 1 decisions will impinge on period 2's choices.
- Given the nature of the production functions, it follows that it is profitable to cultivate all the arable land.
\Rightarrow The profit-maximizing output levels in the two periods are

$$
\begin{equation*}
q_{1}=q_{2}=a b h . \tag{3}
\end{equation*}
$$

- Without loss of generality we set $h=1$.
- The factor inputs will thus be determined so as to minimize the total present value cost of producing the outputs $q_{1}=q_{2}=a b$.
- Since the choice of capital and casual labour are dependent on the amount of permanent labour hired,
- we first determine the demands of K_{1}, K_{2} and L_{c} conditional on the choice of L_{p}.
- Define the cost functions

$$
\begin{equation*}
C_{2}\left(q_{2}, r_{2}, w_{c}\right) \equiv \min _{K_{2}, L_{a}}\left\{r_{2} K_{2}+w_{c}\left(L_{a}-L_{p}\right) \mid g_{2}\left(K_{2}, L_{a}\right) \geq q_{2}\right\} \tag{4}
\end{equation*}
$$

where $L_{a} \equiv L_{p}+L_{c}$, the aggregate amount of labour used in period 2, and

$$
\begin{equation*}
C_{1}\left(L_{p}, q_{1} / a, r_{1}\right) \equiv \min _{K_{1}}\left\{r_{1} K_{1} \mid g_{1}\left(K_{1}, L_{p}\right) \geq q_{1} / a\right\} \tag{5}
\end{equation*}
$$

- At the profit-maximizing outputs $q_{1}=q_{2}=a b$, Shephard's Lemma yields the following factor demands:

$$
\begin{align*}
& K_{1}^{d}\left(L_{p}, b, r_{1}\right)=\frac{\partial C_{1}\left(L_{p}, b, r_{1}\right)}{\partial r_{1}}, \tag{6a}\\
& K_{2}^{d}\left(a b, r_{2}, w_{c}\right)=\frac{\partial C_{2}\left(a b, r_{2}, w_{c}\right)}{\partial r_{2}}, \tag{6b}\\
& L_{a}^{d}\left(a b, r_{2}, w_{c}\right)=\frac{\partial C_{2}\left(a b, r_{2}, w_{c}\right)}{\partial w_{c}} . \tag{6c}
\end{align*}
$$

- The casual labour demand is thus given by

$$
\begin{equation*}
L_{c}^{d}\left(a b, L_{p}, r_{2}, w_{c}\right)=\max \left\{L_{a}^{d}\left(a b, r_{2}, w_{c}\right)-L_{p}, 0\right\} . \tag{6d}
\end{equation*}
$$

- The optimal choice of L_{p} is now determined as the solution to

$$
\begin{equation*}
\min _{L_{p}} r_{1} K_{1}^{d}\left(L_{p}, b, r_{1}\right)+\beta r_{2} K_{2}^{d}\left(a b, r_{2}, w_{c}\right)+(1+\beta) w_{p} L_{p}+\beta w_{c}\left[L_{a}^{d}\left(a b, r_{2}, w_{c}\right)-L_{p}\right] . \tag{7}
\end{equation*}
$$

- The first-order condition associated with (7) is

$$
\begin{equation*}
-r_{1} \cdot \frac{\partial K_{1}^{d}\left(L_{p}, b, r_{1}\right)}{\partial L_{p}}=(1+\beta) w_{p}-\beta w_{c} \equiv z \tag{8}
\end{equation*}
$$

- The demand for permanent labour, $L_{p}^{d}\left(b, r_{1}, z\right)$, is implicitly determined as the soIution to (8).
- Twice continuous differentiability and strict quasi concavity of $g_{1}\left(K_{1}, L_{p}\right)$ implies that the left-hand side of (8) is declining in L_{p}. (Explain why)
- Thus L_{p}^{d} is decreasing in z (see Figure 1).
- Together, $L_{p}^{d}\left(b, r_{1}, z\right)$ and the expressions (6a) - (6d) constitute the demand side of the model.
$-r_{1} \frac{{ }^{2} K_{1}^{d}\left(L_{p}, r_{1}, b\right)}{(2)}$
Figure 1. Determination of the Demand for Permanent Labor

3.3 Supply Side

- The utility function of an agricultural worker is

$$
\begin{equation*}
U(y, e, l)=(y-e l)^{\gamma} ; 0<\gamma<1, \tag{9}
\end{equation*}
$$

$-y$: income received for the period;
$-e$: intensity of effort;
$-l$: fraction of the period for which he is employed.

