Linear Algebra:

Simultaneous Linear Equations




1. System of Linear Equations

e Consider a system of m simultaneous linear equations in n unknowns:

a11r1 + a9 + ... + a1y = Cq,
a21T1 -+ a99T9 + ...+ AonLy = Co, (*)
Q11 + Ao + ... + Qi ®y = Cm,

— In matrix-vector notation, we can write this system as

Ax = ¢, where

appz Qi -+ Qip o] C1

A o a1 a2 - Q2p o T2 o C2
mxn — : —_— : y Tpxl =— : y Cmx1 —

Aml Am2 * - Amnp Lp Cm

e The system of equations (*) is called homogeneous if ¢ = 0, and non-homogeneous
if ¢ # 0.
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¢ I[n analyzing a system of linear equations (*), the following questions naturally arise:
(i) Existence: Does there exist a solution to (*)?
(i) Uniqueness: If there exists a solution to (*), is it unique?

(iii) Computation: If there exists a solution to (*), how can we find such a solution?



2. Existence of Solutions

e If the system of equations (*) is homogeneous, there is always a trivial solution,
namely x = 0.

#1. Give an example to illustrate that if the system of equations is non-homogeneous,
then, in general, a solution may not exist.

¢ In general, given the system of equations (*), we would like to know, given A and c,
whether there is a solution to (*).

e Consider the system Ax = c.
— The m x (n + 1) matrix

aip Qi -+ Qaip C1

a1 Q22 -+ Q2np C2
Ac — ) ) . .n )

aAmi1 Am2 - Amnp Cm

is known as the augmented matrix.
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— Note that the augmented matrix A. can be interpreted as an ordered set of n + 1
column vectors (A!, A% ..., A" c) .

e Theorem 1:

Let A be an m x n matrix and c be a vector in R". Then the system of equations
Az = c has a solution if and only if

rank (A) = rank (A.).
— Proof: To be discussed in class.

— Hints:

1. Keep in mind that the augmented matrix A. can be interpreted as an ordered
set of n + 1 column vectors (A, A%, ..., A" ¢).

2. Recognize that Az = ¢ has a solution implies that ¢ can be expressed as a linear
combination of the column vectors of 4, (A, A%, ..., A").



3. Uniqueness of Solutions

e Theorem 2:

Let A be an m x n matrix and c be a vector in R"". Then the system of equations
Az = ¢ has a unique solution if and only if

rank (A) = rank (A.) =n.
— Proof: To be discussed in class.
— Hints:

1. Step1: To show that if there exists a unique solution, then rank (A) =rank (A,) =
n.

- Given that there exists a unique solution, call it z* (that is, Az* = ¢). Then, by
Theorem 1, rank (A) =rank (A,).

- It remains to show that rank (A) = n.
- If rank (A) # n, then it must be that rank (A) < n.



= (A!, A% ..., A") is a set of linearly dependent vectors.
= There exists a vector A = (A1, A2, ...\,,) , A # 0, such that A\ = 0.

- Now try to find out a contradiction to the fact that there exists a unique solution.

2. Step 2: To show that if rank (A) = rank (A.) = n, then there exists a unique
solution.



4. Calculation of Solutions

e Consider the case of n linear equations in n unknowns. Let A be an n x n matrix,
and c be a vector in . Consider the system of equations given by

Axr = c.

#2. Prove that if rank (A) = n, then rank (A.) = n.

— In view of this and Theorem 2, we have to check only if rank (A) = n to see whether
a unigue solution exists.

e rank (A) = n, = A is non-singular, = A is invertible,
= Premultiplying Az = c by A~ we get
A A =A""te, = ITe=A""¢, =z=A4"'c
So z = A~ !cis the solution.

— In terms of calculating this solution, it remains to learn how to calculate A=l the
inverse of a non-singular matrix.

- This leads us naturally into the study of determinants.



5. Determinants

e Let A be an n x n matrix. We can associate with A a number, denoted by |A|, called
the determinant of A.

e The determinant of the n x n matrix is defined recursively as follows:

(1) For a 1 x 1 matrix, which is a number, we define the determinant to be the number
itself.

(2) For any m x m matrix A (m > 2), the cofactor A;; of the element a;; is (—1)""” times
the determinant of the submatrix obtained from A by deleting row ¢ and column ;.
The determinant of the m x m matrix is then given by

m

‘Al — Z alelj'

j=1

— Thus using (2) and knowing (1), the determinant of a 2 x 2 matrix is

11022 — A120921-
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— This information can then be used in (2) again to obtain the determinantofa 3 x 3
matrix:
anAn + apAip + a13Ai3

— a11 (&22&33 — a32G23) — a12 (a21a33 — @31a23) + 413 (CL21&32 — a31a22) .
— This procedure can be continued to obtain the determinant of any n x n matrix.

