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1. Propositions: Contrapositives and Converses

• Given two propositions P and Q, the statement “If P, then Q” is interpreted as the

statement that if the proposition P is true, then the statement Q is also true.

– We denote this by P ⇒ Q.

◦We will also say that “P implies Q”.

•We stress that P ⇒ Q only says that if P is true, then Q is also true.

– It has nothing to say about the case where P is not true; in this case, Q could be

either true or false.

◦ For example, if P is x > 0 and Q is x2 > 0, then it is certainly true that P ⇒ Q,
since the square of a positive number is positive.

◦ However, Q can be true even if P is not true, since the square of a negative

number is also positive.
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• Given a statement of the form “if P, then Q,” its contrapositive is the statement that

“if Q is not true, then P is not true.”

– If we let “∼ Q” denote the statement that ‘Q is not true’ (call this “not Q”), then the

contrapositive of the statement “P ⇒ Q” is the statement “∼ Q⇒∼ P ”.

• Example: The contrapositive of the statement “If x is positive, then x3 is positive” is

the statement “If x3 is not positive, then x is not positive”.

• A statement and its contrapositive are logically equivalent. That is, if the statement

is true, then the contrapositive is also true, while if the statement is false, so is the

contrapositive.

– Suppose, first, that P ⇒ Q is true.

◦ Then, if Q is false, P must also be false: if P were true, then by P ⇒ Q, Q would

have to be true, and a statement cannot be both true and false.

– Now, suppose P ⇒ Q is false.

◦ The only way this can happen is if P were true and Q were false. But this is

precisely the statement ∼ Q⇒∼ P is not true.
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• The converse of the statement P ⇒ Q is the statement that Q ⇒ P, that is, the

statement that “if Q, then P ”.

• There is no logical relatonship between a statement and its converse.

– As we have seen, if P is the proposition that x > 0 and Q is the proposition that

x2 > 0, then it is certainly true that P ⇒ Q, but the converse Q ⇒ P is false: x
could be negative and still satisfy x2 > 0.

• If a statement and its converse both hold, we express this by saying that “P if and

only if Q,” and denote this by P ⇔ Q.

– For example, if P is the proposition that x > 0 and Q is the proposition that x3 > 0,
then we have P ⇔ Q.
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2. Quantifiers and Negation

• There are two kinds quantifiers:

– the universal or “for all” quantifier is used to denote that a property Π holds for

every element a in some set A;

– the existential or “there exists” quantifier is used to denote that the property holds

for at least one element a in the set A.

• The negation of proposition P is its denial, ∼ P.

• If the proposition P involves a universal quantifier, then its negation involves an ex-

istential quantifier: to deny the truth of a universal statement requires us to find just

one case where the statement fails.

– Let A be some set and let Π(a) be some property defined for elements a ∈ A.
Suppose P is the proposition of the form

For all a ∈ A, property Π(a) holds.
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– Then, P is false if there is just a single element a ∈ A for which the property Π(a)
does not hold. Thus, the negation of P is the proposition

There exists a ∈ A, such that property Π(a) does not hold.

• The negation of an existential quantifier involves a universal quantifier: to deny that

there is at least one case where the proposition holds requires us to show that the

proposition fails in every case.

– That is, if Q is a proposition of the form

There exists b ∈ B, such that property Π′(b) holds,

its negation is the proposition

For all b ∈ B, property Π′(b) does not hold.
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• Example: Consider the following.

– Given a real number x, let Π(x) be the property that x2 > 0.

– Let P be the proposition that “Property Π(x) holds for every real number x.” In the

language of quantifiers, we would express P as

For every x ∈ R, x2 > 0.

– P is negated if there is at least one real number whose square is not strictly positive.

So the negation ∼ P is the statement

There exists x ∈ R such that x2 ≯ 0.
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•When multiple quantifiers are involved in a statement, the situation gets a little more

complicated.

– If all the quantifiers in a given proposition are of the ame type (that is, they are all

universal, or are all existential) the order of the quantifiers is immaterial.

