
Math 271: Mathematical Methods Tridip Ray
Semester I, 2024-25 ISI, Delhi

Homework 4 (Class Test on 30 September)

1. In this question we will prove the following version of the Bolzano-Weierstrass Theorem:

Any sequence contained in a compact interval of R, [a, b] , has a convergent subsequence
whose limit lies in [a, b] .

—Let {xn}∞n=1 be a sequence contained in [a, b] . Divide [a, b] into two equal halves:[
a,
a+ b

2

]
and

[
a+ b

2
, b

]
.

(a) Argue that infinitely many elements of the sequence {xn}∞n=1 must lie in one (or
both) of these halves.

—Let I1 denote a half which contains infinitely many members of the sequence. Now

divide subinterval I1 into two equal halves. Call the half which contains infinitely

many elements of the sequence I2. Continue dividing the interval into halves; each

time choose a half which contains infinitely many elements of the sequence. The

result of continuing this process indefinitely is a sequence of intervals {Ik}∞k=1 , with
Ik+1 ⊂ Ik. Construct a subsequence {xnk}

∞
k=1 of {xn}

∞
n=1 by choosing xnk ∈ Ik.

Since each Ik contains infinitely many xn’s, we can ensure that {xnk}
∞
k=1 really is

an (infinite) subsequence of {xn}∞n=1 .

(b) Prove that the subsequence {xnk}
∞
k=1 has a limit.

(c) Prove that this limit lies in [a, b] .

2. The Bolzano-Weierstrass Theorem has a converse.

—Let S be a subset of Rn with the property that any sequence in S has a convergent
subsequence with limit in S. Prove that S is closed and bounded.

3. Suppose f : <2+ → < is defined by

f (x, y) =

 0, when (x, y) = (0, 0)
2xy

(x2 + y2)
, otherwise.

Show that f is not continuous at (0, 0) .
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4. Let f = (f 1, f 2, ..., fm) be a function from <n to <m. Then f is continuous at x if and
only if each of its component functions f i : <n → < is continuous at x.

5. (a) Prove carefully that h : <k → < defined by

h (x1, x2, ..., xk) = xi

is continuous on <k.

(b) Use (a) to prove that any monomial

g (x1, x2, ..., xk) = cxn11 x
n2
2 ...x

nk
k

is continuous on <k, and that any polynomial from <k to <m is continuous on <k.

6. Suppose that f : <k → < is a continuous function and that f (x∗) > 0. Show that

there is a ball B = Bδ (x
∗) such that f (x) > 0 for all x ∈ B.

7. Let A ⊂ R and f : A→ R.

Continuity: f is continuous at every point y ∈ A if given any ε > 0 and any y ∈
A, there is a δ (ε, y) > 0 such that for all x if x ∈ A and |x− y| < δ (ε, y) , then

|f (x)− f (y)| < ε. By writing δ as a function of ε and y, δ (ε, y), it is emphasized that,

in general, δ depends on both ε > 0 and y ∈ A.

Now it often happens that the function f is such that the number δ can be chosen to

be independent of the point y ∈ A and to depend only on ε. For example, if f(x) = 2x
for all x ∈ R, then

|f (x)− f (y)| = 2 |x− y| ,

and so we can choose δ (ε, y) = ε
2
for all ε > 0 and all y ∈ R.

Uniform Continuity: We say that f is uniformly continuous on A if given any ε > 0

there is a δ (ε) > 0 such that if x, y ∈ A are any numbers satisfying |x− y| < δ (ε) ,

then |f (x)− f (y)| < ε.

(a) Argue that if f is not uniformly continuous on A, then there exists an ε0 > 0 such

that for every δ > 0 there are points xδ and yδ in A such that |xδ − yδ| < δ and

|f (xδ)− f (yδ)| ≥ ε0.

(b) Argue that if f is not uniformly continuous on A, then there exists an ε0 > 0 and two

sequences {xn} and {yn} in A such that |xn − yn| < 1
n
and |f (xn)− f (yn)| ≥ ε0 for

all n ∈ N.
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(c) Prove the following theorem:

Let I be a closed and bounded interval and let f : I → R be continuous on I. Then f
is uniformly continuous on I.

8. • A set S of real numbers is bounded if and only if there exists a real number K
such that |x| ≤ K for any x ∈ S.

• Continuum Property: Every non-empty set of real numbers which is bounded

above has a smallest upper bound. Every non-empty set of real numbers which

is bounded below has a largest lower bound.

— The smallest upper bound is called the supremum of the set.

— The largest lower bound is called the infimum of the set.

• We say that a sequence {xn} diverges to +∞ and write {xn} → +∞ as n → ∞
if, for any H > 0, we can find an N such that, for any n > N, xn > H.

• Recall the Bolzano-Weierstrass Theorem: Let C be a compact subset in < and
let {xn} be any sequence in C. Then {xn} has a convergent subsequence whose
limit lies in C.

(a) Let S be a non-empty set of real numbers which is bounded above. Show that a

sequence of points of S can be found which converges to its supremum.

(b) Let S be a non-empty set of real numbers which is unbounded above. Show that

a sequence of points of S can be found which diverges to +∞.

(c) Let f be a continuous function on the compact interval [a, b] . Prove that f is

bounded on [a, b] .

(d) Let f be a continuous function on the compact interval [a, b] . Prove that there

exist points xm and xM in [a, b] such that f (xm) ≤ f (x) ≤ f (xM) , for all

x ∈ [a, b] .

3


