Homework 4 (Class Test on 06 October)

1. In this question we will prove the following version of the Bolzano-Weierstrass Theorem: Any sequence contained in a compact interval of $\mathbb{R},[a, b]$, has a convergent subsequence whose limit lies in $[a, b]$.

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence contained in $[a, b]$. Divide $[a, b]$ into two equal halves: $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$.
(a) Argue that infinitely many elements of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ must lie in one (or both) of these halves.
- Let I_{1} denote a half which contains infinitely many members of the sequence. Now divide subinterval I_{1} into two equal halves. Call the half which contains infinitely many elements of the sequence I_{2}. Continue dividing the interval into halves; each time choose a half which contains infinitely many elements of the sequence. The result of continuing this process indefinitely is a sequence of intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$, with $I_{k+1} \subset I_{k}$. Construct a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ by choosing $x_{n_{k}} \in I_{k}$. Since each I_{k} contains infinitely many x_{n} 's, we can ensure that $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ really is an (infinite) subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
(b) Prove that the subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ has a limit.
(c) Prove that this limit lies in $[a, b]$.

2. The Bolzano-Weierstrass Theorem has a converse.

- Let S be a subset of \mathbb{R}^{n} with the property that any sequence in S has a convergent subsequence with limit in S. Prove that S is closed and bounded.

3. Suppose $f: \Re_{+}^{2} \rightarrow \Re$ is defined by

$$
f(x, y)= \begin{cases}0, & \text { when }(x, y)=(0,0) \\ \frac{2 x y}{\left(x^{2}+y^{2}\right)}, & \text { otherwise }\end{cases}
$$

Show that f is not continuous at $(0,0)$.
4. Let $f=\left(f^{1}, f^{2}, \ldots, f^{m}\right)$ be a function from \Re^{n} to \Re^{m}. Then f is continuous at x if and only if each of its component functions $f^{i}: \Re^{n} \rightarrow \Re$ is continuous at x.
5. (a) Prove carefully that $h: \Re^{k} \rightarrow \Re$ defined by

$$
h\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

is continuous on \Re^{k}.
(b) Use (a) to prove that any monomial

$$
g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=c x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}
$$

is continuous on \Re^{k}, and that any polynomial from \Re^{k} to \Re^{m} is continuous on \Re^{k}.
6. Suppose that $f: \Re^{k} \rightarrow \Re$ is a continuous function and that $f\left(x^{*}\right)>0$. Show that there is a ball $B=B_{\delta}\left(x^{*}\right)$ such that $f(x)>0$ for all $x \in B$.
7. Consider the following constrained maximization problem:

$$
\left.\begin{array}{ll}
\underset{x \in \Re_{+}^{n}}{\operatorname{Maximize}} & \|x\| \\
\text { subject to } & \sum_{i=1}^{n} x_{i} \leq 1
\end{array}\right\}
$$

Does this problem have a solution? Provide a rigorous argument for your answer.
8. - A set S of real numbers is bounded if and only if there exists a real number K such that $|x| \leq K$ for any $x \in S$.

- Continuum Property: Every non-empty set of real numbers which is bounded above has a smallest upper bound. Every non-empty set of real numbers which is bounded below has a largest lower bound.
- The smallest upper bound is called the supremum of the set.
- The largest lower bound is called the infimum of the set.
- We say that a sequence $\left\{x_{n}\right\}$ diverges to $+\infty$ and write $\left\{x_{n}\right\} \rightarrow+\infty$ as $n \rightarrow \infty$ if, for any $H>0$, we can find an N such that, for any $n>N, x_{n}>H$.
- Recall the Bolzano-Weierstrass Theorem: Let C be a compact subset in \Re and let $\left\{x_{n}\right\}$ be any sequence in C. Then $\left\{x_{n}\right\}$ has a convergent subsequence whose limit lies in C.
(a) Let S be a non-empty set of real numbers which is bounded above. Show that a sequence of points of S can be found which converges to its supremum.
(b) Let S be a non-empty set of real numbers which is unbounded above. Show that a sequence of points of S can be found which diverges to $+\infty$.
(c) Let f be a continuous function on the compact interval $[a, b]$. Prove that f is bounded on $[a, b]$.
(d) Let f be a continuous function on the compact interval $[a, b]$. Prove that there exist points x_{m} and x_{M} in $[a, b]$ such that $f\left(x_{m}\right) \leq f(x) \leq f\left(x_{M}\right)$, for all $x \in[a, b]$.

