Linear Algebra: Characteristic Value Problem

1. The Characteristic Value Problem

- \bullet Let \Re be the set of real numbers and \complement be the set of complex numbers.
- Given an $n \times n$ real matrix A, does there exist a number $\lambda \in C$ and a non-zero vector $x \in C^n$ such that

$$Ax = \lambda x? \tag{1}$$

This is known as the *characteristic value problem* or the *eigenvalue problem*.

- If $x \neq 0$ and λ satisfy the equation $Ax = \lambda x$, then λ is called a *characteristic value* or *eigenvalue* of A, and x is called a *characteristic vector* or *eigenvector* of A.
- Clearly, (1) holds if and only if

$$(A - \lambda I) x = 0. \tag{2}$$

- But (2) holds for non-zero x if and only if the column vectors of $(A - \lambda I)$ are linearly dependent, that is,

$$|A - \lambda I| = 0. \tag{3}$$

This equation is called the *characteristic equation* of A.

- Consider the expression

$$f(\lambda) = |A - \lambda I|.$$
(4)

- f is a polynomial of degree n in λ . It is called the *characteristic polynomial* of A.
- **Example:** Consider the 2×2 matrix

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right).$$

- The characteristic equation is:

$$\begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = 0, \Rightarrow (2-\lambda)^2 - 1 = 0, \Rightarrow (\lambda - 1)(\lambda - 3) = 0.$$

Thus, the characteristic roots are $\lambda = 1$ and $\lambda = 3$.

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which yields

$$x_1 + x_2 = 0.$$

- Thus the general solution of the characteristic vector corresponding to the characteristic root $\lambda=1$ is given by

$$(x_1, x_2) = \theta (1, -1), \text{ for } \theta \neq 0.$$

- Similarly, corresponding to the characteristic root $\lambda = 3$, we have the characteristic vector given by

$$(x_1, x_2) = \theta(1, 1), \text{ for } \theta \neq 0.$$

- In general, the characteristic equation will have n roots in the complex plane (by the "Fundamental Theorem of Algebra"), since it is a polynomial equation (in λ) of degree n. (Of course some of these roots might be repeated.)
 - In general, the corresponding eigenvectors will also have their components in the complex plane.
- **Example:** Consider the 2×2 matrix

$$A = \left(\begin{array}{cc} 1 & 2\\ -2 & 1 \end{array}\right).$$

 Check that the eigenvalues are complex numbers and the eigenvectors have complex components.

2. Characteristic Values, Trace & Determinant of a Matrix

• If A is an $n \times n$ matrix, the *trace* of A, denoted by tr(A), is the number defined by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$
#1. Consider the 2×2 matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

- Write down the characteristic equation.
- Suppose λ_1 and λ_2 are two characteristic values of A. Prove that

(a) $\lambda_1 + \lambda_2 = \operatorname{tr}(A)$; and (b) $\lambda_1 \lambda_2 = |A|$.

• In general, for an $n \times n$ matrix A, with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, we have

$$\sum_{i=1}^n \lambda_i = \operatorname{tr}(A), \text{ and } \prod_{i=1}^n \lambda_i = |A|.$$

3. Characteristic Values & Vectors of Symmetric Matrices

- There is considerable simplification in the theory of characteristic values if *A* is a *symmetric* matrix.
- Theorem 1:
 - If A is an $n \times n$ symmetric matrix, then all the eigenvalues of A are real numbers and its eigenvectors are real vectors.
 - We will develop the theory of eigenvalues and eigenvectors *only for symmetric matrices*.

• Normalized Eigenvectors:

- Note that if x is an eigenvector corresponding to an eigenvalue λ , then so is tx, where t is any non-zero scalar.
- So we normalize the eigenvectors.
- A normalized eigenvector is an eigenvector with (Euclidean) norm equal to 1.

- Let $x = (x_1, x_2, ..., x_n)$ be an eigenvector with norm $||x|| = (x_1^2 + x_2^2 + ... + x_n^2)^{\frac{1}{2}}$. - Since x is a non-zero vector, ||x|| > 0. Define

$$y = \left(\frac{x_1}{\|x\|}, \frac{x_2}{\|x\|}, \dots, \frac{x_n}{\|x\|}\right)$$

Now we have ||y|| = 1, that is, y is a normalized eigenvector.

4. Spectral Decomposition of Symmetric Matrices

- (To proceed, we specialize further we consider *symmetric* matrices with *distinct* eigenvalues, that is, $\lambda_i \neq \lambda_j$.)
- Orthogonal Matrix: An $n \times n$ matrix C is called an *orthogonal* matrix if C is invertible and its inverse equals its transpose, that is, $C^T = C^{-1}$.

