Linear Algebra:

Vectors




1. Vector Spaces

e Scalars / Numbers:

In defining vector spaces, we consider the field to be the set of reals: R. The ele-
ments of K are called scalars or numbers.

e An n-vector x is an ordered set of n numbers (z1, zo, ..., z,,).
— ‘Ordered’ = the ordering of the numbers matters.
— The set of all n-vectors is called n-space, denoted by R".
e Some Special Vectors:
— Sum Vector: The vector all of whose coordinates are 1.
— Null Vector: The vector all of whose coordinates are 0.

— Unit Vectors: The :-th unit vector is the vector whose i-th coordinate is 1, and
whose other coordinates are 0.

- We denote the i-th unit vector by ¢'.



e Vector Operations:

— Two n-vectors, © = (x1,x9,...,z,) and y = (y1,¥o,...,y,), are said to be equal
(written x = y) if x; = y;, fori = 1,2, ..., n.

— Addition: If x and y are n-vectors, their sum x + y is the n-vector whose :-th
elementisz; +y;, 1 =1,2,...,n.

— Scalar Multiplication: If x is an n-vector and )\ is a number, the product Az is the
vector whose i-th elementis A\z;, 2 = 1,2, ..., n.

e Given these two definitions, a number of properties follow immediately.

e Properties of Vector Addition:
— Commutative Law: 2 +y =y + .
— Associative Law: (z +y) + 2z =2+ (y + 2).
— Law of Subtraction: For every x and y, there is z such that x 4+ z = y.



e Properties of Scalar Multiplication:
— Vector Distributive Law: A (xz +y) = Az + Ay.
— Scalar Distributive Law: (A + ) x = Az + p.
— Scalar Associative Law: \(ux) = (Ap)x.
— Identity Law: 1x = x (here 1 is the scalar ‘one’).

e Vector Spaces:

The properties listed above may be taken as axioms for an abstract algebraic system.
Such systems are called vector spaces.

— The vector space that we will study consists of
- the field R,
- the n-space R",
- the operations of addition and scalar multiplication.
— We will, as a shorthand, refer to this vector space by R".



2. Linear Dependence of Vectors

e A set of vectors z', 22, ...,z™ (here z' = (x4, 1),...,x}) € R" is a vector) is linearly

cey n

dependent if there exist numbers A\, \o, ..., \,,,, not all zero, such that
Mzl 4+ Aoz + ...+ \,z™ = 0 (the zero vector in R™).

e A set of vectors is called linearly independent if the vectors are not linearly depen-
dent.

#1. Are the following two vectors in %2, 2! = (1,2) and 2* = (-3, -6), linearly
dependent?

#2. Are the following two vectors in ®?, 2! = (1,2) and 2 = (0, 1), linearly dependent?

#3. Are the following three vectors in 1% z! = (1,1), 2* = (2,3) and z° = (3,7) linearly
dependent?

#4. Show that the unit vectors in }?, ¢! = (1,0) and e* = (0, 1) are linearly independent.
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e A vector y € R" can be written as a linear combination of the set of vectors z', 2,

.., 2™ in R" if there are numbers A, \o, ..., \,,, such that

y = Mzl + Nox? + ...+ N,z

#5. Express y = (0, 0) as a linear combination of ! = (1,2) and z* = (1,0).
#6. Express y = (3,2) as a linear combination of z! = (1,0) and z* = (0,1).

#7. Show that any vector in " can be written as a linear combination of the unit vectors
el e? ... e"in R

e Theorem 1 (Fundamental Theorem on Vector Spaces):

If each of the (m + 1) vectors y°, 4, ..., y™ in k" can be expressed as a linear combi-
nation of the m vectors ', 2%, ..., x™ in ", then the vectors ", y', ..., y™ are linearly
dependent.

— Proof: See Gale (1960).



e Corollary 1: Any set of (n + 1) vectors in R" are linearly dependent.
— Proof: To be discussed in class.
e Corollary 2: Any system of n homogenous linear equations in (n + 1) unknowns,

apro + ayixy + ... + apx, = 0,
as0To + ao1x1 + ... + agpx, = 0,

AnoTo + Ap1T1 + ... + Appxy, = 0,
has a non-zero solution.
— Proof: To be discussed in class.



3. Rank and Basis

e Rank: Let S be a subset of the vector space R". The rank of S is the maximum
number of linearly independent vectors which can be chosen from S.

— Note that rank(S) < n since (n + 1) vectors in S are linearly dependent by Corollary
1.

e Basis: Let S be a subset of the vector space R". If r is the rank of .S, then any set of
r linearly independent vectors in S is called a basis of S.

#8. Consider S; = {(1,0),(0,1)} in ®2. What is the rank of S;?
#9. Consider S, = {(0,0)} in %2 What is the rank of Sy?

#10. (a) Are the following three vectors in ®°, z = (1,0,0), ¥ = (1,1,0) and z = (1,1,1)
linearly dependent?

(b) Consider S5 = {(z1,22,z3) € R*: 2y =1} . What is the rank of S5? Find out a
basis of Ss.



e Corollary 3: R" has rank n.
— Proof: To be discussed in class.

e Theorem 2: (Basis Theorem):
Suppose !, 22, ..., 2™ are linearly independent vectors in the set S (in R").

2 m

(i) If every vector y in S can be expressed as a linear combination of z!, z*, ..., 2™,
then (z', 27, ...,z™) is a basis of S.
(ii) If (xl, 2, .. a:m) is a basis of S, then every vector y in S can be expressed as a

2 m

linear combination of z', z*, ..., x™.
— Proof: To be discussed in class.



4. Inner Product and Norm

¢ Inner Product: If x and y are two vectors in R", then their inner product is
TY = T1Y1 + T2Y2 + ... T Tpln.

— Note that inner product is a scalar (not a vector).
—ze' =x;,1=1,2,...,n, where €' is the i-th unit vector.

e Properties of Inner Product:
— Commutative Law: zy = yx
— Mixed Associative Law: (Az)y = X (zy) [\ is a scalar]
— Distributive Law: (z +y) z = xz + yz
-2 =xx =0ifand only if z = 0.
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e Norm of a Vector: The (Euclidean) norm of a vector x in " is defined as
lz]l = (z2)? = (22 + 22 + ... + 22)7

e Properties of Norm:

— ||| = 0ifand only if x = 0

= |zl = [A] [|]

— ||z + y|| < ||=|| + ||y|| (Triangle Inequality for norms)

—If zy = 0, then ||z + y|° = ||z||” + ||y||° (Pythagoras Theorem).

e Orthogonal Vectors: Two vectors x and y are called orthogonal if their inner product
IS zero, that is, if zy = 0.

e Orthonormal Vectors: Two vectors x and y are called orthonormal if
(a) x and y are orthogonal, and

(0) [zl = llyll = 1.
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e Must read the following sections from the textbook:
Sections 10.1 — 10.4 (pages 199 — 214),
Sections 11.1 — 11.3 (pages 237 — 249).

e Much of this material is standard in texts on linear algebra, like
1. Hadley, G., Linear Algebra, Massachusetts: Addison-Wesley, 1964 (chapter 2),
2. Hohn, Franz E., Elementary Matrix Algebra, New Delhi: Amerind, 1971 (chapters
4,5).
e A good exposition can also be found in

3. Gale, David, The Theory of Linear Economic Models, New York: McGraw-Hill, 1960
(chapter 2).

— You will find a proof of the fundamental theorem on vector spaces (by using math-
ematical induction) in Gale’s book.



