Real Analysis: Differential Calculus

1. One-Variable Calculus: Differentiability of Functions

• Slope of a Linear Function:

The slope of a linear function f measures how much f(x) changes for each unit increase in x.

- It measures the *rate of change* of the function f.
 - Linear functions have the same rate of change no matter where we start.
- The view of the *slope* of a linear function as its *rate of change* (the *marginal effect*) plays a key role in economic analysis:
 - marginal cost;
 - marginal utility;
 - marginal product of labour.

1.1 Slope of Nonlinear Functions

- How do we measure the marginal effects of nonlinear functions?
- Suppose that y = f(x) is a nonlinear function and we are at the point $(x_0, f(x_0))$ on the graph of f, as in the following figure.
 - We want to measure the rate of change of f when $x = x_0$.
 - A natural solution to this problem is to draw the *tangent line* to the graph of f at x_0 as pictured in the figure.
- Since the tangent line very closely approximates the graph of f around $(x_0, f(x_0))$, it is a good proxy for the graph of f itself.
 - The slope of the tangent line should be a good measure for the slope of the nonlinear function at x_0 .
- For nonlinear f, the slope of tangent line varies from point to point.

- We use the notion of the tangent line approximation to a graph in our daily lives.
 - Contractors who plan to build a large mall or power plant or farmers who want too subdivide large plots of land will generally assume that they are working on a flat plane,
 - even though they know that they are actually working on the rather round earth surface.
 - In effect, they are working with the tangent plane to the earth and the computations that they make on it will be exact to 10 or 20 decimal places – easily close enough for their purposes.

- We define the *slope of a nonlinear function* f at a point $(x_0, f(x_0))$ on its graph as the *slope of the tangent line to the graph of* f at that point.
 - We call the *slope of the tangent line to the graph of* f at $(x_0, f(x_0))$ the **derivative** of f at x_0 , and we write it as

$$f'(x_0)$$
 or $\frac{df}{dx}(x_0)$.

- The latter notation comes from the fact that the slope is the change in f divided by the change in x, or $\frac{\Delta f}{\Delta x}$.
- Since the derivative is such an important concept, we need an analytical definition to work with.
 - This problem is best handled using a limiting process.

- Recall that a line segment joining two points on a graph is called a secant line.
- Back off a bit from the point $(x_0, f(x_0))$ on the graph of f to the point $(x_0 + h_1, f(x_0 + h_1))$, where h_1 is some small number.
 - Draw the secant line ℓ_1 to the graph joining these two points, as in the following figure.
- By choosing the second point closer and closer to $(x_0, f(x_0))$, we will be drawing better and better approximations to the desired tangent line.
- Choose h_2 closer to zero than h_1 and draw the secant line ℓ_2 joining $(x_0, f(x_0))$ and $(x_0 + h_2, f(x_0 + h_2))$.
- Continue in this way choosing a sequence $\{h_n\}$ of small numbers which converges monotonically to 0.
 - For each n, draw the secant line through the two *distinct* points on the graph $(x_0, f(x_0))$ and $(x_0 + h_n, f(x_0 + h_n))$.

ب ب

- The secant lines $\{\ell_n\}$ geometrically approach the tangent line to the graph of f at $(x_0, f(x_0))$, and their slopes approach the slope of the tangent line.
- As ℓ_n passes through the two points $(x_0, f(x_0))$ and $(x_0 + h_n, f(x_0 + h_n))$, its slope is

$$\frac{f(x_0 + h_n) - f(x_0)}{(x_0 + h_n) - x_0} = \frac{f(x_0 + h_n) - f(x_0)}{h_n}.$$

• Hence the slope of the tangent line is the limit of this process as h_n converges to 0.

• Definition:

Let $(x_0, f(x_0))$ be a point on the graph of y = f(x). The **derivative** of f at x_0 , written as $f'(x_0)$ or $\frac{df}{dx}(x_0)$ or $\frac{dy}{dx}(x_0)$, is the slope of the tangent line to the graph of f at $(x_0, f(x_0))$.

