
Linear Algebra:

Characteristic Value Problem
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1. The Characteristic Value Problem
� Let < be the set of real numbers and { be the set of complex numbers.

� Given an n�n real matrix A; does there exist a number � 2 { and a non-zero vector
x 2 {n such that

Ax = �x? (1)

This is known as the characteristic value problem or the eigenvalue problem.
� If x 6= 0 and � satisfy the equation Ax = �x; then � is called a characteristic value
or eigenvalue of A; and x is called a characteristic vector or eigenvector of A:

� Clearly, (1) holds if and only if

(A� �I)x = 0: (2)

- But (2) holds for non-zero x if and only if the column vectors of (A� �I) are
linearly dependent, that is,

jA� �Ij = 0: (3)
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This equation is called the characteristic equation of A:
� Consider the expression

f (�) = jA� �Ij : (4)

- f is a polynomial of degree n in �: It is called the characteristic polynomial of A.

� Example: Consider the 2� 2 matrix

A =

�
2 1
1 2

�
:

� The characteristic equation is:���� 2� � 1
1 2� �

���� = 0;) (2� �)2 � 1 = 0;) (�� 1) (�� 3) = 0:

Thus, the characteristic roots are � = 1 and � = 3:
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� Putting � = 1 in (2), we get�
1 1
1 1

��
x1
x2

�
=

�
0
0

�
which yields

x1 + x2 = 0:

- Thus the general solution of the characteristic vector corresponding to the char-
acteristic root � = 1 is given by

(x1; x2) = � (1;�1) ; for � 6= 0:

- Similarly, corresponding to the characteristic root � = 3; we have the characteris-
tic vector given by

(x1; x2) = � (1; 1) ; for � 6= 0:
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� In general, the characteristic equation will have n roots in the complex plane (by
the �Fundamental Theorem of Algebra�), since it is a polynomial equation (in �) of
degree n: (Of course some of these roots might be repeated.)
� In general, the corresponding eigenvectors will also have their components in the
complex plane.

� Example: Consider the 2� 2 matrix

A =

�
1 2
�2 1

�
:

� Check that the eigenvalues are complex numbers and the eigenvectors have com-
plex components.
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2. Characteristic Values, Trace & Determinant of a Matrix
� If A is an n� n matrix, the trace of A; denoted by tr(A), is the number de�ned by

tr(A) =
nX
i=1

aii:

#1. Consider the 2� 2 matrix A =
�
a11 a12
a21 a22

�
:

�Write down the characteristic equation.
� Suppose �1 and �2 are two characteristic values of A: Prove that

(a) �1 + �2 = tr(A); and (b) �1�2 = jAj :

� In general, for an n� n matrix A; with eigenvalues �1; �2; :::; �n; we have
nX
i=1

�i = tr(A); and
nY
i=1

�i = jAj :
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3. Characteristic Values & Vectors of Symmetric Matrices
� There is considerable simpli�cation in the theory of characteristic values if A is a
symmetric matrix.

� Theorem 1:
If A is an n � n symmetric matrix, then all the eigenvalues of A are real numbers
and its eigenvectors are real vectors.
�We will develop the theory of eigenvalues and eigenvectors only for symmetric
matrices.

� Normalized Eigenvectors:
� Note that if x is an eigenvector corresponding to an eigenvalue �; then so is tx;
where t is any non-zero scalar.

� So we normalize the eigenvectors.
� A normalized eigenvector is an eigenvector with (Euclidean) norm equal to 1.
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� Let x = (x1; x2; :::; xn) be an eigenvector with norm kxk =
�
x21 + x

2
2 + ::: + x

2
n

�1
2 :

- Since x is a non-zero vector, kxk > 0: De�ne

y =

�
x1
kxk;

x2
kxk; :::;

xn
kxk

�
:

Now we have kyk = 1; that is, y is a normalized eigenvector.
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4. Spectral Decomposition of Symmetric Matrices
� (To proceed, we specialize further � we consider symmetric matrices with distinct
eigenvalues, that is, �i 6= �j:)

� Orthogonal Matrix: An n�nmatrix C is called an orthogonal matrix if C is invertible
and its inverse equals its transpose, that is, CT = C�1:

� Theorem 2:
Let A be an n � n symmetric matrix with n distinct eigenvalues, �1; �2; :::; �n: If
y1; y2; :::; yn are (normalized) eigenvectors corresponding to the eigenvalues �1; �2; :::; �n;
then the matrix B such that Bi; the i-th column vector of B; is the vector yi (i =
1; 2; :::; n), is an orthogonal matrix.

