Linear Algebra:

Characteristic Value Problem




1. The Characteristic Value Problem

e Let i be the set of real numbers and L be the set of complex numbers.

e Given an n x n real matrix A, does there exist a number )\ € C and a non-zero vector
z € " such that

Ar = \x” (1)

This is known as the characteristic value problem or the eigenvalue problem.

—If x 4 0 and ) satisfy the equation Az = A\x, then \ is called a characteristic value
or eigenvalue of A, and x is called a characteristic vector or eigenvector of A.

— Clearly, (1) holds if and only if
(A= X))z =0. (2)

- But (2) holds for non-zero z if and only if the column vectors of (A — \I) are
linearly dependent, that is,

|[A—\| =0. 3)



This equation is called the characteristic equation of A.
— Consider the expression

f(A) =[A—=Al. 4)
- f is a polynomial of degree n in A. It is called the characteristic polynomial of A.

e Example: Consider the 2 x 2 matrix

— The characteristic equation is:

2—X 1
I 2—=A

Thus, the characteristic roots are A = 1 and A = 3.

—0,=>2-XN"=-1=0,=\A-1)(A=3)=0.




— Putting A = 1in (2), we get
11 I . 0
11 I B 0

a:1+a:2:().

which yields

- Thus the general solution of the characteristic vector corresponding to the char-
acteristic root A = 1 is given by

(l’l,l”g) =3’ (1, —1), for 6 7é 0.

- Similarly, corresponding to the characteristic root A = 3, we have the characteris-
tic vector given by

(x1,22) =6 (1,1), for 6 # 0.
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e In general, the characteristic equation will have n roots in the complex plane (by
the “Fundamental Theorem of Algebra”), since it is a polynomial equation (in \) of
degree n. (Of course some of these roots might be repeated.)

— In general, the corresponding eigenvectors will also have their components in the
complex plane.

e Example: Consider the 2 x 2 matrix
1 2
(7).

— Check that the eigenvalues are complex numbers and the eigenvectors have com-
plex components.
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2. Characteristic Values, Trace & Determinant of a Matrix

o If A is an n x n matrix, the frace of A, denoted by tr(A), is the number defined by

n

tr<A) = Z Qj; -

1=1

#1. Consider the 2 x 2 matrix A = ( 011 412 ) .
a21 Q422

— Write down the characteristic equation.
— Suppose \; and )\, are two characteristic values of A. Prove that

(@) \1 + Xo =1tr(A); and (b) M\ = |A].

e In general, for an n x n matrix A, with eigenvalues A\, X\o, ..., \,,, we have

zn: A =tr(A), and ﬁ%’ = |A].
1=1 =1
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3. Characteristic Values & Vectors of Symmetric Matrices

e There is considerable simplification in the theory of characteristic values if A is a
Symmetric matrix.

e Theorem 1:

If A is an n x n symmetric matrix, then all the eigenvalues of A are real numbers
and its eigenvectors are real vectors.

— We will develop the theory of eigenvalues and eigenvectors only for symmetric
matrices.

e Normalized Eigenvectors:

— Note that if x is an eigenvector corresponding to an eigenvalue A\, then so is tz,
where t IS any non-zero scalar.

— So we normalize the eigenvectors.

— A normalized eigenvector is an eigenvector with (Euclidean) norm equal to 1.
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— Let z = (21, z2, ..., z,,) be an eigenvector with norm ||z|| = (2 + 23 + ... + 22)*.

- Since z is a non-zero vector,

(:m To xn)
Yy = :
|| (]| |||

Now we have ||y|| = 1, that is, y is a normalized eigenvector.

z|| > 0. Define




4. Spectral Decomposition of Symmetric Matrices

e (To proceed, we specialize further — we consider symmetric matrices with distinct
eigenvalues, that is, \; # A;.)

e Orthogonal Matrix: An n xn matrix C'is called an orthogonal matrix if C'is invertible
and its inverse equals its transpose, that is, C* = C1.

e Theorem 2:

Let A be an n x n symmetric matrix with n distinct eigenvalues, \i, \o, ..., \,,. If

yt y?, ..., y" are (normalized) eigenvectors corresponding to the eigenvalues \i, \o, ..., \p,
then the matrix B such that B’, the i-th column vector of B, is the vector y' (i =
1,2,...,n), is an orthogonal matrix.

— Proof: To be discussed in class.



— Hints: 3 steps:
- Step 1. If i # j, then (yi)Tyj = 0.
Use the definition (equation (1)) to prove that (yj)TAyi =\ (yj)Tyi and, at the
] T : T
same time, (y/)" Ay’ =\ (v/)" v".

- Step 2. B is invertible.
Show that the vectors 3!, y?, ..., y" are linearly independent.

-Step 3. B! = B'.
Show directly that B! B = I (the identity matrix).
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e Theorem 3 (Spectral Decomposition):

Let A be an n x n symmetric matrix with n distinct eigenvalues, i, \o, ..., \,,. Let
yt %, ..., y" are (normalized) eigenvectors corresponding to the eigenvalues \i, \s, ..., \,.
Let B be the n x n matrix such that B', the i-th column vector of B, is the vector '

(:=1,2,....,n). Then
A= BLB"

where L is the diagonal matrix with the eigenvalues of A (A1, Ao, ..., \,) on its diago-
nal.

— Remark: The above expression shows that matrix A can be “decomposed” into a
matrix L consisting of its eigenvalues on the diagonal and the matrices B and B’
which consists of its eigenvectors.

— Proof: To be discussed in class.
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— Hints: Consider any two n x n matrices, C' and D.

- Let (C, Oy, ..., C,,) be the set of row vectors of C' and (D*, D?, ..., D") be the set
of column vectors of D.