— It is implicit in the definition of | A| that the expansion is done by the first row. How-
ever, it can be shown that for every : = 1,2, ..., n,

n

Al =) a;;A;

j=1
so that expansion by any row will give the same result.
— Expansion by any column will also give the same result, that is, for every j =
1,2,...,n,

n

1=1
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e Properties of Determinants:
(i) |A| = |AT].
(i) The multiplication of any one row by a scalar £ will change the determinant k-fold.

(iii) The interchange of any two rows will alter the sign, but not the numerical value, of
the determinant.

(iv) If one row is a multiple of another row, the determinant is zero.

(v) The addition of a multiple of any row to another row will leave the determinant
unaltered.

(vi) The expansion of a determinant by “alien” cofactors yields a value of zero. That is,

n

ZaijAkj = O, if ¢ 7& k.

j=1
[Here the expansion is by the :-th row, using cofactors of the £-th row].
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(vii) | AB| = |A] |B]

— Properties (ii) — (v) hold if the word “row” is replaced uniformly by “column” in each
statement.

— The proofs will be discussed in class.
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6. Matrix Inversion

e Theorem 3:

Let A be ann x n matrix. Then A is invertible if and only if |A| # 0. Furthermore, in
case A is invertible, | A~ = |A|™".

— Proof: To be discussed in class.
— Hints:
1. Step1: To show that if A is invertible then |A| # 0. Use Property (vii).

2. Step 2: To show that if |A| # 0 then A is invertible.
- It is equivalent to show that A is nonsingular.

- Suppose not. Then the column vectors of A, (Al, A?, ...,A”) , are linearly de-
pendent.

= One column vector can be expressed as a linear combination of the other col-
umn vectors.

- Now use Property (v) to show that a contradiction arises.
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e |t follows that for an n x n matrix A, the following statements are equivalent:

— A is invertible;

— A is non-singular;

- [A[ # 0;

—rank (A) = n;

— Column vectors of A are linearly independent.

e Cofactor Matrix: For an n x n matrix A, we define the cofactor matrix of A to be the
n X n matrix given by

All A12 T Aln
O = A.Ql A.22 ) A.Qn
At Ay oe Ay,
e Adjoint Matrix: The transpose of C' is called the adjoint of A, and denoted by adj A,
thatis, adj A = C".



e By the rules of matrix multiplication,
(S ayAy Y apdsy - Y ayAy,
j:l j:l j:l

n n n
A0t — D agjAry ) asiAsj - ) agjAy;

J

n n n
D Ay Y aniAgy o D aniAy;

Al 0 - 0
] 0 JAL - 0

0 0 - |A
— |A|T.

— Note that this calculation is valid for any n x n matrix, invertible or otherwise.
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e Inverse of a Matrix:
— If Ais invertible, there is A~! suchthat AA=1 = A-1A=1.

— Consider the relation AC? = |A| I. Premultiplying by A~! we get
CT =|Al A7
— Since A is invertible, we have | A| # 0. Then we can divide by |A| and get
Ct  adj A
Al 1AL

Al =

- This gives a formula for computing the inverse of an invertible matrix A in terms
of the determinant and cofactors of A.
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7. Cramer’s Rule

e Recall that we wanted to calculate the unique solution of a system of n equations in
n unknowns given by

Axr =c

where A is an n x n matrix and c is a vector in R".
— We found that the unique solution is given by

r=A""te
— Using the formula for A~! derived above we conclude that
adj A
|A| C.

r=Alc=
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e Let us evaluate z; using the above relationship:

adj A
T, = €T = e Al C
B (A1 Agi ... Api) e
- |A]
B (c1 A1 + coAoi + ... + cAni)
- Al
ayy -+ ai -1 €1 A1 441 - QAip
_ L agr -+ A2 -1 C2 A2 441 " A2y
_ ‘A‘ . . . . . )
(pi =+ Ap i1 Cp Qp i+1 " Anp

e This gives us an easy way to compute the solution of z;:
— Replace the i-th column of A by the vector ¢ and find the determinant of this matrix.
— Dividing this number by the determinant of A yields the solution of z;.
— This rule is known as Cramer's Rule.
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