- Analytically, $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$, if this limit exists.
- When the limit does exist, we say that the function f is **differentiable** at x_0 with derivative $f'(x_0)$.

1.2 Differentiability and Continuity

• The continuity of f is a *necessary* condition for its differentiability, but *not sufficient*.

• Theorem 1:

Let *f* be defined on an open interval *I* containing the point x_0 . If *f* is differentiable at x_0 , then *f* is continuous at x_0 .

- Proof: To be discussed in class.
- **Counter-example:** Consider the function f(x) = |x|.
 - Show that this function is *continuous* at x = 0.
 - Show that this function is *not differentiable* at x = 0.

1.3 Higher-Order Derivatives

Continuously Differentiable Functions:

- If *f* is a differentiable function, its derivative f'(x) is another function of *x*. If f'(x) is a continuous function of *x*, we say that the original function *f* is *continuously differentiable*, or C^1 for short.
- Geometrically, the function f' will be continuous if the tangent line to the graph of f at (x, f(x)) changes continuously as x changes.
- Example: Every polynomial is a continuous function. Since the derivative of a polynomial is a polynomial of one less degree, it is also continuous.
- \Rightarrow Every polynomial is a C^1 function.

• Second Derivative:

Let f be a C^1 function on \mathbb{R} . Since its derivative f'(x) is a continuous function on \mathbb{R} , we can ask whether or not the function f' has a derivative at a point x_0 .

– The derivative of f'(x) at x_0 is called the second derivative of f at x_0 and is written as

$$f''(x_0)$$
 or $\frac{d}{dx}\left(\frac{df}{dx}\right)(x_0) = \frac{d^2f}{dx^2}(x_0)$.

– The second derivative of f at x_0 is defined as

$$f''(x_0) = \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{h}$$
, if this limit exists.

• Twice Continuously Differentiable Functions:

If *f* has a second derivative everywhere, then f'' is a well-defined function of *x*. If f'' is a continuous function of *x*, then we say that *f* is *twice continuously differentiable*, or C^2 for short.

- Example: Every polynomial is a C^2 function.
- This process continues for all positive integers.
 - If f(x) has derivatives of order 1, 2, ..., k and if the kth derivative of f written as $f^{[k]}(x)$, or $\frac{d^k f}{dx^k}(x)$ is itself a continuous function, we say that f is C^k .
- If f has a continuous derivative of every order, that is, if f is C^k for every positive integer k, then we say that f is C^{∞} or "infinitely differentiable".
 - Example: All polynomials are C^{∞} functions.

1.4 Approximation by Differentials

- The definition of the derivative leads us naturally to the construction of the *linear* approximation of a function.
- Recall that for a linear function f(x) = mx + b, the derivative f'(x) = m gives the slope of the graph of f and measures the rate of change or marginal change of f:
 increase in the value of f for every unit increase in the value of x.
- Let us carry over this marginal analysis to nonlinear functions.
 - After all, this was one of the main reasons for defining the derivative of such an f.

- In formulating the analytic definition of the derivative of f, we used the fact that the slope of the tangent line to the graph at $(x_0, f(x_0))$ is well approximated by the slope of the secant line through $(x_0, f(x_0))$ and a nearby point $(x_0 + h, f(x_0 + h))$ on the graph.
 - In symbols, $\frac{f(x_0 + h) f(x_0)}{h} \approx f'(x_0)$, for small h, where \approx means "is well approximated by" or "is close in value to".
- If we set h = 1, then the above relationship becomes

$$f(x_0+1) - f(x_0) \approx f'(x_0);$$

- in words, the derivative of f at x_0 , $f'(x_0)$, is a good approximation to the *marginal change* of f at x_0 .
 - Of course, the less curved the graph of f at x_0 , the better is the approximation.

