
Linear Algebra:

Vectors
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1. Vector Spaces
� Scalars / Numbers:
In de�ning vector spaces, we consider the �eld to be the set of reals: <: The ele-
ments of < are called scalars or numbers.
� An n-vector x is an ordered set of n numbers (x1; x2; :::; xn).
� `Ordered') the ordering of the numbers matters.
� The set of all n-vectors is called n-space, denoted by <n:
� Some Special Vectors:
� Sum Vector: The vector all of whose coordinates are 1:
� Null Vector: The vector all of whose coordinates are 0:
� Unit Vectors: The i-th unit vector is the vector whose i-th coordinate is 1; and
whose other coordinates are 0:
- We denote the i-th unit vector by ei:
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� Vector Operations:
� Two n-vectors, x = (x1; x2; :::; xn) and y = (y1; y2; :::; yn); are said to be equal
(written x = y) if xi = yi; for i = 1; 2; :::; n:

� Addition: If x and y are n-vectors, their sum x + y is the n-vector whose i-th
element is xi + yi; i = 1; 2; :::; n:

� Scalar Multiplication: If x is an n-vector and � is a number, the product �x is the
vector whose i-th element is �xi; i = 1; 2; :::; n:

� Given these two de�nitions, a number of properties follow immediately.

� Properties of Vector Addition:
� Commutative Law: x + y = y + x:
� Associative Law: (x + y) + z = x + (y + z):
� Law of Subtraction: For every x and y; there is z such that x + z = y:
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� Properties of Scalar Multiplication:
� Vector Distributive Law: � (x + y) = �x + �y:
� Scalar Distributive Law: (� + �)x = �x + �x:
� Scalar Associative Law: �(�x) = (��)x:
� Identity Law: 1x = x (here 1 is the scalar `one').

� Vector Spaces:
The properties listed above may be taken as axioms for an abstract algebraic system.
Such systems are called vector spaces.
� The vector space that we will study consists of
- the �eld <;
- the n-space <n;
- the operations of addition and scalar multiplication.

�We will, as a shorthand, refer to this vector space by <n.



4

2. Linear Dependence of Vectors
� A set of vectors x1; x2; :::; xm (here xi =

�
xi1; x

i
2; :::; x

i
n

�
2 <n is a vector) is linearly

dependent if there exist numbers �1; �2; :::; �m; not all zero, such that

�1x
1 + �2x

2 + ::: + �mx
m = 0 (the zero vector in <n).

� A set of vectors is called linearly independent if the vectors are not linearly depen-
dent.

#1. Are the following two vectors in <2; x1 = (1; 2) and x2 = (�3;�6) ; linearly
dependent?

#2. Are the following two vectors in <2; x1 = (1; 2) and x2 = (0; 1) ; linearly dependent?

#3. Are the following three vectors in <2; x1 = (1; 1), x2 = (2; 3) and x3 = (3; 7) linearly
dependent?

#4. Show that the unit vectors in <2; e1 = (1; 0) and e2 = (0; 1) are linearly independent.
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� A vector y 2 <n can be written as a linear combination of the set of vectors x1; x2;
:::; xm in <n if there are numbers �1; �2; :::; �m such that

y = �1x
1 + �2x

2 + ::: + �mx
m:

#5. Express y = (0; 0) as a linear combination of x1 = (1; 2) and x2 = (1; 0) :

#6. Express y = (3; 2) as a linear combination of x1 = (1; 0) and x2 = (0; 1) :

#7. Show that any vector in <n can be written as a linear combination of the unit vectors
e1; e2; :::; en in <n:

� Theorem 1 (Fundamental Theorem on Vector Spaces):
If each of the (m+ 1) vectors y0; y1; :::; ym in <n can be expressed as a linear combi-
nation of the m vectors x1; x2; :::; xm in <n; then the vectors y0; y1; :::; ym are linearly
dependent.
� Proof: See Gale (1960).
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� Corollary 1: Any set of (n + 1) vectors in <n are linearly dependent.
� Proof: To be discussed in class.

