Homework 6 (Class Test on 19 October)

1. [Proof of Intermediate Value Theorem]

Consider the following version of the intermediate value theorem:
Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say $f(a)<f(b)$. Then, given any $y \in \Re$ such that $f(a)<y<$ $f(b)$, there exists $x \in(a, b)$ such that $f(x)=y$.

Proof: We use the divide and conquer method. We repeatedly bisect the interval, retaining the half that might contain a solution.

- We consider a sequence of intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots$ where
- $\left[a_{1}, b_{1}\right]$ is the original interval $[a, b]$,
- $\left[a_{2}, b_{2}\right]$ is one of the halves $\left[a, \frac{a+b}{2}\right]$ or $\left[\frac{a+b}{2}, b\right]-$ chosen so that $f\left(a_{2}\right)<$ $y<f\left(b_{2}\right)$. Of course, if $f\left(\frac{a+b}{2}\right)=y$, then we are done. Otherwise either $f\left(\frac{a+b}{2}\right)<y$, in which case we choose $\left[\frac{a+b}{2}, b\right]$, or $f\left(\frac{a+b}{2}\right)>y$, in which case we choose $\left[a, \frac{a+b}{2}\right]$.
- Iterating this process we obtain either the solution we seek or a pair of sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots such that $f\left(a_{n}\right)<y<f\left(b_{n}\right)$, where $b_{n}-a_{n}=$ $2^{1-n}(b-a)$.
- Definition (Cauchy Sequence): A sequence of real numbers $\left\{x_{n}\right\}$ is a Cauchy sequence if for any $\epsilon>0$, there exists an integer N such that, for all $i, j \geq N$, $\left|x_{i}-x_{j}\right|<\epsilon$.
- Theorem: Any Cauchy sequence of real numbers converges.
[If you are interested, read section 29.1 (pages 803 - 806) of the textbook.]
(a) Prove that both the sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots constructed above are Cauchy sequences and converge to a common limit, say x.
(b) Use part (a) and the continuity of f to prove the intermediate value theorem.

2. [Alternative Proof of Intermediate Value Theorem]

(a) Prove the following proposition:

Let f be a real-valued function defined on an interval S in \Re. Assume that f is continuous at a point c in S and that $f(c) \neq 0$. Then there is an open ball $B_{\delta}(c)$ such that $f(x)$ has the same sign as $f(c)$ in $B_{\delta}(c) \cap S$.
(b) Prove the following theorem:

Let f be a real-valued and continuous function on a compact interval $[\alpha, \beta]$ in \Re, and suppose that $f(\alpha)$ and $f(\beta)$ have opposite signs. Then there is at least one point γ in the open interval (α, β) such that $f(\gamma)=0$.

- Hints: For definiteness, assume $f(\alpha)>0$ and $f(\beta)<0$. Define the set

$$
A=\{x: x \in[\alpha, \beta] \text { and } f(x) \geq 0\} .
$$

Then A is nonempty since $\alpha \in A$, and A is bounded above by β. Let $\gamma=$ supremum of A. Then $\alpha<\gamma<\beta$. Prove that $f(\gamma)=0$. [Suppose not, and then use (a) to come up with a contradiction.]
(c) Use (b) to prove the following version of the intermediate value theorem:

Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say $f(a)<f(b)$. Then, given any $y \in \Re$ such that $f(a)<y<f(b)$, there exists $x \in(a, b)$ such that $f(x)=y$.
3. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function on $[a, b]$. Prove that there exists some $\beta \in[a, b]$ such that $f(\beta)=\beta$.
4. Let f be a convex function on the interval I and x_{1}, x_{2} and x_{3} be points of I which satisfy $x_{1}<x_{2}<x_{3}$.