◦ For instance, the statement

For all x ∈ R, for all y ∈ R, (x + y)2 = x2 + 2xy + y2,

is the same as the statement

For all y ∈ R, for all x ∈ R, (x + y)2 = x2 + 2xy + y2.
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– However, the order of the quantifiers becomes significant if quantifiers of different

types are involved.

◦ The statement

For every x > 0, there exists y > 0 such that y2 = x

is most definitely not the same as the statement that

There exists y > 0 such that for every x > 0, y2 = x.

◦ In fact, while the first statement is true (it asserts essentially that every positive

real number has a positive square root), the second is false (it claims that a single

fixed real number is the square root of every positive number).
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• The importance of the order of quantifiers makes it necessary to exercise caution in

forming the negation of statements with multiple quantifiers, since the negation will

also involve the use of multiple quantifiers.

– Let Π(a, b) denote a property defined on elements a and b in sets A and B, respec-

tively. Consider the statement P

For every a ∈ A, there exists b ∈ B such that Π(a, b) holds.

– The statement P will be falsified if there is even one a ∈ A for which the property

Π(a, b) fails to hold, no matter what we take for the value of b ∈ B.
– Thus, the negation of P is the statement ∼ P defined by

There exists a ∈ A such that for every b ∈ B, Π(a, b) fails.

– We reiterate the importance of the order of quantifiers in forming this negation. The

negation of P is not the statement

For every b ∈ B, there exists a ∈ A such that Π(a, b) fails.
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3. Necessary vs. Sufficient Conditions

• A⇒ B:

– A implies B;

– if A then B;

– A only if B;

– A is sufficient for B;

– B is necessary for A.

• Example 1:

– A: The natural number n is divisible by 6.

– B: The natural number n is divisible by 3.

• Example 2:

– A: A person is a father.

– B: A person is a male.
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• Example 3:

– Necessary and sufficient conditions for local maximum and minimum.

• “A⇒ B” ≡ “not B ⇒ not A”.

• A⇔ B:

– A if and only if B;

– A is necessary and sufficient for B.
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4. Types of Mathematical Proof

• A mathematical theorem can be formulated as an implication A⇒ B where

– A represents a proposition called the hypothesis or the premise, and

– B represents a proposition called the conclusion.

• One can prove such an implication in different ways.

1. Direct Proof:

– Assume A;

– Then try to show B.

2. Indirect Proof:

2.1 Proof of Contrapositive:

– Assume “not B”;

– Then try to show “not A”.
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2.2 Proof by Contradiction:

– Assume “A⇒ not B”;

– Then show that this leads to a contradiction.

• Example:

Consider the propositions

A: 3x− x2 ≥ 0, and

B: x ≥ 0.

Let us prove the implication A⇒ B by all the three types of mathematical proofs.

– Direct Proof:

- Assume A, that is, suppose that 3x− x2 ≥ 0.

⇒ 3x ≥ x2 ≥ 0.

⇒ x ≥ 0, which is B.
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– Proof of Contrapositive:

- Assume “not B”, that is, suppose that x < 0.

⇒ 3x < 0, and hence 3x− x2 < 0, which is “not A”.

– Proof by Contradiction:

- Assume “A⇒ not B”, which corresponds to the following proposition:

◦ There exists an x such that

3x− x2 ≥ 0, and x < 0.

⇒ x2 ≤ 3x < 0, that is, x2 < 0, a contradiction.
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3. Proof by Induction:

This type of proof can be used for propositions A(n), where n = k, k + 1, ... , and k
is a natural number.

Two steps:

– Initial step: Prove that the proposition is true for an initial natural number n = k,
that is, A(k) is true.

– Inductive step: Prove the implicationA(n)⇒ A(n+1) for an arbitrary n ∈ {k, k + 1, ...} .

• Example: Prove by induction that A(n): 2n > n, where n is a natural number.

– Initial step: A(1): 21 = 2 > 1, that is, A(1) is true.

– Inductive step: Need to show that

2n > n⇒ 2n+1 > n + 1.

- Multiplying both sides of A(n) by 2 yields 2n+1 > 2n.

- For n ≥ 1, we have 2n ≥ n + 1.

- Combining the above two inequalities gives 2n+1 > n + 1.