- To prove Theorem 3 use the following observation on matrix multiplication:

Ch

CD = (’:2 (D' D? --- D")

Cy

OlDl ClD2 Can
OQDl CQD2 CQD”

c,p' C,D* ... C,D"

— (¢p* ¢D?* ... CD").



5. Quadratic Forms
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e A quadratic form on R" is a real-valued function of the form

n n
@ (561, Ly +-vy SCn) — Z Z Q;jTiT g

i—1 j—1
= Q11T1T1 + A12X1T2 + ... + A1,1Ty,

+a91X9x1 + A929X2X9 + ... + A9, T2Ly,

+.o. T A1 TRT1 + 2T Lo + oo + ALy Lo,-

e A quadratic form () can be represented by a matrix A so that
Q(z) =2 Ax
where

air a2 -+ Qip X1

a1 Q22 -+ A2
Anxn — ) ) i and Lpxl =

Anl QAp2 *** Qpp Ln
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¢ Note that a;; and a; are both coefficients of z;z; when ¢ # ;.

— The coefficient of z;x; is (a;; + aj;) when i # j.

—If a;; # a;;, we can uniquely define new coefficients
;T Qj o
bz’j = bjz' = 5 ﬂ, for all 1,

so that b;; + b;; = a;; + a;;, and B = (b;;) = B’ that is B is a symmetric matrix.

— This redefinition of the coefficients does not change the value of () for any .

— Thus we can always assume that the matrix A associated with the quadratic form
r! Az is symmetric.



e Examples:

— The general quadratic form in two variables is

2 2
ajjr] + 20101179 + a922T5.

In matrix form this can be written as
aip aig X1
([Bl SCQ) .
a1 499 X9

— The general quadratic form in three variables

2 2 2
114 + 22X 9 -+ 33T 4 -+ 1919 -+ a13X1X3 -+ a923X2X3

1 1
(Cbn 50d12 5&13\ (331\

1 1
(96'1 L2 5153) 5012 A22 5023 L2

1 1
\§a13 5023 33 ) \$3)

can be written as

14
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e Definiteness of Quadratic Forms:
Let A be a symmetric n x n matrix. Then

— A is positive definite if 1 Az > 0 for all z in R", z # 0.

— A is negative definite if 2! Az < 0 for all z in R", = # 0.

— A is positive semi-definite if x' Ax > 0 for all z in .

— A is negative semi-definite if ! Az < 0 for all z in R".

— A is indefinite if x¥ Az > 0 for some z in " and 2! Az < 0 for some other x in R".

— Remarks:

Consider, for example, the definition of positive definiteness. Note that the relevant
inequality must hold for every vector x # 0 in R".

- Observation 1: If we know that A is positive definite, then we should be able to
infer some useful properties of A quite easily.
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#2. Prove that if a symmetric n x n matrix A is positive definite then all its diagonal
elements must be positive.

- Observation 2: On the other hand, if we do not know that A is positive definite,
then the above definition by itself will not be very easy to check to determine
whether A is positive definite or not.

— This observation leads one to explore convenient characterizations of quadratic
forms.
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6. Characterization of Quadratic Forms

e Theorem 4:

Let A be a symmetric n x n matrix with distinct eigenvalues, \i, s, ..., \,,. Then

(a) A is positive (negative) definite if and only if every eigenvalue of A is positive
(negative);

(b) A is positive (negative) semi-definite if and only if every eigenvalue of A is non-
negative (non-positive);

(c) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.
— Proof: To be discussed in class.

— Hints: Use the spectral decomposition of A given in Theorem 3.
#3. Examples: Consider the following matrices:

1= (50)m= (3 ) e=(3Y)

Find out their eigenvalues, and characterize them (in terms of definiteness).
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7. Alternative Characterization of Quadratic Forms

e An alternative way to characterize quadratic forms is in terms of the signs of the
“principal minors™ of the corresponding matrix.

e If Ais an n x n matrix, a principal minor of order r is the determinant of the r x r
submatrix that remains when (n — r) rows and (n — r) columns with the same indices
are deleted from A.

e Example: Consider the 3 x 3 matrix

ail Qi Aais
A= ao21 Q22 423
asyp agzz ass
— The principal minors of order 2 are:
ai;p a2 | a1 a3 | | Q22 a23
as1 @22 |’ |as; as3|’ | asy ass




— The principal minors of order 1 are:
ail; a2; As33.
— The principal minors of order 3 is: | A].

e If Ais an n x n matrix, the leading principal minor of order r is defined as

aip -+ Qair

A, =

Ar1 = Qpp

e Example: For the 3 x 3 matrix A, the three leading principal minors are

ail a2
a21 Q22

Ay =aq; Ay = ;Asz\A\-
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e Theorem 5:
Let A be a symmetric n X n matrix. Then

(a) A is positive definite if and only if all its n leading principal minors are positive.

(b) A is negative definite if and only if all its n leading principal minors alternate in sign,
starting with negative. (That is, the r-th leading principal minor, A,., r = 1,2,....n,
has the same sign as (—1)" .)

(c) If some r-th leading principal minor of A (or some pair of them) is non-zero but
does not fit into either of the two sign patterns in (a) and (b), then A is indefinite.

(d) A is positive semi-definite if and only if every principal minor of A of every order is
non-negative.

(e) A is negative semi-definite if and only if every principal minor of A of odd order is
non-positive and every principal minor of even order is non-negative.

— Proof: See section 16.4 (pages 393 — 3995) of the textbook.
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e Examples: Consider the matrices studied above:
—1 0 —1 1 0 0
A=(00) = (7 4) o= (0)

#4. Characterize the matrices A, B and C' (in terms of definiteness) using the principal
minors criteria.
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