Opting out of publicly provided services: A majority voting result

• In most countries, the government expropriates resources from the citizens and use them to provide services at a very low price.

- In most countries, the government expropriates resources from the citizens and use them to provide services at a very low price.
- Examples include education, public transportation, healthcare etc.

- In most countries, the government expropriates resources from the citizens and use them to provide services at a very low price.
- Examples include education, public transportation, healthcare etc.
- We analyze a model in which households are differentiated by income and have the option of choosing between publicly provided services and private services.

• An economy with large number of agents with identical preferences over private consumption, c_i , and the quality of services, q_i . We normalize the population size to unity.

- An economy with large number of agents with identical preferences over private consumption, c_i , and the quality of services, q_i . We normalize the population size to unity.
- Agent *i*'s preferences are represented by $U(c_i, q_i)$ where *U* is increasing, strictly quasi-concave, and twice continuously differentiable.

- An economy with large number of agents with identical preferences over private consumption, c_i , and the quality of services, q_i . We normalize the population size to unity.
- Agent *i*'s preferences are represented by $U(c_i, q_i)$ where *U* is increasing, strictly quasi-concave, and twice continuously differentiable.
- Agent *i* has income y_i and we assume that incomes across agents are distributed according to the c.d.f F(.) with finite mean.

- An economy with large number of agents with identical preferences over private consumption, c_i , and the quality of services, q_i . We normalize the population size to unity.
- Agent *i*'s preferences are represented by $U(c_i, q_i)$ where *U* is increasing, strictly quasi-concave, and twice continuously differentiable.
- Agent *i* has income *y_i* and we assume that incomes across agents are distributed according to the c.d.f *F*(.) with finite mean.
- Government collects taxes from all individuals at a constant rate τ .

• *N* is the proportion of agents choosing publicly provided services and $\tau Y/N$ where Y is total income is therefore public expenditure per agent.

- *N* is the proportion of agents choosing publicly provided services and $\tau Y/N$ where Y is total income is therefore public expenditure per agent.
- The public expenditures are converted into quality of service according to

$$Q=rac{ au\,Y}{N}$$
 if $au>0$ and $N>0$
 $Q=0$ if $au=0$ and $N=0$

• All agents are taxed in this economy, but each agent is free to choose between publicly provided services and private services.

- All agents are taxed in this economy, but each agent is free to choose between publicly provided services and private services.
- $q_i = Q$ for all *i* who choose the publicly provided services.

- All agents are taxed in this economy, but each agent is free to choose between publicly provided services and private services.
- $q_i = Q$ for all *i* who choose the publicly provided services.
- Each individual who does not choose the publicly provided service allocates the after-tax income to consumption expenditures and private services.

$$q_i = (1 - \tau) y_i - c_i$$

- All agents are taxed in this economy, but each agent is free to choose between publicly provided services and private services.
- $q_i = Q$ for all *i* who choose the publicly provided services.
- Each individual who does not choose the publicly provided service allocates the after-tax income to consumption expenditures and private services.

$$q_i = (1-\tau)y_i - c_i$$

• No agent can choose the publicly provided services and supplement it with some private services.

Let the indirect utility of agent *i* with income y_i who chooses to obtain the services from public sector be denoted by V^u(τ, y_i, Y, N) and V^r(τ, y_i) denote *i*'s indirect utility if he chooses private services.

- Let the indirect utility of agent *i* with income y_i who chooses to obtain the services from public sector be denoted by V^u(τ, y_i, Y, N) and V^r(τ, y_i) denote *i*'s indirect utility if he chooses private services.
- Agent *i* will choose publicly provided services over private services if and only if V^u(τ, y_i, Y, N) ≥ V^r(τ, y_i)

- Let the indirect utility of agent *i* with income y_i who chooses to obtain the services from public sector be denoted by V^u(τ, y_i, Y, N) and V^r(τ, y_i) denote *i*'s indirect utility if he chooses private services.
- Agent *i* will choose publicly provided services over private services if and only if V^u(τ, y_i, Y, N) ≥ V^r(τ, y_i)
- The equilibrium fraction of agents choosing publicly provided services, N^* must solve

$$N = \mu\{i : V^u(\tau, y_i, Y, N) \ge V^r(\tau, y_i)\}$$

$$(1)$$

where μ {.} is the probability measure associated with the distribution function F(.).

• All agents in the economy vote on tax rates and the equilibrium tax rate τ^* is the one chosen by a majority of voters.