• Theorem 2:

Let A be an $n \times n$ symmetric matrix with n distinct eigenvalues, $\lambda_1, \lambda_2, ..., \lambda_n$. If $y^1, y^2, ..., y^n$ are (normalized) eigenvectors corresponding to the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, then the matrix B such that B^i , the *i*-th column vector of B, is the vector y^i (i = 1, 2, ..., n), is an orthogonal matrix.

- Proof: To be discussed in class.

– Hints: 3 steps:

- Step 1. If $i \neq j$, then $(y^i)^T y^j = 0$.

Use the definition (equation (1)) to prove that $(y^j)^T A y^i = \lambda_i (y^j)^T y^i$ and, at the same time, $(y^j)^T A y^i = \lambda_j (y^j)^T y^i$.

- Step 2. *B* is invertible.

Show that the vectors $y^1, y^2, ..., y^n$ are linearly independent.

- Step 3. $B^{-1} = B^T$.

Show directly that $B^T B = I$ (the identity matrix).

• Theorem 3 (Spectral Decomposition):

Let *A* be an $n \times n$ symmetric matrix with *n* distinct eigenvalues, $\lambda_1, \lambda_2, ..., \lambda_n$. Let $y^1, y^2, ..., y^n$ are (normalized) eigenvectors corresponding to the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Let *B* be the $n \times n$ matrix such that B^i , the *i*-th column vector of *B*, is the vector y^i (i = 1, 2, ..., n). Then

$$A = BLB^T$$

where *L* is the diagonal matrix with the eigenvalues of *A* ($\lambda_1, \lambda_2, ..., \lambda_n$) on its diagonal.

- **Remark:** The above expression shows that matrix A can be "decomposed" into a matrix L consisting of its eigenvalues on the diagonal and the matrices B and B^T which consists of its eigenvectors.
- Proof: To be discussed in class.

- Hints: Consider any two $n \times n$ matrices, C and D.
 - Let $(C_1, C_2, ..., C_n)$ be the set of row vectors of C and $(D^1, D^2, ..., D^n)$ be the set of column vectors of D.
 - To prove Theorem 3 use the following observation on matrix multiplication:

$$CD = \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_4 \end{pmatrix} \begin{pmatrix} D^1 & D^2 & \cdots & D^n \end{pmatrix}$$

$$= \begin{pmatrix} C_1 D^1 & C_1 D^2 & \cdots & C_1 D^n \\ C_2 D^1 & C_2 D^2 & \cdots & C_2 D^n \\ \vdots & \vdots & \ddots & \vdots \\ C_n D^1 & C_n D^2 & \cdots & C_n D^n \end{pmatrix}$$

 $= \left(CD^1 \ CD^2 \ \cdots \ CD^n \right).$

5. Quadratic Forms

• A *quadratic form* on \Re^n is a real-valued function of the form

$$Q(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

= $a_{11} x_1 x_1 + a_{12} x_1 x_2 + ... + a_{1n} x_1 x_n$
 $+ a_{21} x_2 x_1 + a_{22} x_2 x_2 + ... + a_{2n} x_2 x_n$
 $+ ... + a_{n1} x_n x_1 + a_{n2} x_n x_2 + ... + a_{nn} x_n x_n.$

• A quadratic form Q can be represented by a matrix A so that

$$Q\left(x\right) = x^{T}Ax$$

where

$$A_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \text{ and } x_{n \times 1} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Note that a_{ij} and a_{ji} are both coefficients of $x_i x_j$ when $i \neq j$.
 - The coefficient of $x_i x_j$ is $(a_{ij} + a_{ji})$ when $i \neq j$.
 - If $a_{ij} \neq a_{ji}$, we can uniquely define new coefficients

$$b_{ij} = b_{ji} = rac{a_{ij} + a_{ji}}{2}$$
, for all i, j

so that $b_{ij} + b_{ji} = a_{ij} + a_{ji}$, and $B = (b_{ij}) = B^T$, that is B is a symmetric matrix.

- This redefinition of the coefficients does not change the value of Q for any x.
- Thus we can always assume that the matrix A associated with the quadratic form $x^T A x$ is symmetric.

