
Linear Algebra:

Simultaneous Linear Equations
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1. System of Linear Equations
� Consider a system of m simultaneous linear equations in n unknowns:

a11x1 + a12x2 + ::: + a1nxn = c1;
a21x1 + a22x2 + ::: + a2nxn = c2;

...
am1x1 + am2x2 + ::: + amnxn = cm;

(*)

� In matrix-vector notation, we can write this system as

Ax = c; where

Am�n =

0BB@
a11 a12 � � � a1n
a21 a22 � � � a2n
... ... . . . ...
am1 am2 � � � amn

1CCA ; xn�1 =
0BB@
x1
x2
...
xn

1CCA ; cm�1 =
0BB@
c1
c2
...
cm

1CCA :

� The system of equations (*) is called homogeneous if c = 0; and non-homogeneous
if c 6= 0.
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� In analyzing a system of linear equations (*), the following questions naturally arise:

(i) Existence: Does there exist a solution to (*)?

(ii) Uniqueness: If there exists a solution to (*), is it unique?

(iii) Computation: If there exists a solution to (*), how can we �nd such a solution?
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2. Existence of Solutions
� If the system of equations (*) is homogeneous, there is always a trivial solution,
namely x = 0:

#1. Give an example to illustrate that if the system of equations is non-homogeneous,
then, in general, a solution may not exist.

� In general, given the system of equations (*), we would like to know, given A and c;
whether there is a solution to (*).

� Consider the system Ax = c.
� The m� (n + 1) matrix

Ac =

0BB@
a11 a12 � � � a1n c1
a21 a22 � � � a2n c2
... ... . . . ... ...
am1 am2 � � � amn cm

1CCA
is known as the augmented matrix.
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� Note that the augmented matrix Ac can be interpreted as an ordered set of n + 1
column vectors

�
A1; A2; :::; An; c

�
:

� Theorem 1:
Let A be an m � n matrix and c be a vector in <m: Then the system of equations
Ax = c has a solution if and only if

rank (A) = rank (Ac) :

� Proof: To be discussed in class.
� Hints:
1. Keep in mind that the augmented matrix Ac can be interpreted as an ordered
set of n + 1 column vectors

�
A1; A2; :::; An; c

�
.

2. Recognize that Ax = c has a solution implies that c can be expressed as a linear
combination of the column vectors of A;

�
A1; A2; :::; An

�
:
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3. Uniqueness of Solutions
� Theorem 2:
Let A be an m � n matrix and c be a vector in <m: Then the system of equations
Ax = c has a unique solution if and only if

rank (A) = rank (Ac) = n:

� Proof: To be discussed in class.
� Hints:
1. Step1: To show that if there exists a unique solution, then rank (A) = rank (Ac) =
n:

- Given that there exists a unique solution, call it x� (that is, Ax� = c): Then, by
Theorem 1, rank (A) = rank (Ac) :

- It remains to show that rank (A) = n:

- If rank (A) 6= n; then it must be that rank (A) < n:
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)
�
A1; A2; :::; An

�
is a set of linearly dependent vectors.

) There exists a vector � = (�1; �2; :::�n) ; � 6= 0; such that A� = 0:
- Now try to �nd out a contradiction to the fact that there exists a unique solution.

2. Step 2: To show that if rank (A) = rank (Ac) = n; then there exists a unique
solution.
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4. Calculation of Solutions
� Consider the case of n linear equations in n unknowns. Let A be an n � n matrix,
and c be a vector in <n: Consider the system of equations given by

Ax = c:

#2. Prove that if rank (A) = n; then rank (Ac) = n:
� In view of this and Theorem 2, we have to check only if rank (A) = n to see whether
a unique solution exists.

� rank (A) = n;) A is non-singular,) A is invertible,
) Premultiplying Ax = c by A�1 we get

A�1Ax = A�1c; ) Ix = A�1c; ) x = A�1c:

So x = A�1c is the solution.
� In terms of calculating this solution, it remains to learn how to calculate A�1; the
inverse of a non-singular matrix.
- This leads us naturally into the study of determinants.
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5. Determinants
� Let A be an n�n matrix. We can associate with A a number, denoted by jAj ; called
the determinant of A:

� The determinant of the n� n matrix is de�ned recursively as follows:
(1) For a 1� 1 matrix, which is a number, we de�ne the determinant to be the number
itself.

(2) For anym�mmatrix A (m � 2); the cofactor Aij of the element aij is (�1)i+j times
the determinant of the submatrix obtained from A by deleting row i and column j:
The determinant of the m�m matrix is then given by

jAj =
mX
j=1

a1jA1j:

� Thus using (2) and knowing (1), the determinant of a 2� 2 matrix is

a11a22 � a12a21:
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� This information can then be used in (2) again to obtain the determinant of a 3� 3
matrix:

a11A11 + a12A12 + a13A13
= a11 (a22a33 � a32a23)� a12 (a21a33 � a31a23) + a13 (a21a32 � a31a22) :

� This procedure can be continued to obtain the determinant of any n� n matrix.