- All agents in the economy vote on tax rates and the equilibrium tax rate τ^* is the one chosen by a majority of voters.
- A majority voting equilibrium is a pair $\{\tau^*, N^*\}$ which satisfies (i) given τ^* , the solution to equation (1) is N^* and

(ii) there does not exist another pair $\{\tau', N'\}$ such that a) given τ' , N' solves equation (1) and b) τ' is preferred over τ^* by more than half the population. • **Proposition 1**. Assume that U(.) is homothetic and that $\lim_{c \to \infty} U_c(c, e) = 0$ for all e > 0. Given $\tau \in (0, 1)$, $N \in (0, 1]$ and $Y \in \mathbb{R}_{++}$, there exists a unique $\hat{y} > 0$ such that $V^u(\tau, y_i, Y, N) \ge V^r(\tau, y_i)$ if and only if $y_i \le \hat{y}$.

- **Proposition 1**. Assume that U(.) is homothetic and that $\lim_{c \to \infty} U_c(c, e) = 0$ for all e > 0. Given $\tau \in (0, 1)$, $N \in (0, 1]$ and $Y \in \mathbb{R}_{++}$, there exists a unique $\hat{y} > 0$ such that $V^u(\tau, y_i, Y, N) \ge V^r(\tau, y_i)$ if and only if $y_i \le \hat{y}$.
- Lemma 1. (i) For $N \in (0, 1)$, \hat{y} is decreasing in N. (ii) For $\tau \in (0, 1)$, \hat{y} is increasing in τ . (iii) For $\tau \in (0, 1)$, \hat{y} is increasing in τ .

• The fraction of agents choosing publicly provided services N^* solves

$$N = F(\hat{y}(\tau, Y, N))$$
⁽²⁾

• The fraction of agents choosing publicly provided services N^* solves

$$N = F(\hat{y}(\tau, Y, N)) \tag{2}$$

• **Proposition 2**. For all $\tau \in (0, 1)$ and $Y \in \mathbb{R}_{++}$, there exists a unique $N^* \in (0, 1)$ which solves equation (2).

• We now endogenize the tax rate through majority voting. The most preferred tax rate for an individual with income *y* is given by

$$au^* = \operatorname{argmax} V(au, y)$$

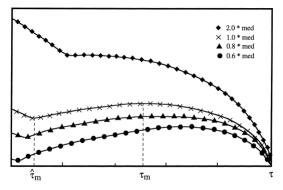
subject to $\tau \in [0, 1]$ where $V(\tau, y) = max\{V^u(\tau, y, N(\tau)), V^r(\tau, y)\}$ and $N(\tau)$ is the solution to (1). • We now endogenize the tax rate through majority voting. The most preferred tax rate for an individual with income *y* is given by

$$au^* = \operatorname{argmax} V(au, y)$$

subject to $\tau \in [0, 1]$ where $V(\tau, y) = max\{V^u(\tau, y, N(\tau)), V^r(\tau, y)\}$ and $N(\tau)$ is the solution to (1).

• If preferences over tax rates are not single peaked, a majority equilibrium may not exist.

Majority voting equilibrium



э

< ∃→

• The interior maximum $\tau^u(y)$ for an individual with income y is given by

$$au^u(y) = \operatorname{argmax} V^u(au, Y, N(au))$$

A 🕨

• The interior maximum $\tau^u(y)$ for an individual with income y is given by

$$au^u(y) = \operatorname{argmax} V^u(au, Y, N(au))$$

• Define $au_m = au^u(y_m)$ and critical tax rate, $\hat{ au}(y)$ to be the solution of

$$V^{r}(\tau, y) = V^{u}(\tau, y, N(\tau))$$

.

• The interior maximum $\tau^u(y)$ for an individual with income y is given by

$$au^u(y) = \operatorname{argmax} V^u(au, Y, N(au))$$

• Define $au_m = au^u(y_m)$ and critical tax rate, $\hat{ au}(y)$ to be the solution of

$$V^{r}(\tau, y) = V^{u}(\tau, y, N(\tau))$$

• At $\hat{\tau}(y)$, an agent with income y is indifferent between public and private services.

.

• Lemma 2. The critical tax rate $\hat{\tau}(y)$ is non-decreasing in y.

- Lemma 2. The critical tax rate $\hat{\tau}(y)$ is non-decreasing in y.
- Lemma 3. There does not exist a τ ∈ (τ_m, 1] that is preferred to τ_m by more than 50% of the population.

- Lemma 2. The critical tax rate $\hat{\tau}(y)$ is non-decreasing in y.
- Lemma 3. There does not exist a τ ∈ (τ_m, 1] that is preferred to τ_m by more than 50% of the population.
- Lemma 4. There does not exist a τ ∈ [τ̂_m, τ_m) that is preferref to τ_m by more than 50% of the population.

• Lemma 5. Let N_m be the public school enrollment evaluated at the tax rate τ_m i.e., $N_m = N(\tau_m)$.

