Competition between Private and Public schools, Vouchers and Peer Group effect

Dennis Epple Richard E.Romano

by Silu Muduli Indian Statistical Institute,Delhi

April 7,8, 2015

Epple ,Romano(1998) Private and Public Education Choice 1/26

Mathematical Concepts

- Set theoretic concepts
- Single crossing property
- · Lagrange multiplier
- Monopolistic Competition

Introduction

Theme of the paper

- A theoretical and computational model with tax-financed, tuition-free public schools and competitive, tuition-financed private schools is developed. Students differ by ability and income. Achievement depends on own ability and on peers' abilities.
- Equilibrium has a strict hierarchy of school qualities and two dimensional student sorting with stratification by ability and income. In private schools, high-ability, low-income students receive tuition discounts, while lowability, high-income students pay tuition premia. Tuition vouchers increase the relative size of the private sector and the extent of student sorting, and benefit high-ability students relative to low-ability students.

Introduction

A student in our model is then characterized by an ability and a household income (b, y), a draw from a continuous bivariate distribution.

A school's quality is determined by the mean ability of the student body θ , reflecting the model's peer-group effect. Two key elements of the educational process.

- First, students differ in their abilities. Higher ability is assumed to increase a student's educational achievement and that of peers in the school attended.
- Second, households differ in their incomes, with higher income increasing the demand for educational achievement.

Then we will have equilibrium with following characteristics:

- A hierarchy of school qualities will be present, with the set of (homogeneous) public schools having the lowest-ability peer group and a strict ability-group ranking of private schools.
- The equilibrium student bodies of schools correspond to a partition of the ability-income-type space of students with stratification by income and, in many cases, stratification by ability.

The Model

- Household income is denoted (y), and each household has a student of ability (b).
- The joint marginal distribution of ability and income in the population is denoted by f(b, y) and is assumed to be continuous and positive on its support $S = (0, b_{max}] \times (0, y_{max}].$
- All students attend a school since we assume that free public schooling is preferred to no schooling.
- Achievement $a = a(\theta, b)$, is a continuous and increasing function of student's ability and the mean ability of of the student body in the school attended, θ .
- Let y_t be after tax income and p tuition expenditure, the latter equal to zero if a public school attended.

The individuals have the following utility function U

$$U = U(y_t - p, a(\theta, b))$$

$$U_{y_t-p} > 0, U_a > 0, a_\theta > 0, a_b > 0$$

The achievement function captures the peer-group effect in our model. To maintain simplicity and highlight the role of peer groups, a school's quality is determined exclusively by the mean ability of its peer group.

The Model

Single Crossing condition on Income (SCI)

$$\frac{\partial \left(\frac{\partial U/\partial \theta}{\partial U/\partial p}\right)}{\partial y_t} > 0$$

single crossing in (θ, p) space.

Single Crossing condition on ability (SCA)

$$\frac{\partial \left(\frac{\partial U/\partial \theta}{\partial U/\partial y_t}\right)}{\partial b} > 0$$

single crossing in (θ, y_t) space.

Cost function

A school's costs depend only on the number of students it enrolls, since inputs vary only with size. All schools, public and private, have the simple cost function:

C(k) = V(k) + F

 $V'>0, \ V''>0$

Where k denote the number of attending students . Let k^* denote the "efficient scale"

$$k^* = argmin\left[\frac{C(k)}{k}\right]$$

Main characteristics of public schools are:

- Publicsector schooling is financed by a proportional income tax, *t*, paid by all households, whether or not the household's child attends school in the public sector.
- In equilibrium every public school will have same θ .(Why?)

Main characteristics of private schools are:

- Private-sector schools maximize profits, and there is free entry and exit.
- Student types are observable, implying that tuition and admission can be conditioned on ability and income as competition permits.

Moving towards solution

- Let $i \in \{0, 1, 2, 3, ..., n\}$, set of schools. 0 stands for public school.
- Let $p_i(b, y)$ denote the tuition necessary to enter the school *i*, with $p_0(b, y) = 0 \quad \forall (b, y)$.
- Let $\alpha_i(b, y) \in [0, 1]$ denote the proportion of type (b, y) in that school *i* admits.

Private school's profit maximisation problem

$$\max_{\theta_i, k_i, p_i(b, y), \alpha_i(b, y)} \pi_i \equiv \iint_S [p_i(b, y)\alpha_i(b, y)f(b, y)dbdy] - V(k_i) - F$$

subject to

j

$$\begin{split} \alpha_i(b,y) &\in [0,1] \forall (b,y) \\ \forall (b,y) \ U(y_t - p_i(b,y), a(\theta_i,b)) \geq \\ &\in \{0,1,2,\dots,n | j \neq i; \alpha_j > 0 \ is \ the \ optimal \ set \ of \ j\}} U(y_t - p_j(b,y), a(\theta_j,b)) \\ &\quad k_i = \iint_S \alpha_i(b,y) f(b,y) db dy \\ &\quad \theta_i = \frac{1}{k_i} \iint_S b \alpha_i(b,y) f(b,y) db dy. \end{split}$$

Equilibrium Conditions

UM(Utility Maximisation)

$$U^*(b,y) =$$

 $\max_{\substack{i \in \{0,1,2,...,n \mid \alpha_i > 0 \text{ is the optimal set of } i\} \\ \pi M(\text{Profit Maximization}):} U(y_t - p_i(b, y), a(\theta_i, b))$ $[\theta_i, k_i, p_i(b, y), \alpha_i(b, y)] \text{ satisfy above problem}. i \in \{1, 2, ..., n\}.$ $Z\pi(\text{Zero Profit}):$

