Math 271: Mathematical Methods Tridip Ray
Semester I, 2024-25 ISI, Delhi

Homework 7 (Class Test on 04 November)

0. Practice Problems from the Textbook:

Exercises 17.1, 17.3, 18.2, 18.3, 18.5 and 19.14 (only for 18.2, 18.3, 18.5).

1. Let f: 3 — R be a continuous function on R satisfying the property
f(x) < f(0) for all z > 1.

Now consider the following constrained maximization problem:

Maximize f (x) }

subject to x > 0.

Does this problem have a solution? Explain carefully.

2. [The Method of Least Squares]

e Suppose we are given n points (z;,;), i = 1,2,..,n in R2. Let f : R — R be
given by f(z) = ax + b, for all x € R. We wish to find a function f (that is,
we want to choose a € R and b € R) such that the quantity i [f () — wi]” is
minimized. -

e We can set up the problem as an unconstrained maximization problem as follows.

Define F : R2 — R by

n

F(a,b):—Z[amﬁ—b—yif.

i=1

The maximization problem is:

Maximize F (a, b) .
{a,b}

(a) Write down the first-order conditions of the maximization problem.

(b) Argue clearly that if (a*,b*) satisfies the first-order conditions, then (a*,b*) is a

point of global maximum of F.

(¢) Find out (a*,b*) which is the point of global mazimum of F.



3. Recall the following theorem.

Theorem (Taylor’s Expansion upto Second Order):

Suppose A is an open convexr subset of R", and f : A — R is twice continuously
differentiable on A. Suppose x* and x® are in A. Then there is 0 < 6 < 1 such that

f(xQ)—f(xl) = (x2—x1)~Vf(x1)+%(a:2—x1)-Hf (9$1+(1—9)x2)-(1’2—x1).

Suppose D is an open convex set in R”, and ¢ : D — R is twice continuously differen-

tiable and quasiconcave on D. Suppose there exists 2* € D satisfying

(i) Vg (2*) =0, and
(i) Hy (x*) is negative definite.

(a) Use the above theorem to prove that g has a strict local maximum at z*.

(b) Prove further that x* is a point of global mazimum of g on D.
4. Consider the following constrained maximization problem:

n
Maximize [ z;
i=1

subject to Y x; =n, (P)
i=1
and r; >0,i1=1,2,..n.

Using Weierstrass theorem we have proved in class that there exists * € C

= {x et > a = n} such that z* solves (P).
=1

(a) Apply Lagrange theorem to find x*.

(b) The Arithmetic Mean-Geometric Mean Inequality: Let aq,as,...,a, be

Z a; n 1
positive real numbers. Their AM is =—, and GM is (H ai) :
n

i=1

— Use the conclusion of part (a) to prove that AM > GM.



5. Let ¢ = (c1,...,¢,) be a non-zero vector in R". Consider the following constrained

maximization problem:

n
Maximize > ey
i=1
n
subject to Y x?=1, (Q)
i=1

(1, .y y) € R

(a) Show, by using Weierstrass theorem, that there exists (z7,...,2%) € R" which
solves (Q).

(b) Use Lagrange theorem to show that

n
> i =|le] !
i=1

(c) Let p and ¢ be arbitrary non-zero vectors in 1. Using the result in (b) show that

Ipg| < lIpll |l¢]| - (Cauchy-Schwarz Inequality)

"Recall that [|y|| = /y? +¥3 + ... +32.



6.

In the lectures we have also discussed (without a proof) the following Theorem. In this

question we will prove this Theorem.

— Let A C R” be an open convex set, and f: A — R is twice continuously differen-
tiable on A. The bordered Hessian matriz of f at x € A is denoted by G (x) and
is defined by the following (n + 1) x (n + 1) matrix:

0  vf(x)
Gy(z) =

vf(z) Hy(z)
We denote the (k + 1)th leading principal minor of G (z) by |Gy (x; k)|, where
k=1,2,....n.

— Theorem: Suppose A C R"™ is an open convex set, and f : A — R is twice
continuously differentiable on A. If (=1)" |Gy (z;k)| > 0 for = € A, and k =

1,2,...,n, then f is quasi-concave on A.

e We will prove this Theorem through the following three steps. Fix an arbitrary point

(a)

x* € A, and define g by g (z) = Vf (z*) - (2* — z), for x € R™

Step I: Given the premise of the Theorem, prove that z* is a local maximum of f
on the constraint set C’ [z*] = {z € A | g(x) = 0} by showing (i) that the constraint
qualification is met at z*, (ii) that there exists \* € R such that (z*, A*) meets the first-
order conditions of the Lagrange Theorem, and (iii) that (z*, \*) also meets second-

order sufficient conditions for a local maximum.

Step II: It can also be shown that (you do not have to show this) x* is actually a

global maximum of f on the constraint set C' [z*] = {z € A|g(x) > 0}.

Step III: Prove the following proposition:

If a C! function F': A — R satisfies the following property for all z € A:
VF(z)- (2 —w) >0 implies F' (w) < F (z), for all w € A,

then F' is quasi-concave on A.

Using this proposition, complete the proof that given the premise of the Theorem, f

is quasi-concave on A.



