Homework 7 (Class Test on 06 November)

0 . Practice Problems from the Textbook:

Exercises 17.1, 17.3, 18.2, 18.3, 18.5 and 19.14 (only for $18.2,18.3,18.5$).

1. Let $f: \Re \rightarrow \Re$ be a continuous function on \Re satisfying the property

$$
f(x)<f(0) \text { for all } x>1
$$

Now consider the following constrained maximization problem:

$$
\left.\begin{array}{l}
\text { Maximize } f(x) \\
\text { subject to } x \geq 0
\end{array}\right\}
$$

Does this problem have a solution? Explain carefully.

2. [The Method of Least Squares]

- Suppose we are given n points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ in \Re^{2}. Let $f: \Re \rightarrow \Re$ be given by $f(x)=a x+b$, for all $x \in \Re$. We wish to find a function f (that is, we want to choose $a \in \Re$ and $b \in \Re)$ such that the quantity $\sum_{i=1}^{n}\left[f\left(x_{i}\right)-y_{i}\right]^{2}$ is minimized.
- We can set up the problem as an unconstrained maximization problem as follows. Define $F: \Re^{2} \rightarrow \Re$ by

$$
F(a, b)=-\sum_{i=1}^{n}\left[a x_{i}+b-y_{i}\right]^{2} .
$$

The maximization problem is:

$$
\underset{\{a, b\}}{\operatorname{Maximize}} F(a, b) .
$$

(a) Write down the first-order conditions of the maximization problem.
(b) Argue clearly that if $\left(a^{*}, b^{*}\right)$ satisfies the first-order conditions, then $\left(a^{*}, b^{*}\right)$ is a point of global maximum of F.
(c) Find out $\left(a^{*}, b^{*}\right)$ which is the point of global maximum of F.
3. Recall the following theorem.

Theorem (Taylor's Expansion upto Second Order):
Suppose A is an open convex subset of \mathbb{R}^{n}, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. Suppose x^{1} and x^{2} are in A. Then there is $0 \leq \theta \leq 1$ such that $f\left(x^{2}\right)-f\left(x^{1}\right)=\left(x^{2}-x^{1}\right) \cdot \nabla f\left(x^{1}\right)+\frac{1}{2}\left(x^{2}-x^{1}\right) \cdot H_{f}\left(\theta x^{1}+(1-\theta) x^{2}\right) \cdot\left(x^{2}-x^{1}\right)$.

Suppose D is an open convex set in \mathbb{R}^{n}, and $g: D \rightarrow \mathbb{R}$ is twice continuously differentiable and quasiconcave on D. Suppose there exists $x^{*} \in D$ satisfying
(i) $\nabla g\left(x^{*}\right)=0$, and
(ii) $H_{g}\left(x^{*}\right)$ is negative definite.
(a) Use the above theorem to prove that g has a strict local maximum at x^{*}.
(b) Prove further that x^{*} is a point of global maximum of g on D.
4. Consider the following constrained maximization problem:

$$
\left.\begin{array}{ll}
\text { Maximize } & \prod_{i=1}^{n} x_{i} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=n \\
\text { and } & x_{i} \geq 0, i=1,2, \ldots n
\end{array}\right\}(\mathrm{P})
$$

Using Weierstrass theorem we have proved in class that there exists $x^{*} \in C$ $=\left\{x \in \Re_{+}^{n}: \sum_{i=1}^{n} x_{i}=n\right\}$ such that x^{*} solves (P).
(a) Apply Lagrange theorem to find x^{*}.
(b) The Arithmetic Mean-Geometric Mean Inequality: Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Their AM is $\frac{\sum_{i=1}^{n} a_{i}}{n}$, and GM is $\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}}$.

- Use the conclusion of part (a) to prove that $\mathrm{AM} \geq \mathrm{GM}$.

5. Let $c=\left(c_{1}, \ldots, c_{n}\right)$ be a non-zero vector in \Re^{n}. Consider the following constrained maximization problem:

$$
\left.\begin{array}{ll}
\text { Maximize } & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}^{2}=1, \\
& \left(x_{1}, \ldots, x_{n}\right) \in \Re^{n} .
\end{array}\right\} \text { (Q) }
$$

(a) Show, by using Weierstrass theorem, that there exists $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \in \Re^{n}$ which solves (Q).
(b) Use Lagrange theorem to show that

$$
\sum_{i=1}^{n} c_{i} x_{i}^{*}=\|c\| .{ }^{1}
$$

(c) Let p and q be arbitrary non-zero vectors in \Re^{n}. Using the result in (b) show that

$$
|p q| \leq\|p\|\|q\| .(\text { Cauchy-Schwarz Inequality })
$$

[^0]6. In the lectures we have also discussed (without a proof) the following Theorem. In this question we will prove this Theorem.

- Let $A \subset \mathbb{R}^{n}$ be an open convex set, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. The bordered Hessian matrix of f at $x \in A$ is denoted by $G_{f}(x)$ and is defined by the following $(n+1) \times(n+1)$ matrix:

$$
G_{f}(x)=\left(\begin{array}{cc}
0 & \nabla f(x) \\
\nabla f(x) & H_{f}(x)
\end{array}\right)
$$

We denote the $(k+1)$ th leading principal minor of $G_{f}(x)$ by $\left|G_{f}(x ; k)\right|$, where $k=1,2, \ldots, n$.

- Theorem: Suppose $A \subset \mathbb{R}^{n}$ is an open convex set, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. If $(-1)^{k}\left|G_{f}(x ; k)\right|>0$ for $x \in A$, and $k=$ $1,2, \ldots, n$, then f is quasi-concave on A.
- We will prove this Theorem through the following three steps. Fix an arbitrary point $x^{*} \in A$, and define g by $g(x)=\nabla f\left(x^{*}\right) \cdot\left(x^{*}-x\right)$, for $x \in \mathbb{R}^{n}$.
(a) Step I: Given the premise of the Theorem, prove that x^{*} is a local maximum of f on the constraint set $C^{\prime}\left[x^{*}\right]=\{x \in A \mid g(x)=0\}$ by showing (i) that the constraint qualification is met at x^{*}, (ii) that there exists $\lambda^{*} \in \mathbb{R}$ such that $\left(x^{*}, \lambda^{*}\right)$ meets the firstorder conditions of the Lagrange Theorem, and (iii) that $\left(x^{*}, \lambda^{*}\right)$ also meets secondorder sufficient conditions for a local maximum.
- Step II: It can also be shown that (you do not have to show this) x^{*} is actually a global maximum of f on the constraint set $C\left[x^{*}\right]=\{x \in A \mid g(x) \geq 0\}$.
(b) Step III: Prove the following proposition:

If a C^{1} function $F: A \rightarrow \mathbb{R}$ satisfies the following property for all $z \in A$:

$$
\nabla F(z) \cdot(z-w) \geq 0 \text { implies } F(w) \leq F(z), \text { for all } w \in A
$$

then F is quasi-concave on A.
Using this proposition, complete the proof that given the premise of the Theorem, f is quasi-concave on A.

[^0]: ${ }^{1}$ Recall that $\|y\|=\sqrt{y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2}}$.