 $\pi_i = 0 \ i \in \{1, 2, ..., n\}$

PSP(Public sector policy):

$$p_0(b, y) = 0 \forall (b, y)$$

$$\alpha_0(b, y) \in [0, 1] \forall (b, y)$$

$$k_0 = \iint_S \alpha_0(b, y) f(b, y) db dy$$

$$\theta_0 = \frac{1}{k_0} \iint_S b \alpha_0(b, y) f(b, y) db dy.$$

MC(Market clearance):

$$\sum_{i=0}^n \alpha_i(b,y) = 1 \ \forall (b,y)$$

Using UM ,the first-order conditions for private schools optimisation problem we have the following solutions

Solution to the private schools problem

$$U(y_t - p_i^*, a(\theta, b)) = U^*(b, y) \quad \forall (b, y)$$

 $\mathbf{2.}\forall(b,y)$

1

$$\alpha_i(b, y) = \begin{cases} 0 & \text{if } p_i^*(b, y, \theta_i) < V'(k_i) + \eta_i(\theta_i - b) \\ \in [0, 1] & \text{if } p_i^*(b, y, \theta_i) = V'(k_i) + \eta_i(\theta_i - b) \\ 1 & \text{if } p_i^*(b, y, \theta_i) > V'(k_i) + \eta_i(\theta_i - b) \end{cases}$$

where

$$\eta_i = \frac{1}{k_i} \iint_S \left[\frac{\partial p_i^*(b, y, \theta_i)}{\partial \theta_i} \alpha_i(b, y) f(b, y) db dy \right]$$

Effective marginal cost

$$MC_i(b) = V'(k_i) + \eta_i(\theta_i - b)$$

Interpretation:

- The term $\eta_i(\theta_i b)$ may be thought of as the marginal cost of admission operating via peer-group externality in school *i*.
- η_i equals to per student revenue change in school*i* deriving from achange in θ_i

Properties of Equilibrium

We now turn to the properties of equilibrium, assuming it exists. Proposition-I

A strict hierarchy of school qualities results, with the public sector having the lowest-ability peer group:

 $\theta_n > \theta_{n-1} > ... > \theta_2 > \theta_1 > \theta_0$ Proof:

If $\theta_i = \theta_j$, let's consider school *i*

 \rightarrow expel student (b_1, y_1) and admit student (b_2, y_2) such that

 $b_2 > b_1, y_2 > y_1$ with $y_2 - y_1 > b_2 - b_1$.

 $\rightarrow \theta_i$ increases without affecting the cost $C(k_i)$.

 \rightarrow Using SCI we can charge more to this individual and school can make profit.

This proposition leads to "diagonal stratification".

Before we going to proposition-II we will look after this division of S.

Admission space of school *i*:

 $A_{i} = \{(b, y) \in S | \alpha_{i}(b, y) > 0 \text{ is optimal} \} \forall i \in \{0, 1, 2, ..., n\}$ If $A_{i} \cap A_{j} \neq \phi$ for some $i \neq j$ then $\mu(A_{i} \cap A_{j}) = 0$ and $\bigcup_{i=0}^{n} A_{i} = S$ (Why?)

Properties of equilibrium

Proposition-II (i) On a boundary locus between school i and j, $p_i = MC_i(b)$ and $p_i = MC_i(b)$; pricing on the boundary loci is strictly according to ability in private schools. (ii) $p_i(b, y) > MC_i(b)$ for off boundary students who attend private school *i* pricing off boundary loci depends on income in private schools. (III) Every student attends a school that would maximize utility if all schools instead set p_i equal to equilibrium MC_i for all students. The allocation is as though effective marginal cost pricing prevails in private schools.

Properties of equilibrium

- Students are indifferent to attending the schools sharing the locus.
- Private schools then have no power to price discriminate with respect to income on boundary loci.
- Prices are, however, adjusted to differing abilities because private schools internalize the peer-group effect.
- Tuition to private school *i* decreases with ability at rate η_i along its boundary loci, reflecting the value of peer-group improvements of the school's student body.

Properties of Equilibrium

- Near a boundary in a school's admission space, a student's preference for the school attended would be slight under effective marginal-cost pricing, so that the admitting school can capture little rent.
- The number and sizes of private schools then determine their power to price discriminate over income.
- All private schools have student bodies less than k* by a similar argument to that in more standard monopolistically competitive equilibria.
- Zero profits then implies a scale below k^* . If we let k^* decline, then private schools become more numerous and less differentiated (have closer $\theta's$), and incomerelated price discrimination declines.

Stratification by Income(SBI).

This hold if for any two households having students of the same ability one household's choice for a higher $-\theta$ school implies it has weakly higher income than the other household.

Stratification by Ability(SBA)

This is present if,holding income fixed, the household that chooses a higher- θ school must have a student of weakly higher ability

Proposition-III

(i) SBI characterizes equilibrium. (ii) If preferences satisfy weak single crossing in ability (W-SCB) and $\eta_1 < \eta_2 < ... < \eta_n$, then SBA also characterizes equilibrium.

Properties of Equilibrium

Pareto efficiency conditions:

- (1)a student allocation that internalizes the peer-group externality given the number of schools.
- (2)Entry as long as aggregate household net willingness to pay for an allocation with one more school exceeds the change in all schools' costs.

Efficiency

Proposition-IV

(i) The allocation in a fully private equilibrium is (Pareto) efficient given the number of schools; the equilibrium number of schools is not, however, generally efficient.

(ii) The public-private-sector equilibrium has neither an efficient number of schools, nor an efficient student allocation given the number of schools.