Homework 1 (Class Test on 21 August 2023)

1. Check in each of the following cases whether the given set of vectors is linearly independent:
(a) $x^{1}=(1,2), x^{2}=(0,0)$;
(b) $y^{1}=(0,1,-2), y^{2}=(1,1,1) ; y^{3}=(1,2,3)$.
2. Let x, y and z be 3 linearly independent vectors in \mathbb{R}^{n}.
(a) Are the vectors $(x-y),(y-z),(z-x)$ linearly independent? Explain clearly.
(b) Are the vectors $(x+y),(y+z),(z+x)$ linearly independent? Explain clearly.
3. Recall the Fundamental Theorem on Vector Spaces:

If each of the $(m+1)$ vectors $y^{0}, y^{1}, \ldots, y^{m}$ in \mathbb{R}^{n} can be expressed as a linear combination of the m vectors $x^{1}, x^{2}, \ldots, x^{m}$ in \mathbb{R}^{n}, then the vectors $y^{0}, y^{1}, \ldots, y^{m}$ are linearly dependent.

In what follows we will develop a proof of this theorem using the method of induction on m.
(a) Initial Step: Prove that the theorem is true for $m=1$.
(b) Inductive Step: Assume that the theorem holds for $m=k-1$, and let us prove it for $m=k$.

- By hypothesis we have each of the $(k+1)$ vectors, $y^{0}, y^{1}, \ldots, y^{k}$, can be expressed as a linear combination of the k vectors $x^{1}, x^{2}, \ldots, x^{k}$:

$$
\begin{aligned}
y^{0}= & a_{10} x^{1}+a_{20} x^{2}+\ldots+a_{k 0} x^{k}, \\
y^{1}= & a_{11} x^{1}+a_{21} x^{2}+\ldots+a_{k 1} x^{k}, \\
y^{2}= & a_{12} x^{1}+a_{22} x^{2}+\ldots+a_{k 2} x^{k}, \\
& \ldots \\
y^{k}= & a_{1 k} x^{1}+a_{2 k} x^{2}+\ldots+a_{k k} x^{k} .
\end{aligned}
$$

We have to prove that the $(k+1)$ vectors, $y^{0}, y^{1}, \ldots, y^{k}$ are linearly dependent. If all $a_{i j}$ are zero, the proof is immediate; so assume this is not the case. Then at least one number $a_{i j}$ is not zero, say $a_{10} \neq 0$. Define

$$
\begin{aligned}
z^{1} \equiv & y^{1}-\left(\frac{a_{11}}{a_{10}}\right) y^{0}=\left(a_{21}-\frac{a_{11}}{a_{10}} a_{20}\right) x^{2}+\ldots+\left(a_{k 1}-\frac{a_{11}}{a_{10}} a_{k 0}\right) x^{k}, \\
z^{2} \equiv & y^{2}-\left(\frac{a_{12}}{a_{10}}\right) y^{0}=\left(a_{22}-\frac{a_{12}}{a_{10}} a_{20}\right) x^{2}+\ldots+\left(a_{k 2}-\frac{a_{12}}{a_{10}} a_{k 0}\right) x^{k}, \\
& \ldots \\
z^{k} \equiv & y^{k}-\left(\frac{a_{1 k}}{a_{10}}\right) y^{0}=\left(a_{2 k}-\frac{a_{1 k}}{a_{10}} a_{20}\right) x^{2}+\ldots+\left(a_{k k}-\frac{a_{1 k}}{a_{10}} a_{k 0}\right) x^{k} .
\end{aligned}
$$

- Question: Use the above construction to complete the inductive step.

4. Let S be a set of vectors in \mathbb{R}^{2} defined as follows:

$$
S=\left\{\left(x_{1}, x_{2}\right) \text { in } \mathbb{R}^{2} \text { such that } x_{1}+x_{2}=4\right\} .
$$

(a) What is the rank of S ? Explain clearly.
(b) Find a basis of S, showing your procedure clearly.
5. Consider the set $S \subset \mathbb{R}^{2}$ defined as follows:

$$
S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}=5\right\} .
$$

What is the rank of S ? Explain clearly.
6. Let $x, y \in \mathbb{R}^{n}$.
(a) Prove that $|x y| \leq\|x\| \cdot\|y\|$ (Cauchy-Schwarz Inequality).
(b) Use (a) to prove that $\|x+y\| \leq\|x\|+\|y\|$ (Triangle Inequality).
7. Let A be an $n \times n$ matrix, and let $A^{1}, A^{2}, \ldots, A^{n}$ denote the n column vectors of A. Define an $n \times n$ matrix B as follows:

$$
b_{i j}=A^{i} A^{j} \quad i=1, \ldots, n ; j=1, \ldots, n
$$

where $b_{i j}$ is the element corresponding to the i th row and j th column of matrix B, and $A^{i} A^{j}$ denotes the inner product of the vectors A^{i} and A^{j}. Suppose A is non-singular. Does it follow that B is non-singular? Explain clearly.
8. (a) Suppose A is an $m \times n$ matrix and B is an $n \times r$ matrix. Show that

$$
\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}
$$

(b) Give an example of 2×2 matrices A and B such that

$$
\operatorname{rank}(A B) \neq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}
$$

(c) Prove that if a matrix of rank k is multiplied in either order (that is, either premultiplied or postmultiplied) by a nonsingular matrix, the rank of the product is k.
9. Let A be an $m \times n$ matrix. Row rank of A is the rank of the set of row vectors, $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$. Column rank of A is the rank of the set of column vectors, $\left\{A^{1}, A^{2}, \ldots, A^{n}\right\}$. Let $r=$ row rank of $A, c=$ column rank of A.
(a) Suppose that $\boldsymbol{r}<\boldsymbol{c}$.

Reordering rows or columns of A does not affect its row or column rank. So choose a row basis for A which we may assume consists of the rows $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$, and a column basis which we may assume consists of the columns $\left\{A^{1}, A^{2}, \ldots, A^{c}\right\}$.
(i) Let $\hat{A}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i c}\right)$ and consider the system of equations

$$
\hat{A}_{i} \cdot y=0, i=1,2, \ldots, r
$$

Prove that this system of equations has a nonzero solution \bar{y}.
(ii) Since $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ is a row basis, it follows from the Basis Theorem that, for all $k=1,2, \ldots, m, A_{k}=\sum_{i=1}^{r} \mu_{i k} A_{i}$ for some real numbers $\mu_{i k}$. Hence

$$
\hat{A}_{k}=\left(a_{k 1}, a_{k 2}, \ldots, a_{k c}\right)=\sum_{i=1}^{r} \mu_{i k} \hat{A}_{i},
$$

and so

$$
\hat{A}_{k} \cdot \bar{y}=\sum_{i=1}^{r} \mu_{i k}\left(\hat{A}_{i} \cdot \bar{y}\right)=0, \text { for all } k=1,2, \ldots, m
$$

Prove that this leads to a contradiction which shows that our supposition $r<c$ is wrong, that is, it must be that $r \geq c$.
(b) Briefly sketch the argument that $r=c$.

