Linear Algebra: Matrices

1. Matrix Algebra

• An $m \times n$ matrix is a rectangular array of numbers a_{ij} , i = 1, 2, ..., m; j = 1, 2, ..., n:

$$A_{m \times n} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- The vector $A_i = (a_{i1}, a_{i2}, ..., a_{in}) \in \Re^n$ is called the *i*-th *row vector* of $A_{m \times n}$.
- The vector

$$A^{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

is called the *j*-th column vector of $A_{m \times n}$.

- The matrix $A_{m \times n}$ has m row vectors $A_1, A_2, ..., A_m$ and n column vectors $A^1, A^2, ..., A^n$.

- An $m \times n$ matrix can be interpreted as an ordered set of m row vectors $(A_1, A_2, ..., A_m)$, or as an ordered set of n column vectors $(A^1, A^2, ..., A^n)$.
- \Rightarrow The operations on matrices follow from the operations on vectors.

• Matrix Operations:

- Equality of Matrices:

Two $m \times n$ matrices A and B are equal (written A = B) if $a_{ij} = b_{ij}$, i = 1, 2, ..., m; j = 1, 2, ..., n.

- Addition of Matrices:

If A and B are $m \times n$ matrices, their sum, A + B, is an $m \times n$ matrix, $(a_{ij} + b_{ij})$.

– Multiplication of a Matrix by a Scalar:

If A is an $m \times n$ matrix, and λ is a scalar, their product, λA , is an $m \times n$ matrix (λa_{ij}) .

- Matrix Multiplication:

Let *A* be an $m \times n$ matrix, and *B* an $n \times r$ matrix. Then *B* can be *premultiplied* by *A*, or *A* can be *postmultiplied* by *B*. The matrix product, *AB*, is an $m \times r$ matrix given by $\left(\sum_{k=1}^{n} a_{ik}b_{kj}\right)$, i = 1, 2, ..., m; j = 1, 2, ..., r.

- Properties of Matrix Operations:
 - Commutative Law for Addition: A + B = B + A;
 - Associative Law for Addition: (A + B) + C = A + (B + C);
 - Associative Law for Multiplication: (AB) C = A (BC) = ABC;

- Distributive Laws:
$$A(B+C) = AB + AC;$$

 $(B+C)A = BA + CA.$

• Words of Caution:

Some results which are true for real numbers are not necessarily true for matrices.

- AB is not necessarily equal to BA.

#1. Give an example.

- AB = 0 is possible with neither A nor B being the null matrix. #2. Give an example.

- CD = CE with C not a null matrix is possible without D and E being equal. #3. Give an example.

• Transpose of a Matrix:

If A is an $m \times n$ matrix, then the $n \times m$ matrix B defined by

$$b_{ij} = a_{ji}, i = 1, 2, ..., n; j = 1, 2, ..., m$$

is called the *transpose* of A, and is denoted by A^T .

• Properties of Transpose:

 $- (A^T)^T = A;$ $- (A + B)^T = A^T + B^T;$ $- (AB)^T = B^T A^T.$

- Some Special Matrices:
 - Square Matrix: An $m \times n$ matrix is a square matrix if m = n.
 - **Symmetric Matrix:** An $n \times n$ matrix is symmetric if $a_{ij} = a_{ji}$ for $i \neq j$.
 - Diagonal Matrix: An $n \times n$ matrix is a diagonal matrix if $a_{ij} = 0$ for $i \neq j$.
 - Identity Matrix: An $n \times n$ matrix is an identity matrix (denoted by I_n or I) if

$$a_{ii} = 1$$
 for $i = 1, 2, ..., n$,
 $a_{ij} = 0$ for $i \neq j$.

– Null Matrix: An $m \times n$ matrix is a null matrix (denoted by 0) if

$$a_{ij} = 0, \ i = 1, 2, ..., n; \ j = 1, 2, ..., m.$$

- Properties of Identity Matrix and Null Matrices:
 - -A + 0 = A = 0 + A-0A = 0 = A0-IA = A = AI

5

2. Rank of a Matrix

- Let A be an $m \times n$ matrix.
 - Consider the set of row vectors: $\{A_1, A_2, ..., A_m\}$. Row rank of $A = \text{rank} \{A_1, A_2, ..., A_m\}$.
 - Consider the set of column vectors: $\{A^1, A^2, ..., A^n\}$. Column rank of $A = \operatorname{rank} \{A^1, A^2, ..., A^n\}$.

• Theorem 1 (Rank Theorem):

For any $m \times n$ matrix A, row rank of A =column rank of A.

- Proof: See Gale (1960).
- In view of the Rank Theorem, simply refer to the rank of A (denoted by rank (A)).

• Non-Singular Matrix:

- If A is an $n \times n$ matrix, then A is called *non-singular* if rank (A) = n.
- A is called *singular* if rank (A) < n.

3. Inverse of a Matrix

• Let A be an $n \times n$ matrix. If B is an $n \times n$ matrix such that

```
AB = I, and BA = I,
```

then A is *invertible* and B is called the *inverse* of A (denoted by A^{-1}).

• Properties of Inverse:

- $-(A^{-1})^{-1} = A;$
- $-(AB)^{-1} = B^{-1}A^{-1};$
- $-\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}.$

• Relationship between Invertible and Non-Singular Matrices:

- If A is an $n \times n$ matrix which is invertible, then A is non-singular.
 - Proof: To be discussed in class.
 - Hints:

1. Method of contradiction: Assume that A is invertible, but singular, and then show that there will be a contradiction.

2. Use the implication of the definition of 'singularity' of A working through the linear dependence/independence of the column/row vectors of A.

– If A is an $n \times n$ matrix which is non-singular, then A is invertible.

- Proof: To be discussed in class.
- Hints:

Step 1: A is non-singular \Rightarrow rank $(A) = n \Rightarrow$ column vectors of A, $(A^1, A^2, ..., A^n)$, are linearly independent.

 $\Rightarrow (A^1, A^2, ..., A^n)$ is a basis of \Re^n so that any vector in \Re^n can be expressed as a linear combination of $(A^1, A^2, ..., A^n)$ (by the Basis Theorem).

– Observe that the column vectors of I (the identity matrix) are the unit vectors in \Re^n .

– Think about how you can construct a matrix *B* with column vectors $(B^1, B^2, ..., B^n)$ such that AB = I.

Step 2: Same as Step 1 for the row vectors of A, $(A_1, A_2, ..., A_n)$.

– Think about how you can construct a matrix *C* with row vectors $(C_1, C_2, ..., C_n)$ such that CA = I.

Step 3: Summarizing, you have constructed matrices *B* and *C* such that AB = I and CA = I. Now show that B = C.

References

- Must read the following sections from the textbook: Sections 8.1 – 8.2 (pages 153 – 162).
- This material on matrix algebra can be found in standard texts like
- 1. Hohn, Franz E., *Elementary Matrix Algebra*, New Delhi: Amerind, 1971 (chapters 1, 6),
- 2. Hadley, G., Linear Algebra, Massachusetts: Addison-Wesley, 1964 (chapter 3).
- A good discussion on the rank of a matrix is in
- 3. Gale, David, *The Theory of Linear Economic Models*, New York: McGraw-Hill, 1960 (chapter 2).
 - A proof of the "rank theorem" can be found here.
- You will also find a good exposition of matrix algebra in
- 4. Dorfman, Robert, Paul A. Samuelson and Robert M. Solow, *Linear Programming and Economic Analysis*, New York: McGraw-Hill, 1958 (Appendix B).