- For an arbitrarily given e and wage rate w, the supply response, $l^{*}(w, e)$, of a worker is the solution to

$$
\begin{equation*}
\max _{l \leq 1} U(w l, e, l)=l^{\gamma}(w-e)^{\gamma} . \tag{10}
\end{equation*}
$$

- The maximization in (10) yields the labour supply response:

$$
l^{*}(w, e) \begin{cases}=0 & \text { for } w<e \tag{11}\\ \in(0,1) & \text { for } w=e \\ =1 & \text { for } w>e\end{cases}
$$

and an indirect utility function

$$
\begin{equation*}
V(w, e)=\left\{(w-e) l^{*}(w, e)\right\}^{\gamma} . \tag{12}
\end{equation*}
$$

- Since $V(w, e)$ is a decreasing function of e, there is an obvious moral hazard problem under a fixed wage contract.
\Rightarrow the monitoring of effort is absolutely necessary.
- Since Type 2 tasks are easy to monitor, workers performing these tasks can be costlessly supervised.
\Rightarrow No reason to hire them on long-term contracts, and hiring them on the spot markets serves adequately.
- Since Type 1 tasks involve some discretions and judgement and are difficult to monitor,
- the landlord needs to provide a self-enforcing (incentive) contract to workers performing Type 1 tasks.
- The landlord offers Type 1 workers a permanent contract (over the infinite horizon):
- the worker receives a wage w_{p} per period in exchange for the worker's services for the fraction $l^{*}\left(w_{p}, \bar{e}\right)$ of each period at an effort level \bar{e}.
- The worker's effort in period 1 is assumed to be accurately imputable at the end of the year.
- If he is found to have shirked, he is fired at the end of the year.
\circ He is, however, paid his wage, w_{p}, for each of the two periods.
- Once a Type 1 worker is fired, he cannot be rehired except as a casual worker.
- If w_{p} is high enough that a worker's increase in utility from shirking is more than offset by the discounted loss in his utility in having to join the casual labour force,
- he would never shirk.
- We will determine this w_{p} in terms of w_{c} as follows.
- Assume workers discount utility at the same rate β as the landlord discounts profits.
- The present value utility of a permanent worker who never shirks is

$$
\begin{equation*}
J_{p}^{h}\left(w_{p}, \beta\right)=\frac{V\left(w_{p}, \bar{e}\right)}{1-\beta} \tag{13}
\end{equation*}
$$

- The opportunity utility of a permanent worker is the discounted lifetime utility of a casual worker:

$$
\begin{equation*}
J_{c}\left(w_{c}, \beta\right)=\left(\frac{\beta}{1-\beta^{2}}\right) V\left(w_{c}, \bar{e}\right) . \tag{14}
\end{equation*}
$$

- Now turn to the possibility of shirking on the part of a permanent worker.
- Since any shirking is guaranteed to termination at the end of period 2,
- a permanent worker who chooses to shirk, will optimally set $e=0$ in period 1 .
- Shirking is not possible in period 2 since menial tasks are monitored costlessly.
\Rightarrow His discounted utility over this crop year is: $V\left(w_{p}, 0\right)+\beta V\left(w_{p}, \bar{e}\right)$.
\Rightarrow The discounted lifetime utility of a permanent worker who shirks is

$$
\begin{equation*}
J_{p}^{s}\left(w_{p}, w_{c}, \beta\right)=V\left(w_{p}, 0\right)+\beta V\left(w_{p}, \bar{e}\right)+\beta^{2} J_{c}\left(w_{c}, \beta\right) . \tag{15}
\end{equation*}
$$

- To ensure that a permanent worker never shirks, we require

$$
\begin{equation*}
J_{p}^{h}\left(w_{p}, \beta\right) \geq J_{p}^{s}\left(w_{p}, w_{c}, \beta\right) \tag{16}
\end{equation*}
$$

