Homework 6 (Class Test on 21 October)

1. [Proof of Intermediate Value Theorem]

Consider the following version of the intermediate value theorem:

Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say f(a) < f(b). Then, given any $y \in \Re$ such that f(a) < y < f(b), there exists $x \in (a, b)$ such that f(x) = y.

Proof: We use the divide and conquer method. We repeatedly bisect the interval, retaining the half that might contain a solution.

- We consider a sequence of intervals $[a_1, b_1]$, $[a_2, b_2]$, ... where
 - $[a_1, b_1]$ is the original interval [a, b], - $[a_2, b_2]$ is one of the halves $\left[a, \frac{a+b}{2}\right]$ or $\left[\frac{a+b}{2}, b\right]$ – chosen so that $f(a_2) < y < f(b_2)$. Of course, if $f\left(\frac{a+b}{2}\right) = y$, then we are done. Otherwise either $f\left(\frac{a+b}{2}\right) < y$, in which case we choose $\left[\frac{a+b}{2}, b\right]$, or $f\left(\frac{a+b}{2}\right) > y$, in which case we choose $\left[a, \frac{a+b}{2}\right]$.
 - Iterating this process we obtain either the solution we seek or a pair of sequences a_1, a_2, \ldots and b_1, b_2, \ldots such that $f(a_n) < y < f(b_n)$, where $b_n - a_n = 2^{1-n} (b-a)$.
- Definition (Cauchy Sequence): A sequence of real numbers $\{x_n\}$ is a Cauchy sequence if for any $\epsilon > 0$, there exists an integer N such that, for all $i, j \ge N$, $|x_i x_j| < \epsilon$.
- Theorem: Any Cauchy sequence of real numbers converges.
 [If you are interested, read section 29.1 (pages 803 806) of the textbook.]
- (a) Prove that both the sequences a_1, a_2, \dots and b_1, b_2, \dots constructed above are Cauchy sequences and converge to a common limit, say x.
- (b) Use part (a) and the continuity of f to prove the intermediate value theorem.

2. [Alternative Proof of Intermediate Value Theorem]

(a) Prove the following proposition:

Let f be a real-valued function defined on an interval S in \Re . Assume that f is continuous at a point c in S and that $f(c) \neq 0$. Then there is an open ball $B_{\delta}(c)$ such that f(x) has the same sign as f(c) in $B_{\delta}(c) \cap S$.

(b) Prove the following theorem:

Let f be a real-valued and continuous function on a compact interval $[\alpha, \beta]$ in \Re , and suppose that $f(\alpha)$ and $f(\beta)$ have opposite signs. Then there is at least one point γ in the open interval (α, β) such that $f(\gamma) = 0$.

- **Hints:** For definiteness, assume $f(\alpha) > 0$ and $f(\beta) < 0$. Define the set

$$A = \{x: x \in [\alpha, \beta] \text{ and } f(x) \ge 0\}.$$

Then A is nonempty since $\alpha \in A$, and A is bounded above by β . Let $\gamma =$ supremum of A. Then $\alpha < \gamma < \beta$. Prove that $f(\gamma) = 0$. [Suppose not, and then use (a) to come up with a contradiction.]

(c) Use (b) to prove the following version of the intermediate value theorem:

Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say f(a) < f(b). Then, given any $y \in \Re$ such that f(a) < y < f(b), there exists $x \in (a, b)$ such that f(x) = y.

3. Use the statement of the intermediate value theorem given in questions 1 and 2 above to prove the following version of the intermediate value theorem:

Suppose A is a convex subset of \mathbb{R}^n , and $f: A \to \mathbb{R}$ is a continuous function on A. Suppose x^1 and x^2 are in A, and $f(x^1) > f(x^2)$. Then, given any $c \in \mathbb{R}$ such that $f(x^1) > c > f(x^2)$, there exists $0 < \theta < 1$ such that $f(\theta x^1 + (1 - \theta) x^2) = c$.

- 4. Let $f : [a, b] \to [a, b]$ be a *continuous* function on [a, b]. Prove that there exists some $\beta \in [a, b]$ such that $f(\beta) = \beta$.
- 5. Let f be a convex function on the interval I and x_1 , x_2 and x_3 be points of I which satisfy $x_1 < x_2 < x_3$.