- Example: Consider the production function $F(L) = \frac{1}{2}\sqrt{L}$.
 - Suppose that the firm is currently using 100 units of labour.
 - Marginal product of labour: $F'(100) = \frac{1}{4}(100)^{-\frac{1}{2}} = \frac{1}{40} = 0.025;$
 - The actual increase in output is: F(101) F(100) = 0.02494..., pretty close to 0.025.
- What if the change in the amount of x is not exactly one unit?
 - Substituting Δx , the exact change in x, for h, we get

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \approx f'(x_0), \text{ implying that}$$
$$\Delta y \equiv f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x,$$
$$\text{or} \qquad f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x.$$

– Here we write Δy for the exact change in y = f(x) when x changes by Δx .

- Once again, the less curved the graph and/or the smaller the change Δx in x, the better the approximation.

- The expression $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$ gives an effective way of approximating f(x) for x close to some x_0 .
- Example: Consider again the production function $y = F(x) = \frac{1}{2}\sqrt{x}$.

Suppose the firm cuts its labour force from 900 to 896 units. Let us estimate the change in output, Δy and the new output at x = 896.

- Note that $F'(x) = \frac{1}{4}x^{-\frac{1}{2}}$. Substituting $x_0 = 900$ and $\Delta x = -4$,
 - $\circ \Delta y \approx F'(x_0) \Delta x = \frac{1}{4} (900)^{-\frac{1}{2}} (-4) = -\frac{1}{30}$, that is, output will decrease by approximately $\frac{1}{30}$ units;

• New output, $F(x_0 + \Delta x) \approx F(x_0) + F'(x_0) \Delta x = 15 - \frac{1}{30} = 14.9666...$

- The actual new output is: $F(896) = \frac{1}{2}\sqrt{896} = 14.9663...;$

 \circ once again the approximation by the derivative is a good one.

• The equations

$$\Delta y \equiv f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x,$$

or
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$
,

are merely analytic representations of the geometric fact that the tangent line ℓ to the graph of y = f(x) at $(x_0, f(x_0))$ is a good approximation to the graph itself for x near x_0 .

- As the following figure indicates,
 - the left-hand sides of the equations pertain to movement along the graph of f,
 - the right-hand sides pertain to movement along the tangent line $\ell\text{,}$
 - because the equation of the tangent line, the line through the point $(x_0, f(x_0))$ with slope $f'(x_0)$, is

$$y = f(x_0) + f'(x_0)(x - x_0) = f(x_0) + f'(x_0)\Delta x.$$

- Write Δy for the *actual* change in y as x changes by Δx , that is, for the change along the graph of f, as in the figure.
- Write dy for change in y along the tangent line ℓ as x changes by Δx .
- Then the above equation can be written as

$$\Delta y \approx dy = f'(x_0) \Delta x.$$

- We usually write dx instead of Δx while working with changes along the tangent line, even though Δx is equal to dx.
- Differentials: The increments dy and dx along the tangent line ℓ are called *differentials*.
- We sometimes write the differential df in place of dy.
- The equation of differentials for the variation along the tangent line

$$df = f'(x_0) dx$$
 or $dy = f'(x_0) dx$

gives added weight to the notation $\frac{df}{dx}$ for the derivative f'(x).

2. Calculus of Several Variables: Partial Derivatives

- To apply calculus to the study of functions of several variables, we take the simplest approach.
 - We change one variable at a time, keeping all the other variables constant.
 - Since we are not looking at the total variation of *f* but just the partial variation

 the variation brought about by the change in only one variable, say x_i the corresponding derivative is called the *partial derivative* of *f* with respect to x_i.
 It is denoted by df; other common notations include f_i, f_{xi}, and D_if.
- Recall that the derivative of a function f of one variable at x_0 is

$$\frac{df}{dx}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

• The partial derivative with respect to x_i of a function of several variables, $f(x_1, x_2, ..., x_n)$, at the vector $x_0 = (x_1^0, x_2^0, ..., x_n^0)$ is defined in a similar manner.