- For given w_{c} and β, (16) puts a lower bound on the permanent worker's wage which will elicit the required level of effort;
- we refer to this wage as $\bar{w}_{p}\left(w_{c}, \beta\right)$, that is, $w_{p} \geq \bar{w}_{p}\left(w_{c}, \beta\right)$.
- At any w_{p} that satisfies (16) a worker obtains a strictly higher utility in a permanent contract than in a series of spot contracts:

$$
\begin{equation*}
J_{p}^{h}\left(w_{p}, \beta\right)>J_{c}\left(w_{c}, \beta\right) \tag{17}
\end{equation*}
$$

- Verify this.
- It follows that the number of permanent workers hired will be demand determined.
- Since a worker strictly prefers being a permanent worker to being a casual worker, o there will generally be an excess supply of workers seeking permanent contracts.
- This will not result in a downward pressure on permanent workers' wage since any $w_{p}<\bar{w}_{p}\left(w_{c}, \beta\right)$ is not credible:
o it leaves an incentive for the permanent worker to shirk.
- A casual worker who seeks to obtain a permanent contract by offering to work for a wage marginally less than $\bar{w}_{p}\left(w_{c}, \beta\right)$
- will find that the landlord will not entertain the offer.
- We shall find later that the behaviour of $\bar{w}_{p}\left(w_{c}, \beta\right)$ as a function of w_{c} is of crucial importance for the response of the economy to various exogenous changes.
- This behaviour is recorded in the following proposition.
- Proposition 1. For $w_{c} \geq \bar{e}$, an increase in w_{c} warrants a change in \bar{w}_{p} that is
(a) positive, and
(b) if $\bar{w}_{p}\left(w_{c}, \beta\right)<w_{c}$, then $\frac{d \bar{w}_{p}}{d w_{c}}<\frac{\beta}{1+\beta}$.
- Part (a) is very reasonable since $w_{c} \uparrow$ amounts to an increase in the permanent worker's opportunity income (and utility).
- According to part (b), when the permanent worker's per period wage rate $\bar{w}_{p}\left(w_{c}, \beta\right)$ is less than that of a casual worker, w_{c},
- the increase $\left(\triangle \bar{w}_{p}\right)$ that is required to compensate a permanent worker for an exogenous increase ($\triangle w_{c}$) in a casual worker's wage satisfies

$$
\begin{equation*}
(1+\beta) \triangle \bar{w}_{p}<\beta \triangle w_{c} . \tag{19}
\end{equation*}
$$

- That is, the increase in present value cost of engaging a permanent worker is less than that of a casual worker.

3.4 Equilibrium

- We now turn to the determination of the equilibrium.
- Equilibrium levels of capital in the two periods are demand determined.
- Since permanent workers are held above their opportunity utilities, their number, L_{p}^{*}, is also demand determined:

$$
\begin{equation*}
L_{p}^{*}\left(b, r_{1}, z\right)=L_{p}^{d}\left(b, r_{1}, z\right) \tag{20a}
\end{equation*}
$$

- Demand for casual workers is given by

$$
\begin{equation*}
L_{c}^{d}\left(a b, L_{p}, r_{2}, w_{c}\right)=L_{a}^{d}\left(a b, r_{2}, w_{c}\right)-L_{p}^{*}\left(b, r_{1}, z\right) . \tag{20b}
\end{equation*}
$$

- Condition (16) translates into

$$
\begin{equation*}
\frac{V\left(w_{p}, \bar{e}\right)}{1-\beta} \geq V\left(w_{p}, 0\right)+\beta V\left(w_{p}, \bar{e}\right)+\frac{\beta}{1-\beta^{2}} V\left(w_{c}, \bar{e}\right) . \tag{20c}
\end{equation*}
$$

