
Math 271: Mathematical Methods Tridip Ray
Semester I, 2024-25 ISI, Delhi

Homework 2 (Class Test on 02 September)

1. Consider a system of m simultaneous linear equations in n unknowns, Ax = c, where

Am×n =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , xn×1 =


x1

x2
...

xn

 , cm×1 =


c1

c2
...

cm

 .

Prove that the system of equations will have a solution for every choice of right-hand

side (c1, c2, ..., cm) if and only if

rank (A) = number of rows of A.

2. For the same system of m simultaneous linear equations in n unknowns, Ax = c, as in

Problem 1 above, suppose that the number of equations < the number of unknowns.

Prove that

(a) Ax = 0 has infinitely many solutions;

(b) for any given c, Ax = c has 0 or infinitely many solutions;

(c) if rank (A) = number of equations, Ax = c has infinitely many solutions for every

choice of right-hand side (c1, c2, ..., cm) .

3. Consider a system of m simultaneous linear equations in n unknowns, Ax = c, as in

the above two problems.

(a) Prove that the system of equations must have either no solution, one solution, or

infinitely many solutions.

(b) Prove that the system of equations will have at most one solution for every choice

of right-hand side (c1, c2, ..., cm) if and only if

rank (A) = number of columns of A.
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(c) Prove that the system of equations has one and only one solution for every choice

of right-hand side (c1, c2, ..., cm) if and only if

number of rows of A = number of columns of A = rank (A) .

• A general linear model will have m equations in n variables:

a11x1 + a12x2+ · · · +a1nxn = c1,
...

...
...

am1x1 + am2x2+ · · · +amnxn = cm.

(1)

The variables whose values are determined by the system of equations (1) are called

endogenous variables. On the other hand, the variables whose values are determined

outside of system (1) are called exogenous variables. The division of the n variables

into endogenous and exogenous variables will be successful only if, after choosing values

for the exogenous variables and plugging them into system (1), one can then uniquely

solve the system for the endogenous variables.

(d) Let x1, x2, ..., xk and xk+1, xk+2, ..., xn be a partition of the n variables in (1) into

endogenous and exogenous variables, respectively. Provide, with clear explana-

tions, the necessary and suffi cient conditions so that there is, for each choice

of values x0k+1, x
0
k+2, ..., x

0
n for the exogenous variables, a unique set of values

x01, x
0
2, ..., x

0
k for the endogenous variables which solves (1).

4. Let A be an m× n matrix, and let c be a vector in Rm. Prove that exactly one of the
following two alternatives holds.

Either the system of equations Ax = c has a solution,

or, the system of equations yA = 0 and yc = 1 has a solution.

5. Consider the matrix

A =

(
2
√
2

√
2 1

)
.

(a) Find the eigenvalues and the normalized eigenvectors of A.

(b) Use this example to verify the Spectral Decomposition Theorem, that is, matrix

A can be decomposed into a matrix L consisting of its eigenvalues on the diagonal

and the matrices B and BT consisting of its eigenvectors.
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6. We have so far studied the Spectral Decomposition Theorem for symmetric matrices

with distinct eigenvalues. The theorem can be extended to accommodate non-distinct

eigenvalues as follows.

• Let A be an n×n symmetric matrix with eigenvalues, λ1, λ2, ..., λn. In this listing,
an eigenvalue is repeated a number of times equal to its multiplicity. Thus, if one

eigenvalue has multiplicity k, there will be k eigenvalues with the same numerical

value.

• Theorem (Spectral Decomposition):

Let A be an n × n symmetric matrix with eigenvalues, λ1, λ2, ..., λn. Even if

A has multiple eigenvalues, there exists a nonsingular matrix B whose columns

y1, y2, ..., yn are eigenvectors of A such that

(i) y1, y2, ..., yn are mutually orthogonal to each other,

(ii) B−1 = BT , and

(iii) BTAB = L, where L is the diagonal matrix with the eigenvalues of A

(λ1, λ2, ..., λn) on its diagonal.

• Question:

Let A be an n × n symmetric matrix. Show that if 0 is an eigenvalue of A of

multiplicity k, then rank (A) = n− k.

7. In this problem you will prove, using the method of induction, the following theorem:

Let λ1, λ2, ..., λk be k distinct eigenvalues of the n×n matrix A. Let x1, x2, ..., xk be
the corresponding eigenvectors. Then, x1, x2, ..., xk are linearly independent vectors.

[Note that A may not be a symmetric matrix.]

(a) Initial step: Prove that the theorem is true for k = 2.

(b) Inductive step: Define the inductive step carefully and then prove it to complete

the proof of the theorem.

8. Theorem: Let A be a symmetric n × n matrix. A is negative definite if and only if

all its n leading principal minors alternate in sign, starting with negative. (That is,

the r-th leading principal minor, Ar, r = 1, 2, ..., n, has the same sign as (−1)r .)