- Examples:
 - The general quadratic form in two variables is

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2.$$

In matrix form this can be written as

$$(x_1 \quad x_2) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right).$$

- The general quadratic form in three variables

$$a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

can be written as

$$(x_1 \ x_2 \ x_3) \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} \\ \frac{1}{2}a_{12} & a_{22} & \frac{1}{2}a_{23} \\ \frac{1}{2}a_{13} & \frac{1}{2}a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

٠

• Definiteness of Quadratic Forms:

Let A be a symmetric $n \times n$ matrix. Then

- A is positive definite if $x^T A x > 0$ for all x in $\Re^n, x \neq 0$.
- A is negative definite if $x^T A x < 0$ for all x in $\Re^n, x \neq 0$.
- A is positive semi-definite if $x^T A x \ge 0$ for all x in \Re^n .
- A is negative semi-definite if $x^T A x \leq 0$ for all x in \Re^n .
- A is *indefinite* if $x^T A x > 0$ for some x in \Re^n and $x^T A x < 0$ for some other x in \Re^n .

– Remarks:

Consider, for example, the definition of positive definiteness. Note that the relevant inequality must hold for *every* vector $x \neq 0$ in \Re^n .

- Observation 1: If we know that A is positive definite, then we should be able to infer some useful properties of A quite easily.

- #2. Prove that if a symmetric $n \times n$ matrix A is positive definite then all its diagonal elements must be positive.
- Observation 2: On the other hand, if we do not know that A is positive definite, then the above definition by itself will not be very easy to check to determine whether A is positive definite or not.
- \rightarrow This observation leads one to explore convenient characterizations of quadratic forms.

6. Characterization of Quadratic Forms

• Theorem 4:

- Let A be a symmetric $n \times n$ matrix with distinct eigenvalues, $\lambda_1, \lambda_2, ..., \lambda_n$. Then
- (a) *A* is positive (negative) definite if and only if every eigenvalue of *A* is positive (negative);
- (b) *A* is positive (negative) semi-definite if and only if every eigenvalue of *A* is non-negative (non-positive);
- (c) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.
 - Proof: To be discussed in class.
 - Hints: Use the spectral decomposition of A given in Theorem 3.

#3. Examples: Consider the following matrices:

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} -1 & 1 \\ 1 & -3 \end{pmatrix}; C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Find out their eigenvalues, and characterize them (in terms of definiteness).

7. Alternative Characterization of Quadratic Forms

- An alternative way to characterize quadratic forms is in terms of the signs of the "principal minors" of the corresponding matrix.
- If A is an $n \times n$ matrix, a principal minor of order r is the determinant of the $r \times r$ submatrix that remains when (n r) rows and (n r) columns with the same indices are deleted from A.
- **Example:** Consider the 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

- The principal minors of order 2 are:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}; \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}; \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

– The principal minors of order 1 are:

 $a_{11}; a_{22}; a_{33}.$

- The principal minors of order 3 is: |A|.
- If A is an $n \times n$ matrix, the **leading principal minor of order** r is defined as

$$A_r = \begin{vmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix}.$$

• **Example:** For the 3×3 matrix A, the three leading principal minors are

$$A_1 = a_{11}; \ A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}; \ A_3 = |A|.$$

• Theorem 5:

Let A be a symmetric $n \times n$ matrix. Then

(a) A is positive definite if and only if all its n leading principal minors are positive.

- (b) *A* is negative definite if and only if all its *n* leading principal minors alternate in sign, starting with negative. (That is, the *r*-th leading principal minor, A_r , r = 1, 2, ..., n, has the same sign as $(-1)^r$.)
- (c) If some r-th leading principal minor of A (or some pair of them) is non-zero but does not fit into either of the two sign patterns in (a) and (b), then A is indefinite.
- (d) *A* is positive semi-definite if and only if every principal minor of *A* of every order is non-negative.
- (e) *A* is negative semi-definite if and only if every principal minor of *A* of odd order is non-positive and every principal minor of even order is non-negative.
 - Proof: See section 16.4 (pages 393 395) of the textbook.

• **Examples:** Consider the matrices studied above:

$$A = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}; B = \begin{pmatrix} -1 & 1 \\ 1 & -3 \end{pmatrix}; C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

#4. Characterize the matrices A, B and C (in terms of definiteness) using the principal minors criteria.

References

- Must read the following sections from the textbook:
 - Section 23.1 (pages 579 585): Definitions and Examples of Eigenvalues and Eigenvectors;
 - Section 23.3 (pages 597 601): Properties of Eigenvalues;
 - Section 23.7 (pages 620 626): Symmetric Matrices;
 - Sections 16.1 and 16.2 (pages 375 386): Quadratic Forms and Definiteness of Quadratic Forms;
 - Section 23.8 (pages 626 627): Definiteness of Quadratic Forms.
- Most of the materials covered can be found in
- 1. Hohn, Franz E., *Elementary Matrix Algebra*, New Delhi: Amerind, 1971 (chapters 9, 10),
- 2. Hadley, G., Linear Algebra, Massachusetts: Addison-Wesley, 1964 (chapter 7).