• Definition:

Let A be an open set in \mathbb{R}^n , $x_0 = (x_1^0, x_2^0, ..., x_n^0) \in A$, and $f : A \to \mathbb{R}$. Then

$$\frac{\partial f}{\partial x_i} \left(x_1^0, x_2^0, \dots, x_n^0 \right) = \lim_{h \to 0} \frac{f \left(x_1^0, x_2^0, \dots, x_i^0 + h, \dots, x_n^0 \right) - f \left(x_1^0, x_2^0, \dots, x_i^0, \dots, x_n^0 \right)}{h},$$

if this limit exists, where i = 1, 2, ..., n.

- Note that only *i*th variable changes; others are treated as constants.
 - This means, of course, that we can compute partial derivatives just like ordinary derivatives of a function of one variable.
 - That is, if $f(x_1, x_2, ..., x_n)$ is given by some formula involving $(x_1, x_2, ..., x_n)$, then we find $D_i f(x)$ by differentiating the function whose value at x_i is given by the formula when all x_j (for $j \neq i$) are thought of as constants.
- Example: Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x_1, x_2) = x_1^3 + 3x_2^3 + 2x_1x_2$. Then
 - $-D_1f(x) = 3x_1^2 + 2x_2,$
 - $-D_2f(x) = 9x_2^2 + 2x_1.$

2.1 Geometric Interpretation of Partial Derivatives

- Note that we can represent a function z = f(x, y) geometrically by drawing its graph in \mathbb{R}^3 .
- When we study $\frac{\partial f}{\partial x}(a, b)$, we are holding y constant at b and looking at variations in x around x = a.
 - In terms of the graph, we are looking at f only on the two-dimensional slice $\{y = b\}$ in \mathbb{R}^3 as in the following figure.
 - On this slice, the graph of f is a curve the graph of the function of *one* variable $x \mapsto f(x, b)$.
 - The partial derivative $\frac{\partial f}{\partial x}(a,b)$ is the slope of the tangent line to this graph on this slice, line ℓ in the figure.
- Similarly, $\frac{\partial f}{\partial y}(a, b)$ is the slope of the tangent line to the curve which is the intersection of the graph of f with the slice $\{x = a\}$, as illustrated in the next figure.

2.2 The Total Derivative

- Suppose we are interested in the behaviour of a function F(x, y) in the neighbourhood of a given point (x^*, y^*) .
 - Calculus of one variable and the concept of partial derivative tell us that
 - if we hold y fixed at y^* and change x^* to $x^* + \Delta x$, then

$$F(x^* + \Delta x, y^*) - F(x^*, y^*) \approx \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x;$$

- if we hold x fixed at x^* and change y^* to $y^* + \Delta y,$ then

$$F(x^*, y^* + \Delta y) - F(x^*, y^*) \approx \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y.$$

- What if we allow both x and y to vary simultaneously?
 - Since we are working in the realm of linear approximations, it is natural that the effect of the combined change is roughly the *sum* of the effects of the one-variable

changes:

$$F(x^* + \Delta x, y^* + \Delta y) - F(x^*, y^*) \approx \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x + \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y.$$

- We sometimes use the above expression in the following form:

$$F(x^* + \Delta x, y^* + \Delta y) \approx F(x^*, y^*) + \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x + \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y$$

- Example: Consider a production function $Q = F(K, L) = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$ around the point $(K^*, L^*) = (10000, 625)$.
 - $-Q = F(10000, 625) = 20,000; \qquad \frac{\partial Q}{\partial K}(10000, 625) = 1.5; \qquad \frac{\partial Q}{\partial L}(10000, 625) = 8.$
 - If *L* is held constant and *K* increased by ΔK , *Q* will increase by approximately $1.5 \cdot \Delta K$.
 - For an increase in K by 10 units, we estimate

 $Q(10010, 625) = 20,000 + 1.5 \cdot 10 = 20,015,$

a good approximation to Q(10010, 625) = 20,014.998...

- Similarly, a 2-unit decrease in L should induce a $2 \cdot 8 = 16$ -unit decrease in Q.
 - Consequently, for a 2-unit decrease in \boldsymbol{L} we estimate

 $Q(10000, 623) = 20,000 - 8 \cdot 2 = 19,984,$

a good approximation to $Q(10000, 623) = 19,983.981 \dots$.