- For any w_{c}, (20c) determines the minimum w_{p} that will prevent a permanent worker from shirking, that is, $w_{p} \geq \bar{w}_{p}\left(w_{c}, \beta\right)$.
$\bullet(11) \Rightarrow$ in equilibrium we must have $w_{c} \geq \bar{e}$ and $w_{p} \geq \bar{e}$.
- Note also that $w_{p}=\bar{e}$ is never a solution to (20c) when $w_{c} \geq \bar{e}$:
- Follows from the fact that (20c) implies

$$
V\left(w_{p}, \bar{e}\right)>\frac{\beta}{1+\beta} V\left(w_{c}, \bar{e}\right) \Rightarrow\left(w_{p}-\bar{e}\right) l^{*}\left(w_{p}, \bar{e}\right)>\left(\frac{\beta}{1+\beta}\right)^{\frac{1}{\gamma}}\left(w_{c}-\bar{e}\right) l^{*}\left(w_{c}, \bar{e}\right) .
$$

- Thus we must have $w_{p}>\bar{e} ; \Rightarrow l^{*}\left(w_{p}, \bar{e}\right)=1$ for a permanent worker;
\Rightarrow each permanent worker provides one efficiency unit of labour per period.
- Assuming N to be the (exogenously given) total number of workers, the aggregate supply of casual labor in the second period is:

$$
L_{c}^{s}(w, e) \begin{cases}=0 & \text { for } w_{c}<\bar{e} \tag{20d}\\ \in\left(0, N-L_{p}^{*}\right) & \text { for } w_{c}=\bar{e} \\ =N-L_{p}^{*} & \text { for } w_{c}>\bar{e}\end{cases}
$$

- This completes the specification of the model.
- Exogenous to the model are:
- the production and utility functions,
- the discount factor, β,
- the rental rates on capital, r_{1} and r_{2}, and
- the total labour force, N.
- The general equilibrium system defined by (20a) - (20d) determine the following endogenous variables:
- w_{p}, w_{c}, L_{p} and L_{c}.
- The two remaining endogenous variables, K_{1} and K_{2}, are demand determined, and hence determined by (6a) and (6b).
- Figure 2 illustrates an equilibrium of the system of equations (20a) - (20d).

Figure 2. An Equilibrium with Unemployment in Period 1 and Full Employment in Period 2

- For an arbitrarily chosen L_{p}, the casual labour supply is given by the kinked curve L_{c}^{s} in the first quadrant of Figure 2.
- Demand for casual labour, L_{c}^{d}, is also shown in the first quadrant, obtained from (20b).
\Rightarrow The casual labour market clears at the wage rate w_{c}^{*}.
- The second quadrant displays the relationship $w_{p}=\bar{w}_{p}\left(w_{c}, \beta\right)$, obtained from (20c).
\Rightarrow Associated with a casual labour wage rate w_{c}^{*} is a permanent labour wage rate w_{p}^{*}.
- The fourth quadrant displays the demand for permanent labour as a function of w_{p} when the casual labour wage rate is w_{c}^{*}.
- This demand for permanent labour is measured from O^{\prime} along the horizontal axis.
- If we have indeed located an equilibrium, the demand for permanent labour at w_{p}^{*} will be exactly equal to the L_{p} with which we began our construction.

3.5 Results

- We now turn to the comparative static results of the model.
- These results depend crucially on whether $w_{c}^{*} \gtreqless w_{p}^{*}$.
- These are endogenous and the model allows for both possibilities.
- Since the purpose is to confront the predictions with empirical evidence, we pursue the empirically relevant case:

$$
\begin{equation*}
w_{c}^{*}>w_{p}^{*} \tag{21}
\end{equation*}
$$

- Refer to Richards (1979), Rudra (1982) and Basant (1984).
- Defining $z^{*}=(1+\beta) w_{p}^{*}-\beta w_{c}^{*}$, we see from (18) that

$$
\begin{equation*}
\frac{d z^{*}}{d w_{c}^{*}}=(1+\beta)\left[\frac{d w_{p}^{*}}{d w_{c}^{*}}-\frac{\beta}{1+\beta}\right]<0 . \tag{22}
\end{equation*}
$$