� Proof: To be discussed in class.
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� Hints: 3 steps:

- Step 1. If i 6= j; then
�
yi
�T
yj = 0:

Use the de�nition (equation (1)) to prove that
�
yj
�T
Ayi = �i

�
yj
�T
yi and, at the

same time,
�
yj
�T
Ayi = �j

�
yj
�T
yi:

- Step 2. B is invertible.
Show that the vectors y1; y2; :::; yn are linearly independent.

- Step 3. B�1 = BT .
Show directly that BTB = I (the identity matrix).
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� Theorem 3 (Spectral Decomposition):
Let A be an n � n symmetric matrix with n distinct eigenvalues, �1; �2; :::; �n: Let
y1; y2; :::; yn are (normalized) eigenvectors corresponding to the eigenvalues �1; �2; :::; �n:
Let B be the n� n matrix such that Bi; the i-th column vector of B; is the vector yi
(i = 1; 2; :::; n). Then

A = BLBT

where L is the diagonal matrix with the eigenvalues of A (�1; �2; :::; �n) on its diago-
nal.

� Remark: The above expression shows that matrix A can be �decomposed� into a
matrix L consisting of its eigenvalues on the diagonal and the matrices B and BT
which consists of its eigenvectors.

� Proof: To be discussed in class.
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� Hints: Consider any two n� n matrices, C and D:

- Let (C1; C2; :::; Cn) be the set of row vectors of C and
�
D1; D2; :::; Dn

�
be the set

of column vectors of D:

- To prove Theorem 3 use the following observation on matrix multiplication:

CD =

0BB@
C1
C2
...
C4

1CCA�D1 D2 � � � Dn
�

=

0BB@
C1D

1 C1D
2 � � � C1Dn

C2D
1 C2D

2 � � � C2Dn

... ... . . . ...
CnD

1 CnD
2 � � � CnDn

1CCA

=
�
CD1 CD2 � � � CDn

�
:
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5. Quadratic Forms
� A quadratic form on <n is a real-valued function of the form

Q (x1; x2; :::; xn) =
nX
i=1

nX
j=1

aijxixj

= a11x1x1 + a12x1x2 + ::: + a1nx1xn
+a21x2x1 + a22x2x2 + ::: + a2nx2xn
+::: + an1xnx1 + an2xnx2 + ::: + annxnxn:

� A quadratic form Q can be represented by a matrix A so that

Q (x) = xTAx

where

An�n =

0BB@
a11 a12 � � � a1n
a21 a22 � � � a2n
... ... . . . ...
an1 an2 � � � ann

1CCA and xn�1 =

0BB@
x1
x2
...
xn

1CCA :
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� Note that aij and aji are both coef�cients of xixj when i 6= j:

� The coef�cient of xixj is (aij + aji) when i 6= j:

� If aij 6= aji; we can uniquely de�ne new coef�cients

bij = bji =
aij + aji
2

; for all i; j

so that bij + bji = aij + aji; and B = (bij) = BT ; that is B is a symmetric matrix.