- Finally, if we want to consider the effect of both changes, we would use the above expression to estimate

$$F(10010, 623) \approx F(10000, 625) + \frac{\partial F}{\partial K}(10000, 625) \cdot 10 + \frac{\partial F}{\partial L}(10000, 625) \cdot (-2)$$

= 20,000 + (1.5 \cdot 10) + (8 \cdot (-2))
= 19,999,

which compares well with the exact value 19,998.967....

2.2.1 Geometric Interpretation of Total Derivative

• What is the geometric significance of the approximation

$$F(x^* + \Delta x, y^* + \Delta y) \approx F(x^*, y^*) + \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x + \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y?$$

• For a function of one variable, the corresponding approximation is

$$f(x^* + h) \approx f(x^*) + f'(x^*) \cdot h.$$

- As discussed above, the right-hand side is the equation of the tangent line to the graph of f at x^* .
- That is, this equation states that the tangent line to the graph of f at x^* is a good approximation to the graph itself in the vicinity of $(x^*, f(x^*))$, as illustrated in the following figure.

- For a function z = F(x, y) of two variables, the analogue of the tangent line is the *tangent plane* to the graph, as illustrated in the following figure.
 - That is, the expression

$$F(x^* + \Delta x, y^* + \Delta y) \approx F(x^*, y^*) + \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x + \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y$$

says that the tangent plane to the graph of F at $(x^*, y^*, F(x^*, y^*))$ is a good approximation to the graph itself in the vicinity of $(x^*, y^*, F(x^*, y^*))$.

 \Rightarrow The change $F(x^*+s,y^*+t)-F(x^*,y^*)$ can be well approximated by the linear mapping

$$(s,t) \mapsto \frac{\partial F}{\partial x}(x^*,y^*) \cdot s + \frac{\partial F}{\partial y}(x^*,y^*) \cdot t.$$

۹

The tangent plane to the graph of F.

Figure 14.5

- Thus, we consider the vector $\left(\frac{\partial F}{\partial x}(x^*, y^*), \frac{\partial F}{\partial y}(x^*, y^*)\right)$ as representing the linear approximation of F around (x^*, y^*) .
 - In this sense, we call this linear map and the vector which represents it the **deriva**tive of *F* at (x^*, y^*) and write it as

$$DF(x^*, y^*) = \nabla F(x^*, y^*) = \left(\frac{\partial F}{\partial x}(x^*, y^*), \frac{\partial F}{\partial y}(x^*, y^*)\right).$$

- This vector is also called the **gradient vector** of *F* at (x^*, y^*) .
- It is rather natural to form a vector whose entries are all the partial derivatives of *F* and call it the derivative of *F*.
 - But, it is important to realize that more is happening here since the linear mapping which this gradient vector represents is the appropriate **linear approximation** of F at (x^*, y^*) .
 - As mentioned above, we use this approximation all the time when we use *linear* mathematics for major construction projects on our *round* earth.

- We use the notations dx, dy, and dF when we are working on the tangent plane to the graph of F at (x^*, y^*) .
 - These variations on the tangent plane are called differentials.
- Using the differentials, the above expression is written as

$$dF = \frac{\partial F}{\partial x}(x^*, y^*) \cdot dx + \frac{\partial F}{\partial y}(x^*, y^*) \cdot dy.$$

– This expression for dF in terms of dx and dy is called the **total differential** of F at (x^*, y^*) .