- The difference in the present value cost of hiring a permanent worker over that of hiring a casual worker declines with $d w_{c}^{*}$.
- Proposition 2. In an equilibrium,
(a) an increase in N decreases the proportion of permanent contracts,
(b) an increase in a (or b or both) increases the number of permanent contracts,
(c) an increase in a, with ab held constant, decreases the number of permanent contracts,
(d) an increase in r_{1} or r_{2} increases the number of permanent contracts.
- (a) says the proportion of permanent workers is higher the tighter the labour market.
$-N \downarrow \Rightarrow w_{c}^{*} \uparrow \Rightarrow w_{p}^{*} \uparrow$.
- However, the increases satisfy inequality $(1+\beta) \triangle \bar{w}_{p}<\beta \triangle w_{c}$,
\Rightarrow the marginal permanent worker is becoming cheaper to hire relative to a casual worker in period 2,
\Rightarrow induces a substitution of permanent for casual workers.
- (a) explains the dramatic increase in the percentage of permanent contracts in East Prussian agriculture in the first half of the 19th century.
- Between 1815-49 there was an increase in the cultivated area by almost 90%, and a simultaneous agrarian reform resulting in peasants losing land to large landlords.
- The loss of land forced the peasants into the labour market.
- Richards (1979) estimates a 3% total net loss of land by peasants, \Rightarrow an overall decrease in the labour-to-land ratio, \Rightarrow a higher proportion of permanent workers.
- (b) says a yield-increasing technological improvement increases the proportion of permanent workers.
- Technological improvement $\Rightarrow L_{c}^{d} \uparrow, \Rightarrow w_{c}^{*} \uparrow \Rightarrow w_{p}^{*} \uparrow$.
- However, inequality $(1+\beta) \triangle \bar{w}_{p}<\beta \triangle w_{c} \Rightarrow$ permanent worker becomes cheaper relative to casual worker, inducing a substitution of permanent for casual workers.
- Bardhan (1983) provides empirical evidence that the percentage of permanent labour in India is positively correlated with the index of land productivity.
- An increase in output price will induce an increase an output.
- This effect can be simulated by an increase in a in this model.
- That is, output price \uparrow induces a substitution of permanent for casual workers.
- Part (b) then explains the impact of the opening up of export markets on the labour composition in 19th century Chile.
- In the 1860's, Chile began to export grain to European markets, and this lasted until 1890.
- Bauer (1971) estimated that the percentage of casual workers in the rural labour force of central Chile fell from 72\% in 1865 to 39\% in 1895.
- This observation is consistent with part (b) of Proposition 2.
- In part (c) the final output is held fixed and the burden of activity is shifted across the two periods.
- An increase in a (with $a b$ held constant) implying a decrease in b,
- makes cultivation less land-intensive in the first period while increasing the activity in the peak season.
- Since in the second period casual and permanent labour are substitutable, we observe a shift from permanent to casual labour.
- Jan Breman (1974) observes that a change in crops
- from rice which had relatively even distribution of tasks over the two periods
- to mangoes which has a very heavy labour demand in period 2
- resulted in the replacement of permanent contracts by casual labour contracts in Gujarat.
- Part (d) implies $r_{1} \downarrow$ would displace permanent workers,
- consequently increase the use of casual labour in the second period.
- In India, because of the notoriously imperfect capital markets,
- farms with tractors are those for which the owners face lower capital costs.
- If tractors were employed on such farms only during period 1 (for operations such as ploughing and sowing),
- the result would be a displacement of permanent workers by casual workers.
- While the existing empirical literature - Rudra (1982), Agarwal (1981) - bears out prediction regarding permanent workers,
- there is conflicting evidence on the effect on casual workers employment.
- Eswaran and Kotwal (1985) conjectures that this conflict arises because tractors are used on some farms for period 1 operations only, while on others they are also used in period 2.

References

- This note is based on

1. Mookherjee, Dilip and Debraj Ray (2001), Section 3 of Introduction to Readings in the Theory of Economic Development, London: Blackwell,
2. Dasgupta, Partha and Debraj Ray (1986), "Inequality as a Determinant of Malnutrition and Unemployment: Theory", Economic Journal, 96, 1011-1034.
3. Dasgupta, Partha and Debraj Ray (1987), "Inequality as a Determinant of Malnutrition and Unemployment: Policy", Economic Journal, 97, 177-188.
and
4. Eswaran, Mukesh and Ashok Kotwal (1985), "A Theory of Two-Tier Labour Markets in Agrarian Economies", American Economic Review, 75, 162-177.
