Homework 1 (Class Test on 19 August 2024)

- 1. Check in each of the following cases whether the given set of vectors is linearly independent:
 - (a) $x^1 = (1,2), x^2 = (0,0);$
 - (b) $y^1 = (0, 1, -2), y^2 = (1, 1, 1); y^3 = (1, 2, 3).$
- 2. Let x, y and z be 3 linearly independent vectors in \mathbb{R}^n .
 - (a) Are the vectors (x y), (y z), (z x) linearly independent? Explain clearly.
 - (b) Are the vectors (x + y), (y + z), (z + x) linearly independent? Explain clearly.
- 3. Recall the Fundamental Theorem on Vector Spaces:

If each of the (m + 1) vectors $y^0, y^1, ..., y^m$ in \mathbb{R}^n can be expressed as a linear combination of the m vectors $x^1, x^2, ..., x^m$ in \mathbb{R}^n , then the vectors $y^0, y^1, ..., y^m$ are linearly dependent.

In what follows we will develop a proof of this theorem using the method of induction on m.

- (a) Initial Step: Prove that the theorem is true for m = 1.
- (b) Inductive Step: Assume that the theorem holds for m = k 1, and let us prove it for m = k.
 - By hypothesis we have each of the (k + 1) vectors, $y^0, y^1, ..., y^k$, can be expressed as a linear combination of the k vectors $x^1, x^2, ..., x^k$:

$$y^{0} = a_{10}x^{1} + a_{20}x^{2} + \dots + a_{k0}x^{k},$$

$$y^{1} = a_{11}x^{1} + a_{21}x^{2} + \dots + a_{k1}x^{k},$$

$$y^{2} = a_{12}x^{1} + a_{22}x^{2} + \dots + a_{k2}x^{k},$$

$$\dots$$

$$y^{k} = a_{1k}x^{1} + a_{2k}x^{2} + \dots + a_{kk}x^{k}.$$

We have to prove that the (k + 1) vectors, $y^0, y^1, ..., y^k$ are linearly dependent. If all a_{ij} are zero, the proof is immediate; so assume this is not the case. Then at least one number a_{ij} is not zero, say $a_{10} \neq 0$. Define

$$z^{1} \equiv y^{1} - \left(\frac{a_{11}}{a_{10}}\right) y^{0} = \left(a_{21} - \frac{a_{11}}{a_{10}}a_{20}\right) x^{2} + \dots + \left(a_{k1} - \frac{a_{11}}{a_{10}}a_{k0}\right) x^{k},$$

$$z^{2} \equiv y^{2} - \left(\frac{a_{12}}{a_{10}}\right) y^{0} = \left(a_{22} - \frac{a_{12}}{a_{10}}a_{20}\right) x^{2} + \dots + \left(a_{k2} - \frac{a_{12}}{a_{10}}a_{k0}\right) x^{k},$$

$$\dots$$

$$z^{k} \equiv y^{k} - \left(\frac{a_{1k}}{a_{10}}\right) y^{0} = \left(a_{2k} - \frac{a_{1k}}{a_{10}}a_{20}\right) x^{2} + \dots + \left(a_{kk} - \frac{a_{1k}}{a_{10}}a_{k0}\right) x^{k}.$$

- **Question:** Use the above construction to complete the inductive step.

4. Let S be a set of vectors in \mathbb{R}^2 defined as follows:

$$S = \left\{ (x_1, x_2) \text{ in } \mathbb{R}^2 \text{ such that } x_1 + x_2 = 4 \right\}$$

- (a) What is the rank of S? Explain clearly.
- (b) Find a basis of S, showing your procedure clearly.
- 5. Consider the set $S \subset \mathbb{R}^2$ defined as follows:

$$S = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 = 5 \}.$$

What is the rank of S? Explain clearly.

- 6. Let $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 = x_3\}$. Find a basis of S, showing your procedure clearly.
- 7. Let $x, y \in \mathbb{R}^n$.
 - (a) Prove that $|xy| \le ||x|| \cdot ||y||$ (Cauchy-Schwarz Inequality).
 - (b) Use (a) to prove that $||x + y|| \le ||x|| + ||y||$ (Triangle Inequality).
- 8. Let A be an $n \times n$ matrix, and let $A^1, A^2, ..., A^n$ denote the n column vectors of A. Define an $n \times n$ matrix B as follows:

$$b_{ij} = A^i A^j$$
 $i = 1, ..., n; j = 1, ..., n$

where b_{ij} is the element corresponding to the *i*th row and *j*th column of matrix *B*, and $A^i A^j$ denotes the inner product of the vectors A^i and A^j . Suppose *A* is non-singular. Does it follow that *B* is non-singular? Explain clearly.

9. (a) Suppose A is an $m \times n$ matrix and B is an $n \times r$ matrix. Show that

rank $(AB) \leq \min \{ \operatorname{rank} (A), \operatorname{rank} (B) \}.$

(b) Give an example of 2×2 matrices A and B such that

rank $(AB) \neq \min \{ \operatorname{rank} (A), \operatorname{rank} (B) \}$.

- (c) Prove that if a matrix of rank k is multiplied in either order (that is, either premultiplied or postmultiplied) by a nonsingular matrix, the rank of the product is k.
- 10. Let A be an $m \times n$ matrix. Row rank of A is the rank of the set of row vectors, $\{A_1, A_2, ..., A_m\}$. Column rank of A is the rank of the set of column vectors, $\{A^1, A^2, ..., A^n\}$. Let r = row rank of A, c = column rank of A.
 - (a) Suppose that r < c.

Reordering rows or columns of A does not affect its row or column rank. So choose a row basis for A which we may assume consists of the rows $\{A_1, A_2, ..., A_r\}$, and a column basis which we may assume consists of the columns $\{A^1, A^2, ..., A^c\}$.

(i) Let $\hat{A}_i = (a_{i1}, a_{i2}, ..., a_{ic})$ and consider the system of equations

$$A_i \cdot y = 0, \ i = 1, 2, ..., r.$$

Prove that this system of equations has a *nonzero* solution \bar{y} .

(ii) Since $\{A_1, A_2, ..., A_r\}$ is a row basis, it follows from the Basis Theorem that, for all k = 1, 2, ..., m, $A_k = \sum_{i=1}^r \mu_{ik} A_i$ for some real numbers μ_{ik} . Hence

$$\hat{A}_k = (a_{k1}, a_{k2}, ..., a_{kc}) = \sum_{i=1}^r \mu_{ik} \hat{A}_i,$$

and so

$$\hat{A}_k \cdot \bar{y} = \sum_{i=1}^r \mu_{ik} \left(\hat{A}_i \cdot \bar{y} \right) = 0, \text{ for all } k = 1, 2, ..., m.$$

Prove that this leads to a *contradiction* which shows that our supposition r < c is wrong, that is, it must be that $r \ge c$.

(b) Briefly sketch the argument that r = c.