� Corollary 2: Any system of n homogenous linear equations in (n + 1) unknowns,

a10x0 + a11x1 + ::: + a1nxn = 0;

a20x0 + a21x1 + ::: + a2nxn = 0;
...

an0x0 + an1x1 + ::: + annxn = 0;

has a non-zero solution.
� Proof: To be discussed in class.
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3. Rank and Basis
� Rank: Let S be a subset of the vector space <n: The rank of S is the maximum
number of linearly independent vectors which can be chosen from S:
� Note that rank(S) � n since (n + 1) vectors in S are linearly dependent by Corollary
1.

� Basis: Let S be a subset of the vector space <n: If r is the rank of S; then any set of
r linearly independent vectors in S is called a basis of S:

#8. Consider S1 = f(1; 0) ; (0; 1)g in <2:What is the rank of S1?

#9. Consider S2 = f(0; 0)g in <2:What is the rank of S2?

#10. (a) Are the following three vectors in <3; x = (1; 0; 0), y = (1; 1; 0) and z = (1; 1; 1)
linearly dependent?
(b) Consider S3 =

�
(x1; x2; x3) 2 <3 : x1 = 1

	
: What is the rank of S3? Find out a

basis of S3:
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� Corollary 3: <n has rank n.
� Proof: To be discussed in class.

� Theorem 2: (Basis Theorem):
Suppose x1; x2; :::; xm are linearly independent vectors in the set S (in <n):
(i) If every vector y in S can be expressed as a linear combination of x1; x2; :::; xm;
then

�
x1; x2; :::; xm

�
is a basis of S:

(ii) If
�
x1; x2; :::; xm

�
is a basis of S; then every vector y in S can be expressed as a

linear combination of x1; x2; :::; xm.
� Proof: To be discussed in class.
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4. Inner Product and Norm
� Inner Product: If x and y are two vectors in <n; then their inner product is

xy = x1y1 + x2y2 + ::: + xnyn:

� Note that inner product is a scalar (not a vector).
� xei = xi; i = 1; 2; :::; n; where ei is the i-th unit vector.

� Properties of Inner Product:
� Commutative Law: xy = yx
� Mixed Associative Law: (�x) y = � (xy) [� is a scalar]
� Distributive Law: (x + y) z = xz + yz
� x2 � xx = 0 if and only if x = 0:
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� Norm of a Vector: The (Euclidean) norm of a vector x in <n is de�ned as

kxk = (xx)
1
2 =

�
x21 + x

2
2 + ::: + x

2
n

�1
2 :

� Properties of Norm:
� kxk = 0 if and only if x = 0
� k�xk = j�j : kxk
� kx + yk � kxk + kyk (Triangle Inequality for norms)
� If xy = 0; then kx + yk2 = kxk2 + kyk2 (Pythagoras Theorem).

� Orthogonal Vectors: Two vectors x and y are called orthogonal if their inner product
is zero, that is, if xy = 0:

� Orthonormal Vectors: Two vectors x and y are called orthonormal if
(a) x and y are orthogonal, and
(b) kxk = kyk = 1.
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References
� Must read the following sections from the textbook:
Sections 10.1 � 10.4 (pages 199 � 214),
Sections 11.1 � 11.3 (pages 237 � 249).

� Much of this material is standard in texts on linear algebra, like
1. Hadley, G., Linear Algebra, Massachusetts: Addison-Wesley, 1964 (chapter 2),
2. Hohn, Franz E., Elementary Matrix Algebra, New Delhi: Amerind, 1971 (chapters
4, 5).

� A good exposition can also be found in
3. Gale, David, The Theory of Linear Economic Models, New York: McGraw-Hill, 1960
(chapter 2).
� You will �nd a proof of the fundamental theorem on vector spaces (by using math-
ematical induction) in Gale's book.