(i) If
$$V^{r}(0, y_{m}) < V^{u}(\tau_{m}, y_{m}, N_{m})$$
 then $V^{r}(0, y) < V^{u}(\tau_{m}, y, N_{m})$ for
all $y < y_{m}$.
(i) If $V^{r}(0, y_{m}) > V^{u}(\tau_{m}, y_{m}, N_{m})$ then $V^{r}(0, y) > V^{u}(\tau_{m}, y, N_{m})$ for
all $y > y_{m}$.

• Lemma 5. Let N_m be the public school enrollment evaluated at the tax rate τ_m i.e., $N_m = N(\tau_m)$.

(i) If
$$V^{r}(0, y_{m}) < V^{u}(\tau_{m}, y_{m}, N_{m})$$
 then $V^{r}(0, y) < V^{u}(\tau_{m}, y, N_{m})$ for
all $y < y_{m}$.
(i) If $V^{r}(0, y_{m}) > V^{u}(\tau_{m}, y_{m}, N_{m})$ then $V^{r}(0, y) > V^{u}(\tau_{m}, y, N_{m})$ for
all $y > y_{m}$.

• **Proposition 3**. If $V^{r}(0, y_m) < V^{u}(\tau_m, y_m, N_m)$, then the pair $\{\tau_m, N_m\}$ is a majority voting equilibrium.

• Suppose agent i's preferences are represented by

$$U(c_i, q_i) = rac{1}{1-\sigma} \{ c_i^{1-\sigma} + q_i^{1-\sigma} \}, \ \sigma \in (0,1)$$

, and income distribution is Dagum. That is

$$F(y) = \{1 + \lambda y^{-lpha}\}^{-eta}, \ lpha > 0, \ eta > 0, \ and \ \lambda > 0$$

۲

 $V^u(au, y_i, Y, N) = rac{1}{1-\sigma} \left[(1- au)^{1-\sigma} y_i^{1-\sigma} + \left(rac{ au Y}{N}
ight)^{1-\sigma}
ight]$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $V^{u}(\tau, y_{i}, Y, N) = \frac{1}{1-\sigma} \left[(1-\tau)^{1-\sigma} y_{i}^{1-\sigma} + \left(\frac{\tau Y}{N}\right)^{1-\sigma} \right]$ • $V^{r}(\tau, y_{i}, Y, N) = \frac{2^{\sigma}}{1-\sigma} \left[(1-\tau)^{1-\sigma} y_{i}^{1-\sigma} + \left(\frac{\tau Y}{N}\right)^{1-\sigma} \right]$

$$V^{r}(\tau, y_{i}) = rac{2^{\sigma}}{1-\sigma}(1-\tau)^{1-\sigma}y_{i}^{1-\sigma}$$

3

글 > - + 글 >

< 4 ₽ × <

• $V^{u}(\tau, y_{i}, Y, N) = \frac{1}{1-\sigma} \left[(1-\tau)^{1-\sigma} y_{i}^{1-\sigma} + \left(\frac{\tau Y}{N}\right)^{1-\sigma} \right]$ • $V^{r}(\tau, y_{i}) = \frac{2^{\sigma}}{1-\sigma} (1-\tau)^{1-\sigma} y_{i}^{1-\sigma}$

• The critical income is given by

$$\hat{y} = (2^{\sigma} - 1)^{\frac{1}{\sigma-1}} \left[\frac{\tau Y}{(1-\tau)N} \right]$$

(Gerhard Glomm, B. Ravikumar)

3

< 回 ト < 三 ト < 三 ト

Example

• Equilibrium N* solves

$$N = F\left((2^{\sigma}-1)^{rac{1}{\sigma-1}}\left[rac{ au Y}{(1- au)N}
ight]
ight)$$

2

<ロ> (日) (日) (日) (日) (日)

Example

• Equilibrium N* solves

$$N = F\left((2^{\sigma} - 1)^{\frac{1}{\sigma - 1}} \left[\frac{\tau Y}{(1 - \tau)N} \right] \right)$$

• The interior maximum $au^u(y)$ is determined according to

$$\tau^{u}(y) = \operatorname{argmax} \frac{1}{1-\sigma} \left[(1-\tau)^{1-\sigma} y^{1-\sigma} + \left(\frac{\tau Y}{N(\tau)} \right)^{1-\sigma} \right]$$

< 🗇 🕨

3

Example

• Equilibrium N* solves

$$N = F\left((2^{\sigma} - 1)^{\frac{1}{\sigma - 1}} \left[\frac{\tau Y}{(1 - \tau)N} \right] \right)$$

• The interior maximum $au^u(y)$ is determined according to

$$\tau^{u}(y) = \operatorname{argmax} \frac{1}{1-\sigma} \left[(1-\tau)^{1-\sigma} y^{1-\sigma} + \left(\frac{\tau Y}{N(\tau)} \right)^{1-\sigma} \right]$$

• The critical tax rate of an individual with income y must solve

$$\frac{\tau Y}{(1-\tau)N(\tau)} = y\{2^{\sigma}-1\}^{\frac{1}{1-\sigma}}$$

which is increasing in y

• We saw a model where each individual had the choice of opting out of the publicly provided services.