Prove that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

6. If a and b are arbitrary positive real numbers, show that

$$a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta) b$$
, for every $0 < \theta < 1$

7. Prove the following proposition (*Jensen's Inequality*):

whenever x^1, x^2, \dots

Suppose A is a convex set in \Re^n and $f: A \to \Re$ is a concave function. Then, for any integer m > 1,

$$f\left(\sum_{i=1}^{m} \theta_{i} x^{i}\right) \geq \sum_{i=1}^{m} \theta_{i} f\left(x^{i}\right)$$

., $x^{m} \in A, \ (\theta_{1}, \theta_{2}, ..., \theta_{m}) \in \Re_{+}^{m} \text{ and } \sum_{i=1}^{m} \theta_{i} = 1.$

8. Let $f : \Re^2 \to \Re$ be a quasi-concave function. Let I be the closed interval [0,1]. Let a, b be two arbitrary given vectors in \Re^2 . Define a function $g : I \to \Re$ by g(t) = f(ta + (1-t)b). Prove that g is a quasi-concave function on I.

- 9. Suppose A is a convex set in \mathbb{R}^n and $f : A \to \mathbb{R}$. Prove that the following two statements are equivalent to each other:
 - (a) $f(x^2) \ge f(x^1)$ implies $f(\theta x^1 + (1 \theta) x^2) \ge f(x^1)$ whenever $x^1, x^2 \in A$, and $0 \le \theta \le 1$;

(b) For every $\alpha \in \Re$, the set $S(\alpha) = \{x \in A : f(x) \ge \alpha\}$ is a convex set in \Re^n .

10. Recall the following characterization of twice differentiable quasi-concave functions.

Let $A \subset \mathbb{R}^n$ be an open convex set, and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. The bordered Hessian matrix of f at $x \in A$ is denoted by $G_f(x)$ and is defined by the following $(n+1) \times (n+1)$ matrix:

$$G_{f}(x) = \begin{pmatrix} 0 & \nabla f(x) \\ & & \\ \nabla f(x) & H_{f}(x) \end{pmatrix}.$$

We denote the (k + 1)th leading principal minor of $G_f(x)$ by $|G_f(x;k)|$, where k = 1, 2, ..., n.

Theorem: Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \mathbb{R}$ is twice continuously differentiable on A.

- (i) If f is quasi-concave on A, then $(-1)^k |G_f(x;k)| \ge 0$ for $x \in A$, and k = 1, 2, ..., n.
- (ii) If $(-1)^k |G_f(x;k)| > 0$ for $x \in A$, and k = 1, 2, ..., n, then f is quasi-concave on A.
- Question: Let $f : \mathbb{R}^2_+ \to \mathbb{R}$ be given by

$$f(x,y) = (x-1)^2 (y-1)^2, \ (x,y) \in \mathbb{R}^2_+.$$

In light of this example explain whether the 'strict inequalities' ('> 0') in condition (ii) of the theorem can be replaced with 'weak inequalities' (' ≥ 0 ').

- 11. (a) Let $A \subset \mathbb{R}^n$ and $g: A \to \mathbb{R}$.
 - (i) Define $V(a_1, a_2, ..., a_n) = \max_{\{x_1, x_2, ..., x_n\}} \{a_1 x_1 + a_2 x_2 + ... + a_n x_n : g(x_1, x_2, ..., x_n) \le 0\}$, where a_i is a scalar, i = 1, 2, ..., n. Prove carefully whether $V(\cdot)$ concave or convex in $a_1, a_2, ..., a_n$.
 - (ii) Define $w(a_1, a_2, ..., a_n) = \min_{\{x_1, x_2, ..., x_n\}} \{a_1 x_1 + a_2 x_2 + ... + a_n x_n : g(x_1, x_2, ..., x_n) \ge 0\}$, where a_i is a scalar, i = 1, 2, ..., n. Prove carefully whether $w(\cdot)$ concave or convex in $a_1, a_2, ..., a_n$.
 - (iii) For parts (i) and (ii), how does your answer depend on the nature of the function $g(x_1, x_2, ..., x_n)$?
 - (b) For $(p_1, p_2, ..., p_n, M) \gg 0$, define

$$v(p_1, p_2, ..., p_n, M) = \max_{\{x_1, x_2, ..., x_n\}} \{ u(x_1, x_2, ..., x_n) : p_1 x_1 + p_2 x_2 + ... + p_n x_n \le M \},\$$

where $u : \mathbb{R}^n_+ \to \mathbb{R}$ is a continuous utility function. Prove that $v(p_1, p_2, ..., p_n, M)$ is *quasiconvex* in $p_1, p_2, ..., p_n, M$.