Homework 7 (Class Test on 04 November)

0. Practice Problems from the Textbook:

Exercises 17.1, 17.3, 18.2, 18.3, 18.5 and 19.14 (only for 18.2, 18.3, 18.5).

1. Let $f: \Re \to \Re$ be a continuous function on \Re satisfying the property

$$f(x) < f(0)$$
 for all $x > 1$.

Now consider the following constrained maximization problem:

Maximize
$$f(x)$$

subject to $x \ge 0$.

Does this problem have a solution? Explain carefully.

- 2. [The Method of Least Squares]
 - Suppose we are given n points (x_i, y_i) , i = 1, 2, ..., n in \Re^2 . Let $f : \Re \to \Re$ be given by f(x) = ax + b, for all $x \in \Re$. We wish to find a function f (that is, we want to choose $a \in \Re$ and $b \in \Re$) such that the quantity $\sum_{i=1}^{n} [f(x_i) y_i]^2$ is minimized.
 - We can set up the problem as an unconstrained maximization problem as follows. Define $F: \Re^2 \to \Re$ by

$$F(a,b) = -\sum_{i=1}^{n} [ax_i + b - y_i]^2.$$

The maximization problem is:

$$\operatorname{Maximize}_{\{a,b\}} F\left(a,b\right).$$

- (a) Write down the first-order conditions of the maximization problem.
- (b) Argue clearly that if (a^*, b^*) satisfies the first-order conditions, then (a^*, b^*) is a point of global maximum of F.
- (c) Find out (a^*, b^*) which is the point of global maximum of F.

3. Recall the following theorem.

Theorem (Taylor's Expansion up to Second Order):

Suppose A is an open convex subset of \mathbb{R}^n , and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. Suppose x^1 and x^2 are in A. Then there is $0 \le \theta \le 1$ such that

$$f(x^{2}) - f(x^{1}) = (x^{2} - x^{1}) \cdot \nabla f(x^{1}) + \frac{1}{2}(x^{2} - x^{1}) \cdot H_{f}(\theta x^{1} + (1 - \theta) x^{2}) \cdot (x^{2} - x^{1}).$$

Suppose D is an open convex set in \mathbb{R}^n , and $g: D \to \mathbb{R}$ is twice continuously differentiable and *quasiconcave* on D. Suppose there exists $x^* \in D$ satisfying

(i)
$$\nabla g(x^*) = 0$$
, and
(ii) $H_q(x^*)$ is negative definite.

- (a) Use the above theorem to prove that g has a *strict* local maximum at x^* .
- (b) Prove further that x^* is a point of global maximum of g on D.
- 4. Consider the following constrained maximization problem:

Maximize
$$\prod_{\substack{i=1\\n}n}^{n} x_{i}$$
subject to
$$\sum_{\substack{i=1\\i=1}}^{n} x_{i} = n,$$
and
$$x_{i} \ge 0, i = 1, 2, \dots n.$$
(P)

Using Weierstrass theorem we have proved in class that there exists $x^* \in C$ = $\left\{ x \in \Re_+^n : \sum_{i=1}^n x_i = n \right\}$ such that x^* solves (P).

- (a) Apply Lagrange theorem to find x^* .
- (b) The Arithmetic Mean-Geometric Mean Inequality: Let $a_1, a_2, ..., a_n$ be positive real numbers. Their AM is $\frac{\sum_{i=1}^{n} a_i}{n}$, and GM is $\left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}}$.

– Use the conclusion of part (a) to prove that $AM \ge GM$.

5. Let $c = (c_1, ..., c_n)$ be a non-zero vector in \Re^n . Consider the following constrained maximization problem:

$$\begin{array}{ll}
\text{Maximize} & \sum_{i=1}^{n} c_{i} x_{i} \\
\text{subject to} & \sum_{i=1}^{n} x_{i}^{2} = 1, \\ & (x_{1}, \dots, x_{n}) \in \Re^{n}.
\end{array}\right\} (\mathbf{Q})$$

- (a) Show, by using Weierstrass theorem, that there exists $(x_1^*, ..., x_n^*) \in \Re^n$ which solves (Q).
- (b) Use Lagrange theorem to show that

$$\sum_{i=1}^{n} c_i x_i^* = \|c\| .^1$$

(c) Let p and q be arbitrary non-zero vectors in \Re^n . Using the result in (b) show that

 $|pq| \leq \|p\| \, \|q\|$. (Cauchy-Schwarz Inequality)

¹Recall that $||y|| = \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$.

- 6. In the lectures we have also discussed (without a proof) the following Theorem. In this question we will prove this Theorem.
 - Let $A \subset \mathbb{R}^n$ be an open convex set, and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. The bordered Hessian matrix of f at $x \in A$ is denoted by $G_f(x)$ and is defined by the following $(n + 1) \times (n + 1)$ matrix:

$$G_{f}(x) = \begin{pmatrix} 0 & \nabla f(x) \\ & & \\ \nabla f(x) & H_{f}(x) \end{pmatrix}.$$

We denote the (k + 1)th leading principal minor of $G_f(x)$ by $|G_f(x;k)|$, where k = 1, 2, ..., n.

- **Theorem:** Suppose $A \subset \mathbb{R}^n$ is an open convex set, and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. If $(-1)^k |G_f(x;k)| > 0$ for $x \in A$, and k = 1, 2, ..., n, then f is quasi-concave on A.
- We will prove this Theorem through the following three steps. Fix an arbitrary point $x^* \in A$, and define g by $g(x) = \nabla f(x^*) \cdot (x^* x)$, for $x \in \mathbb{R}^n$.
- (a) Step I: Given the premise of the Theorem, prove that x^* is a local maximum of f on the constraint set $C'[x^*] = \{x \in A \mid g(x) = 0\}$ by showing (i) that the constraint qualification is met at x^* , (ii) that there exists $\lambda^* \in \mathbb{R}$ such that (x^*, λ^*) meets the first-order conditions of the Lagrange Theorem, and (iii) that (x^*, λ^*) also meets second-order sufficient conditions for a local maximum.
 - Step II: It can also be shown that (you do not have to show this) x^* is actually a global maximum of f on the constraint set $C[x^*] = \{x \in A \mid g(x) \ge 0\}$.
- (b) **Step III:** Prove the following proposition:

If a C^1 function $F: A \to \mathbb{R}$ satisfies the following property for all $z \in A$:

$$\nabla F(z) \cdot (z-w) \ge 0$$
 implies $F(w) \le F(z)$, for all $w \in A$,

then F is quasi-concave on A.

Using this proposition, complete the proof that given the premise of the Theorem, f is quasi-concave on A.