� It is implicit in the de�nition of jAj that the expansion is done by the �rst row. How-
ever, it can be shown that for every i = 1; 2; :::; n;

jAj =
nX
j=1

aijAij

so that expansion by any row will give the same result.

� Expansion by any column will also give the same result, that is, for every j =
1; 2; :::; n;

jAj =
nX
i=1

aijAij:
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� Properties of Determinants:

(i) jAj =
��AT �� :

(ii) The multiplication of any one row by a scalar k will change the determinant k-fold.

(iii) The interchange of any two rows will alter the sign, but not the numerical value, of
the determinant.

(iv) If one row is a multiple of another row, the determinant is zero.

(v) The addition of a multiple of any row to another row will leave the determinant
unaltered.

(vi) The expansion of a determinant by �alien� cofactors yields a value of zero. That is,
nX
j=1

aijAkj = 0; if i 6= k:

[Here the expansion is by the i-th row, using cofactors of the k-th row].
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(vii) jABj = jAj jBj :

� Properties (ii) � (v) hold if the word �row� is replaced uniformly by �column� in each
statement.

� The proofs will be discussed in class.
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6. Matrix Inversion
� Theorem 3:
Let A be an n� n matrix. Then A is invertible if and only if jAj 6= 0: Furthermore, in
case A is invertible,

��A�1�� = jAj�1 :
� Proof: To be discussed in class.
� Hints:
1. Step1: To show that if A is invertible then jAj 6= 0: Use Property (vii).

2. Step 2: To show that if jAj 6= 0 then A is invertible.
- It is equivalent to show that A is nonsingular.

- Suppose not. Then the column vectors of A;
�
A1; A2; :::; An

�
; are linearly de-

pendent.

) One column vector can be expressed as a linear combination of the other col-
umn vectors.

- Now use Property (v) to show that a contradiction arises.
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� It follows that for an n� n matrix A; the following statements are equivalent:
� A is invertible;

� A is non-singular;

� jAj 6= 0;

� rank (A) = n;

� Column vectors of A are linearly independent.

� Cofactor Matrix: For an n�n matrix A; we de�ne the cofactor matrix of A to be the
n� n matrix given by

C =

0BB@
A11 A12 � � � A1n
A21 A22 � � � A2n
... ... . . . ...
An1 An2 � � � Ann

1CCA :
� Adjoint Matrix: The transpose of C is called the adjoint of A; and denoted by adj A;
that is, adj A = CT :
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� By the rules of matrix multiplication,

ACT =

0BBBBBBBB@

nP
j=1

a1jA1j
nP
j=1

a1jA2j � � �
nP
j=1

a1jAnj

nP
j=1

a2jA1j
nP
j=1

a2jA2j � � �
nP
j=1

a2jAnj

... ... . . . ...
nP
j=1

anjA1j
nP
j=1

anjA2j � � �
nP
j=1

anjAnj

1CCCCCCCCA

=

0BB@
jAj 0 � � � 0
0 jAj � � � 0
... ... . . . ...
0 0 � � � jAj

1CCA

= jAj I:

� Note that this calculation is valid for any n� n matrix, invertible or otherwise.
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� Inverse of a Matrix:

� If A is invertible, there is A�1 such that AA�1 = A�1A = I:

� Consider the relation ACT = jAj I: Premultiplying by A�1 we get

CT = jAjA�1:

� Since A is invertible, we have jAj 6= 0: Then we can divide by jAj and get

A�1 =
CT

jAj =
adj A

jAj :

- This gives a formula for computing the inverse of an invertible matrix A in terms
of the determinant and cofactors of A.
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7. Cramer's Rule
� Recall that we wanted to calculate the unique solution of a system of n equations in
n unknowns given by

Ax = c

where A is an n� n matrix and c is a vector in <n:
�We found that the unique solution is given by

x = A�1c:

� Using the formula for A�1 derived above we conclude that

x = A�1c =
adj A

jAj c:
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� Let us evaluate xi using the above relationship:

xi = eix = ei
adj A

jAj c

=
(A1i A2i ... Ani) c

jAj

=
(c1A1i + c2A2i + ::: + cnAni)

jAj

=
1

jAj

��������
a11 � � � a1; i�1 c1 a1; i+1 � � � a1n
a21 � � � a2; i�1 c2 a2; i+1 � � � a2n
... . . . ... ... ... . . . ...
an1 � � � an; i�1 cn an; i+1 � � � ann

�������� :
� This gives us an easy way to compute the solution of xi:
� Replace the i-th column of A by the vector c and �nd the determinant of this matrix.
� Dividing this number by the determinant of A yields the solution of xi:
� This rule is known as Cramer's Rule.
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