� This rede�nition of the coef�cients does not change the value of Q for any x:

� Thus we can always assume that the matrix A associated with the quadratic form
xTAx is symmetric.
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� Examples:

� The general quadratic form in two variables is

a11x
2
1 + 2a12x1x2 + a22x

2
2:

In matrix form this can be written as

(x1 x2)

�
a11 a12
a12 a22

��
x1
x2

�
:

� The general quadratic form in three variables

a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3

can be written as

(x1 x2 x3)

0BBBB@
a11

1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33

1CCCCA
0BBBB@
x1

x2

x3

1CCCCA :



15

� De�niteness of Quadratic Forms:
Let A be a symmetric n� n matrix. Then

� A is positive de�nite if xTAx > 0 for all x in <n; x 6= 0:

� A is negative de�nite if xTAx < 0 for all x in <n; x 6= 0:

� A is positive semi-de�nite if xTAx � 0 for all x in <n:

� A is negative semi-de�nite if xTAx � 0 for all x in <n:

� A is inde�nite if xTAx > 0 for some x in <n and xTAx < 0 for some other x in <n:

� Remarks:
Consider, for example, the de�nition of positive de�niteness. Note that the relevant
inequality must hold for every vector x 6= 0 in <n:

- Observation 1: If we know that A is positive de�nite, then we should be able to
infer some useful properties of A quite easily.
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#2. Prove that if a symmetric n� n matrix A is positive de�nite then all its diagonal
elements must be positive.

- Observation 2: On the other hand, if we do not know that A is positive de�nite,
then the above de�nition by itself will not be very easy to check to determine
whether A is positive de�nite or not.

! This observation leads one to explore convenient characterizations of quadratic
forms.
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6. Characterization of Quadratic Forms
� Theorem 4:
Let A be a symmetric n� n matrix with distinct eigenvalues, �1; �2; :::; �n: Then
(a) A is positive (negative) de�nite if and only if every eigenvalue of A is positive
(negative);

(b) A is positive (negative) semi-de�nite if and only if every eigenvalue of A is non-
negative (non-positive);

(c) A is inde�nite if and only if A has a positive eigenvalue and a negative eigenvalue.
� Proof: To be discussed in class.
� Hints: Use the spectral decomposition of A given in Theorem 3.

#3. Examples: Consider the following matrices:

A =

�
�1 0
0 0

�
;B =

�
�1 1
1 �3

�
;C =

�
0 0
0 1

�
Find out their eigenvalues, and characterize them (in terms of de�niteness).
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7. Alternative Characterization of Quadratic Forms
� An alternative way to characterize quadratic forms is in terms of the signs of the
�principal minors� of the corresponding matrix.

� If A is an n� n matrix, a principal minor of order r is the determinant of the r � r
submatrix that remains when (n� r) rows and (n� r) columns with the same indices
are deleted from A:

� Example: Consider the 3� 3 matrix

A =

0@ a11 a12 a13a21 a22 a23
a31 a32 a33

1A :
� The principal minors of order 2 are:���� a11 a12a21 a22

���� ; ���� a11 a13a31 a33

���� ; ���� a22 a23a32 a33

���� :
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� The principal minors of order 1 are:

a11; a22; a33:

� The principal minors of order 3 is: jAj :

� If A is an n� n matrix, the leading principal minor of order r is de�ned as

Ar =

������
a11 � � � a1r
... . . . ...
ar1 � � � arr

������ :
� Example: For the 3� 3 matrix A, the three leading principal minors are

A1 = a11; A2 =

���� a11 a12a21 a22

���� ; A3 = jAj :
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� Theorem 5:
Let A be a symmetric n� n matrix. Then
(a) A is positive de�nite if and only if all its n leading principal minors are positive.

(b) A is negative de�nite if and only if all its n leading principal minors alternate in sign,
starting with negative. (That is, the r-th leading principal minor, Ar; r = 1; 2; :::; n;
has the same sign as (�1)r :)

(c) If some r-th leading principal minor of A (or some pair of them) is non-zero but
does not �t into either of the two sign patterns in (a) and (b), then A is inde�nite.

(d) A is positive semi-de�nite if and only if every principal minor of A of every order is
non-negative.

(e) A is negative semi-de�nite if and only if every principal minor of A of odd order is
non-positive and every principal minor of even order is non-negative.

� Proof: See section 16.4 (pages 393 � 395) of the textbook.
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� Examples: Consider the matrices studied above:

A =

�
�1 0
0 0

�
; B =

�
�1 1
1 �3

�
; C =

�
0 0
0 1

�

#4. Characterize the matrices A; B and C (in terms of de�niteness) using the principal
minors criteria.
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