Homework 5 (Class Test on 16 October)

1. Let f be a real-valued function defined on an open interval I in \mathbb{R} which contains the point x_{0}. Prove rigorously that if f is differentiable at x_{0}, then f is continuous at x_{0}.
2. Prove that the product of homogeneous functions is homogeneous.
3. If $y=f\left(x_{1}, x_{2}\right)$ is C^{2} and homogeneous of degree r, show that

$$
x_{1}^{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}+2 x_{1} x_{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+x_{2}^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}=r(r-1) f .
$$

4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x+e^{y}, y+e^{-x}\right)$ for $x, y \in \mathbb{R}^{2}$. Show that f is everywhere locally invertible.
5. One solution of the system

$$
\begin{array}{r}
x^{3} y-z=1, \\
x+y^{2}+z^{3}=6
\end{array}
$$

is $x=1, y=2, z=1$. Use calculus to estimate the corresponding x and y when $z=1.1$.
6. Consider the system of equations

$$
\begin{aligned}
& y^{2}+2 u^{2}+v^{2}-x y=15, \\
& 2 y^{2}+u^{2}+v^{2}+x y=38
\end{aligned}
$$

at the solution $x=1, y=4, u=1, v=-1$. Think of u and v as exogenous and x and y as endogenous. Use calculus to estimate the values of x and y that correspond to $u=0.9$ and $v=-1.1$.
7. Does the system

$$
\begin{aligned}
x z^{3}+y^{2} v^{4} & =2 \\
x z+y v z^{2} & =2
\end{aligned}
$$

define v and z as C^{1} functions of x and y around the point $(1,1,1,1)$? If so, find $\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ there.
8. Consider the system of equations

$$
\begin{aligned}
x+2 y+z & =5 \\
3 x^{2} y z & =12,
\end{aligned}
$$

as defining some endogenous variables in terms of some exogenous variables.
(a) Divide the three variables into exogenous ones and endogenous ones in a neighbourhood of $x=2, y=1, z=1$ so that the Implicit Function Theorem applies.
(b) If each of the exogenous variables in your answer to (a) increase by 0.25 , use calculus to estimate how each of the endogenous variables will change.
9. A firm uses two inputs to produce its output via the Cobb-Douglas production function $z=x^{a} y^{b}$, where $a=b=0.5$. Its current level of inputs is $x=25, y=100$. The firm will introduce a new technology that will change the b-exponent on its production function to $b=0.504$, with no change in a.

Use calculus to estimate the input combination which will keep the total output the same and the sum of inputs the same.
10. Consider the linear system of equations $A x=b$ where A is an $m \times n$ matrix, $x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$. We have the following two results.

- The system of equations has a solution for every right-hand side b if and only if $m \leq n$ and the rank of A is m.
- The system of equations has at most one solution for every right-hand side b if and only if $m \geq n$ and the rank of A is n.
- Definitions: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if for every b in \mathbb{R}^{m} there is at least one x in \mathbb{R}^{n} such that $f(x)=b$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if for every b in \mathbb{R}^{m} there is at most one x in \mathbb{R}^{n} such that $f(x)=b$.
- Definitions: Let x_{0} be a point in the domain of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $f\left(x_{0}\right)=b_{0}$.
- f is locally onto at x_{0} if, given any open ball $B_{r}\left(x_{0}\right)$ about x_{0} in \mathbb{R}^{n}, there is an open ball $B_{s}\left(b_{0}\right)$ about b_{0} in \mathbb{R}^{m} such that for every b in $B_{s}\left(b_{0}\right)$ there is at least one x in $B_{r}\left(x_{0}\right)$ such that $f(x)=b$.
- f is locally one-to-one at x_{0} if, given any open ball $B_{r}\left(x_{0}\right)$ about x_{0} in \mathbb{R}^{n}, there is an open ball $B_{s}\left(b_{0}\right)$ about b_{0} in \mathbb{R}^{m} such that for every b in $B_{s}\left(b_{0}\right)$ there is at most one x in $B_{r}\left(x_{0}\right)$ such that $f(x)=b$.
(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a C^{1} function with $f\left(x^{*}\right)=b^{*}$. Let $D f\left(x^{*}\right)$ denote the $m \times n$ Jacobian matrix of f at x^{*}.
(i) Prove that if $\operatorname{rank}\left(D f\left(x^{*}\right)\right)=m \leq n$, then f is locally onto at x^{*}.
(ii) Prove that if $\operatorname{rank}\left(D f\left(x^{*}\right)\right)=n \leq m$, then f is locally one-to-one at x^{*}.
(b) Prove the following theorem.
(Inverse Function Theorem) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function with $f\left(x^{*}\right)=y^{*}$. If $D f\left(x^{*}\right)$ is nonsingular then there exists an open ball $B_{r}\left(x^{*}\right)$ about x^{*} and an open set V about y^{*} such that f is a one-to-one and onto map from $B_{r}\left(x^{*}\right)$ to V. The inverse $\operatorname{map} f^{-1}: V \rightarrow B_{r}\left(x^{*}\right)$ is also C^{1} and $D f^{-1}\left(f\left(x^{*}\right)\right)=\left(D f\left(x^{*}\right)\right)^{-1}$.