- We saw a model where each individual had the choice of opting out of the publicly provided services.
- Taxes on individuals' income determine the quality of publicly provided services.

- We saw a model where each individual had the choice of opting out of the publicly provided services.
- Taxes on individuals' income determine the quality of publicly provided services.
- Although the preferences over tax rates are not single peaked, we saw that a majority equilibrium does exist and the decisive voter is the agent with median income.

() max
$$H(c((t-T)y), e((t-T)y))$$

Subject to $c + e = (t-T)y$
where $H(t)$ is homogeneous of degree one
i.e $H(\Delta a, \lambda b) = \lambda H(a, b) + \lambda e R$
let c^*, e^* solve ()
Claim: $H(c^*, e^*)$ is linear in y
Proof: $\lambda \equiv H(c, e) - \lambda [c+e - (t-T)y]$
First order conditions for a maximum
 $\frac{\partial \lambda}{\partial c} \equiv \frac{\partial H}{\partial c} - \lambda = 0$ i.e $\frac{\partial H}{\partial c}|_{c=c^*} = \lambda - 0$
 $\frac{\partial \lambda}{\partial e} \equiv \frac{\partial H}{\partial e} - \lambda = 0$ i.e $\frac{\partial H}{\partial e}|_{e=e^*} = \lambda - 0$
 $\frac{\partial \lambda}{\partial e} \equiv \frac{\partial H}{\partial e} - \lambda = 0$ i.e $\frac{\partial H}{\partial e}|_{e=e^*} = \lambda - 0$
For a homogeneous function f of degree n we
know that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = n F + x, y$
 $\therefore c \frac{\partial H}{\partial c} + e \frac{\partial H}{\partial e}|_{e=e^*} = H(c^*, e^*)$
 $c^* \frac{\partial H}{\partial c}|_{c=c^*} + e^* \frac{\partial H}{\partial e}|_{e=e^*} = H(c^*, e^*)$
 $\Rightarrow H(c^*, e^*) = \lambda(t-T) y$
i.e $H(c^*(t-T)y), e^*(t-T)y) = \lambda(t-T) y$

(c) The critical tax rate
$$\hat{\tau}(g)$$
 is non-decreasing in g .
Hoof: $\hat{\tau}(y)$ solves $v^{r}(\tau, y) = v^{u}(\tau, y, N(\tau))$
where $v^{r}(\cdot)$ is the utility derived from private.
service and $v^{u}(\cdot)$ is the utility from public service
let $\hat{\tau} \perp \hat{\tau}'$ be the critical tax rates for agents
with income y and y' respectively.
Without loss of generality assume that
 $with income y$ and γ' respectively.
Without loss of generality assume that
to prove \cdot so suppose that $\hat{\tau}' < \hat{\tau}$
for the agent with income y' we have
 $V^{u}(\hat{\tau}', y', N(\hat{\tau}')) = V^{r}(\hat{\tau}', y')$
 $\Leftrightarrow U((i-\hat{\tau}')y', \hat{\tau}'\underline{\tau}') = U(c^{*}((i-\hat{\tau}')y'), e^{*}((-\hat{\tau}')y')))$
 $\Leftrightarrow H((i-\hat{\tau}')y', \hat{\tau}'\underline{\tau}) = H(c^{*}((i-\hat{\tau}')y'), e^{*}((-\hat{\tau}')y')))$
 $\Leftrightarrow H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(i-\hat{\tau}')y'}) = H(s_{c}, s_{e})$ (3)
 $\Leftrightarrow H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(i-\hat{\tau}')y'}) = H(after tax) income$
where s_{c} and s_{e} are the (after tax) income
shares of consumption and quality of education.

Since
$$\hat{\tau}' < \hat{\tau}$$
, for the agent with income y we
must have
 $V^{u}(\hat{\tau}', y, N(\hat{\tau}')) < V^{u}(\hat{\tau}, y, N(\hat{\tau}))$
 $= V^{r}(\hat{\tau}, y)$
 $= V^{r}(\hat{\tau}, y)$
This implies $H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y}) < H(S_{c}, S_{c})$
From (3) $H(S_{c}, S_{c}) = H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y'})$
 \therefore We should have
 $H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y}) < H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y'})$
However this is a contradiction since H is
increasing in both of its arguments.
 $[y'>y \Rightarrow \frac{1}{y} > \frac{1}{y'} \Rightarrow \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y} > H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y'})$
 \Rightarrow $H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y}) > H(1, \frac{\hat{\tau}'Y}{N(\hat{\tau}')(\hat{\tau}^{\hat{\tau}'})y'})$.