2.2.2 Functions of More than Two Variables

- The observations and analytical expressions for functions on \mathbb{R}^2 carry over in a natural way to functions on \mathbb{R}^n .
- If we are studying a function $F(x_1, x_2, ..., x_n)$ of n variables in a neighbourhood of some selected point $x^* = (x_1^*, x_2^*, ..., x_n^*)$, then

$$F(x_1^* + \Delta x_1, \dots, x_n^* + \Delta x_n)$$

$$\approx F(x_1^*, x_2^*, \dots, x_n^*) + \frac{\partial F}{\partial x_1}(x^*) \cdot \Delta x_1 + \dots + \frac{\partial F}{\partial x_n}(x^*) \cdot \Delta x_n$$

- The right-hand side is the representation of the (n-dimensional) *tangent hyperplane* to the graph of F.
- The above equation says that the linear mapping

$$(h_1, h_2, \dots, h_n) \mapsto \frac{\partial F}{\partial x_1}(x^*) \cdot h_1 + \dots + \frac{\partial F}{\partial x_n}(x^*) \cdot h_n$$

is a good approximation to the actual change in F.

• We call this linear map and the vector which represents it the **derivative** of F at x^* and write it as

$$DF(x^*) = \nabla F(x^*) = \left(\frac{\partial F}{\partial x_1}(x^*), \dots, \frac{\partial F}{\partial x_n}(x^*)\right).$$

- This vector is also called the **gradient vector** of F at x^* .
- We frequently use the **differentials** dF, dx_1 , dx_2 , ..., dx_n to denote changes on the tangent hyperplane.
- The above expression says that in the vicinity of the point x^* , the tangent hyperplane to the graph of F is a good approximation to the graph itself in that the actual change $\Delta F = F(x^* + \Delta x) F(x^*)$ is well approximated by the **total differential**

$$dF = \frac{\partial F}{\partial x_1}(x^*) \cdot dx_1 + \dots + \frac{\partial F}{\partial x_n}(x^*) \cdot dx_n$$

on the tangent hyperplane with $dx_i = \Delta x_i$ for all *i*.
2.3 Explicit Functions from \mathbb{R}^n to \mathbb{R}^m

- Up to now we have been studying functions with only one endogenous variable. But functions with several endogenous variables arise naturally in economic models.
- Most real-world firms produce more than one product. To model their production, we need a production function for each product.
 - If the firm uses three inputs to produce two outputs, we need two separate production functions: $q_1 = f^1(x_1, x_2, x_3)$, and $q_2 = f^2(x_1, x_2, x_3)$.
 - We can write $q = (q_1, q_2)$ as an output vector for this firm and summarize the firm's activities by a function $F = (f^1, f^2)$:

$$q = (q_1, q_2) = \left(f^1(x_1, x_2, x_3), f^2(x_1, x_2, x_3) \right) \equiv F(x_1, x_2, x_3).$$

- The domain of F lies in \mathbb{R}^3 , and its target space is \mathbb{R}^2 . We write $F : \mathbb{R}^3 \to \mathbb{R}^2$.
- A firm which uses *n* inputs to produce *m* products would have a production function $F : \mathbb{R}^n \to \mathbb{R}^m$.

• When there are *m* endogenous variables in the system, there should be *m* separate functions to determine their values:

$$y_{1} = f^{1}(x_{1},...,x_{n}),$$

$$y_{2} = f^{2}(x_{1},...,x_{n}),$$

$$\vdots$$

$$y_{m} = f^{m}(x_{1},...,x_{n}).$$

• Instead of viewing the system as m functions of n variables, we can view it as a single function from \mathbb{R}^n to \mathbb{R}^m :

$$F(x_1, ..., x_n) = \left(f^1(x_1, ..., x_n), f^2(x_1, ..., x_n), ..., f^m(x_1, ..., x_n) \right).$$

- On the other hand, if we start with a single function $F : \mathbb{R}^n \to \mathbb{R}^m$ as above, we see that each component of F, $f^i(x_1, ..., x_n)$, is a function from \mathbb{R}^n to \mathbb{R} .
- This method is especially useful when we develop and use the theorems of calculus for a function from \mathbb{R}^n to \mathbb{R}^m .
 - We apply the usual theory to each component function $f^i : \mathbb{R}^n \to \mathbb{R}$ separately and then combine all the information learned so far back into one big vector or matrix.