Prove that

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

5. If a and b are arbitrary positive real numbers, show that

$$
a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b, \text { for every } 0<\theta<1
$$

6. Prove the following proposition (Jensen's Inequality):

Suppose A is a convex set in \Re^{n} and $f: A \rightarrow \Re$ is a concave function. Then, for any integer $m>1$,

$$
f\left(\sum_{i=1}^{m} \theta_{i} x^{i}\right) \geq \sum_{i=1}^{m} \theta_{i} f\left(x^{i}\right)
$$

whenever $x^{1}, x^{2}, \ldots, x^{m} \in A,\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in \Re_{+}^{m}$ and $\sum_{i=1}^{m} \theta_{i}=1$.
7. Let $f: \Re^{2} \rightarrow \Re$ be a quasi-concave function. Let I be the closed interval $[0,1]$. Let a, b be two arbitrary given vectors in \Re^{2}. Define a function $g: I \rightarrow \Re$ by $g(t)=$ $f(t a+(1-t) b)$. Prove that g is a quasi-concave function on I.
8. Suppose A is a convex set in \Re^{n} and $f: A \rightarrow \Re$. Prove that the following two statements are equivalent to each other:
(a) $f\left(x^{2}\right) \geq f\left(x^{1}\right)$ implies $f\left(\theta x^{1}+(1-\theta) x^{2}\right) \geq f\left(x^{1}\right)$ whenever $x^{1}, x^{2} \in A$, and $0 \leq \theta \leq 1 ;$
(b) For every $\alpha \in \Re$, the set $S(\alpha)=\{x \in A: f(x) \geq \alpha\}$ is a convex set in \Re^{n}.
9. Recall the following characterization of twice differentiable quasi-concave functions.

Let $A \subset \mathbb{R}^{n}$ be an open convex set, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. The bordered Hessian matrix of f at $x \in A$ is denoted by $G_{f}(x)$ and is defined by the following $(n+1) \times(n+1)$ matrix:

$$
G_{f}(x)=\left(\begin{array}{cc}
0 & \nabla f(x) \\
\nabla f(x) & H_{f}(x)
\end{array}\right)
$$

We denote the $(k+1)$ th leading principal minor of $G_{f}(x)$ by $\left|G_{f}(x ; k)\right|$, where $k=$ $1,2, \ldots, n$.

Theorem: Suppose $A \subset \Re^{n}$ is an open convex set, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A.
(i) If f is quasi-concave on A, then $(-1)^{k}\left|G_{f}(x ; k)\right| \geq 0$ for $x \in A$, and $k=$ $1,2, \ldots, n$.
(ii) If $(-1)^{k}\left|G_{f}(x ; k)\right|>0$ for $x \in A$, and $k=1,2, \ldots, n$, then f is quasi-concave on A.

- Question: Let $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=(x-1)^{2}(y-1)^{2}, \quad(x, y) \in \mathbb{R}_{+}^{2}
$$

In light of this example explain whether the 'strict inequalities' ('>0') in condition (ii) of the theorem can be replaced with 'weak inequalities' (' ≥ 0 ').
10. (a) Let $A \subset \mathbb{R}^{n}$ and $g: A \rightarrow \mathbb{R}$.
(i) Define $V\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 0\right\}$, where a_{i} is a scalar, $i=1,2, \ldots, n$. Prove carefully whether $V(\cdot)$ concave or convex in $a_{1}, a_{2}, \ldots, a_{n}$.
(ii) Define $w\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\min _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0\right\}$, where a_{i} is a scalar, $i=1,2, \ldots, n$. Prove carefully whether $w(\cdot)$ concave or convex in $a_{1}, a_{2}, \ldots, a_{n}$.
(iii) For parts (i) and (ii), how does your answer depend on the nature of the function $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?
(b) For $\left(p_{1}, p_{2}, \ldots, p_{n}, M\right) \gg 0$, define

$$
v\left(p_{1}, p_{2}, \ldots, p_{n}, M\right)=\max _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{u\left(x_{1}, x_{2}, \ldots, x_{n}\right): p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n} \leq M\right\},
$$

where $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is a continuous utility function. Prove that $v\left(p_{1}, p_{2}, \ldots, p_{n}, M\right)$ is quasiconvex in $p_{1}, p_{2}, \ldots, p_{n}, M$.