In the following steps we will prove this theorem. The proof has two major ingredi-
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ents: the principal of induction and the theory of partitioned matrices. First a brief

introduction to the theory of partitioned matrices.

• Partitioned Matrices: Let A be a m × n matrix. A submatrix of A is a matrix

formed by discarding some entire rows and/or columns of A. A partitioned matrix is a

matrix which has been partitioned into submatrices by horizontal and/or vertical lines

which extend along entire rows or columns of A. For example,

A =


a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

 ,

which we can write as

A =

(
A11 A12 A13

A21 A22 A23

)
.

Each submatrix Aij is called a block of A.

Suppose that A and B are two m× n matrices which are partitioned in the same way,
that is,

A =

(
A11 A12 A13

A21 A22 A23

)
and B =

(
B11 B12 B13

B21 B22 B23

)
where A11 and B11 have the same dimensions, A12 and B12 have the same dimensions,

and so on. Then A and B can be added as if the blocks are scalar entries:

A+B =

(
A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

)
.

Similarly, two partitioned matrices A and C can be multiplied, treating the blocks as

scalars, if the blocks are all of a size such that the matrix multiplication of blocks can

be done. For example, if

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12 B13

B21 B22 B23

)
,

then

AB =

(
A11B11 + A12B21 A11B12 + A12B22 A11B13 + A12B23

A21B11 + A22B21 A21B12 + A22B22 A21B13 + A22B23

)
so long as the various matrix products AijBjk can be formed. For example, A11 must

have as many columns as B11 has rows, and so on.
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• Next we need two lemmas.

—Lemma 1: If A is a positive or negative definite matrix, then A is nonsingular.

—Lemma 2: Suppose that A is a symmetric matrix and that Q is a nonsingular

matrix. Then, QTAQ is a symmetric matrix, and A is positive (negative) definite

if and only if QTAQ is positive (negative) definite.

• Now we proceed to prove the theorem by using induction on the size n of A. The result
is trivially true for 1× 1 matrices. It is straightforward to verify the theorem (you do

not have to do it) directly for 2 × 2 symmetric matrices by completing the square in
the corresponding quadratic form on R2:

f (x1, x2) = (x1, x2)

(
a b

b c

)(
x1

x2

)
= ax21 + 2bx1x2 + cx22.

So we will suppose that the theorem is true for n× n matrices and prove it to be true
for (n+ 1)× (n+ 1) matrices.

• Let A be an (n+ 1)×(n+ 1) symmetric matrix. Write Aj for the j×j leading principal
submatrix of A for j = 1, 2, ..., n+ 1. By the inductive hypothesis the theorem is true

for n× n matrices. In part (a) we will prove that if sign of |Ar| is the same as (−1)r ,
r = 1, 2, ..., n + 1, then A is negative definite. In part (b) we will prove the converse:

A is negative definite implies that sign of |Ar| is the same as (−1)r , r = 1, 2, ..., n+ 1.

(a) The inductive hypothesis is given, and assume that sign of |Ar| is the same as (−1)r ,
r = 1, 2, ..., n+ 1.

(i) Argue that An is invertible.

—Partition A as

A =

(
An a

aT an+1,n+1

)
, where a =


a1,n+1
...

an,n+1

 .

Let d = an+1,n+1 − aT (An)−1 a, let In denote the n × n identity matrix, and let
0n denote the n× 1 column vector of all 0s.

(ii) Verify that

A =

(
In 0n

(A−1n a)
T

1

)(
An 0n

0Tn d

)(
In A−1n a

0Tn 1

)
≡ QTBQ.
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(iii) Show that |A| = d · |An| , and argue that d < 0.

(iv) Let X be an arbitrary (n+ 1)-vector. Write X =

(
x

xn+1

)
, where x is an n-

vector.

Argue that XTBX = xTAnx+ d · (xn+1)2 < 0.

(v) Conclude that A is negative definite.

(b) The inductive hypothesis is given, and assume that A is negative definite. (Note that

A is (n+ 1)× (n+ 1)).

(i) Prove that An is negative definite.

(ii) Argue that sign of |Ar| is the same as (−1)r , r = 1, 2, ..., n.

— So we need to prove only that the sign of determinant of A itself is (−1)n+1.

— Since An is invertible, we can once again write A as QTBQ as in part (a) (ii) and

conclude that |A| = d · |An| still holds.

(iii) Argue that B is negative definite.

(iv) Choose X suitably in part (a) (iv) to show that d < 0.

(v) Conclude that the sign of |A| is (−1)n+1, that is, sign of |Ar| is the same as (−1)r ,
r = 1, 2, ..., n+ 1.
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