- Consider $F = (f^1, f^2, ..., f^m) : \mathbb{R}^n \to \mathbb{R}^m$ at a specific point $x^* = (x_1^*, x_2^*, ..., x_n^*)$ in \mathbb{R}^n and use approximation by differentials to estimate the effect of a change at x^* by $\Delta x = (\Delta x_1, \Delta x_2, ..., \Delta x_n)$.
- We first apply the approximation by differentials to each component f^i of F, i = 1, 2, ..., m:

$$f^{1}(x^{*} + \Delta x) - f^{1}(x^{*}) \approx \frac{\partial f^{1}}{\partial x_{1}}(x^{*}) \cdot \Delta x_{1} + \dots + \frac{\partial f^{1}}{\partial x_{n}}(x^{*}) \cdot \Delta x_{n},$$

$$f^{2}(x^{*} + \Delta x) - f^{2}(x^{*}) \approx \frac{\partial f^{2}}{\partial x_{1}}(x^{*}) \cdot \Delta x_{1} + \dots + \frac{\partial f^{2}}{\partial x_{n}}(x^{*}) \cdot \Delta x_{n},$$

 $f^{m}(x^{*} + \Delta x) - f^{m}(x^{*}) \approx \frac{\partial f^{m}}{\partial x_{1}}(x^{*}) \cdot \Delta x_{1} + \dots + \frac{\partial f^{m}}{\partial x_{n}}(x^{*}) \cdot \Delta x_{n}.$

÷

: : :

• Then we use vector and matrix notation to combine these and get

$$F(x^* + \Delta x) - F(x^*) \approx \begin{pmatrix} \frac{\partial f^1}{\partial x_1}(x^*) & \cdots & \frac{\partial f^1}{\partial x_n}(x^*) \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x_1}(x^*) & \cdots & \frac{\partial f^m}{\partial x_n}(x^*) \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{pmatrix}$$

– This expression describes the linear approximation of F at x^* .

• We write the matrix on the right-hand side as

$$DF(x^*) = DF_{x^*} = \begin{pmatrix} \frac{\partial f^1}{\partial x_1}(x^*) & \cdots & \frac{\partial f^1}{\partial x_n}(x^*) \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x_1}(x^*) & \cdots & \frac{\partial f^m}{\partial x_n}(x^*) \end{pmatrix},$$

and call it the **derivative** or the **Jacobian derivative** of F at x^* .

– This matrix, also referred to as the Jacobian matrix, is the natural generalization of the gradient vector of a single endogenous variable to m endogenous variables.

- As we emphasized in the last subsection, it is natural to form a matrix composed of all the first order partial derivatives of the component functions, f^i s, and call it the derivative of F.
 - But more is happening here.
 - The above expression says that the linear map which this matrix represents is the effective linear approximation of F around x^* .
- This is the essence of what calculus is all about.

In studying the behaviour of a nonlinear function $F : \mathbb{R}^n \to \mathbb{R}^m$ in the vicinity of some specific point x^* :

- (1) we use derivatives to form the linear approximation $DF(x^*)$,
- (2) we use linear algebra to study the behaviour of the linear mapping $DF(x^*)$, and
- (3) we use calculus theory to translate information about the linear function $DF(x^*)$ to the corresponding information about the nonlinear function F in a neighbourhood of x^* .

2.4 Higher Order Derivatives

- Let A be an open set in \mathbb{R}^n , and $f : A \to \mathbb{R}$.
- Example: Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x_1, x_2) = x_1^3 + 3x_2^3 + 2x_1x_2$. Then
 - $-D_1f(x) = 3x_1^2 + 2x_2,$
 - $-D_2f(x) = 9x_2^2 + 2x_1.$
 - In this example the gradient vector is

$$\nabla f(x) = (3x_1^2 + 2x_2, 9x_2^2 + 2x_1), \text{ for all } x \in \mathbb{R}^2.$$

When f : A → ℝ has (first-order) partial derivatives at each x ∈ A, we say that f has (first-order) partial derivatives on A.

• Second-Order Partial Derivatives and the Hessian Matrix:

- When $f : A \to \mathbb{R}$ has (first-order) partial derivatives at each x on A, these first-order partial derivatives are themselves functions from A to \mathbb{R} .
 - If these (first-order) partial derivatives are continuous on A, then we say that f is *continuously differentiable* (C^1) on A.
 - If these functions have (first-order) partial derivatives on A, these partial derivatives are called the *second-order partial derivatives of* f on A.
- To elaborate, if $D_i f(x)$ exists for all $x \in A$, we can define the function $D_i f: A \to \mathbb{R}$.
 - If this function has (first-order) partial derivatives on A, then the j-th (first-order) partial derivative of $D_i f$ at x (that is, $D_j (D_i f(x))$) is a second-order partial derivative of f at x, and is denoted by $D_{ij} f(x)$. [Here i = 1, 2, ..., n, and j = 1, 2, ..., n.]
 - In the example described above,

$$D_{11}f(x) = 6x_1, \ D_{22}f(x) = 18x_2, D_{12}f(x) = 2 = D_{21}f(x).$$

- We note in this example that the "cross partials" $D_{12}f(x)$ and $D_{21}f(x)$ are equal. This is not a coincidence; it is a more general phenomenon as noted in the following Theorem, known as "Young's Theorem".

• Theorem 2 (Young's Theorem):

Suppose *A* is an open set in \mathbb{R}^n , and *f* has first and second-order partial derivatives on *A*. If $D_{ij}f$ and $D_{ji}f$ are continuous on *A*, then $D_{ij}f(x) = D_{ji}f(x)$, for all $x \in A$.

- When all the hypotheses of Theorem 1 hold for all i = 1, 2, ..., n, and j = 1, 2, ..., n, we will say that f is *twice continuously differentiable* (C^2) on A.
 - This will be the typical situation in many applications.

• When the first and second-order partial derivatives of $f : A \to \mathbb{R}$ exist on A, the $n \times n$ matrix of second-order partial derivatives of f described below

$$H_{f}(x) = D^{2}f(x) = \begin{pmatrix} D_{11}f(x) & D_{12}f(x) & \cdots & D_{1n}f(x) \\ D_{21}f(x) & D_{22}f(x) & \cdots & D_{2n}f(x) \\ \vdots & \vdots & \ddots & \vdots \\ D_{n1}f(x) & D_{n2}f(x) & \cdots & D_{nn}f(x) \end{pmatrix}$$

is called the Hessian matrix of f at $x \in A$, and is denoted by $H_{f}(x)$ or $D^{2}f(x)$.

- When f is twice continuously differentiable on A, the Hessian matrix of f is symmetric at all $x \in A$.
- In the example described above, the Hessian matrix of f for all $(x_1, x_2) \in \mathbb{R}^2$ is

$$H_f(x) = \begin{pmatrix} 6x_1 & 2\\ 2 & 18x_2 \end{pmatrix}.$$

3. Composite Functions and the Chain Rule

- Let $g : A \to \mathbb{R}^m$ be a function with component functions $g^i : A \to \mathbb{R}$ (i = 1, 2, ..., m) which are defined on an open set $A \subset \mathbb{R}^n$, and let $f : B \to \mathbb{R}$ be a function defined on an open set $B \subset \mathbb{R}^m$ which contains the set g(A).
 - Then we can define $F : A \to \mathbb{R}$ by $F(x) = f(g(x)) = f(g^1(x), g^2(x), ..., g^m(x))$ for each $x \in A$.
 - This is known as a *composite function* (of f and g).
- The "Chain Rule" of differentiation provides us with a formula for finding the partial derivatives of a composite function, F, in terms of the partial derivatives of the individual functions, f and g.

• Theorem 3 (Chain Rule):

Let $g : A \to \mathbb{R}^m$ be a function with component functions $g^i : A \to \mathbb{R}$ (i = 1, 2, ..., m)which are continuously differentiable on an open set $A \subset \mathbb{R}^n$. Let $f : B \to \mathbb{R}$ be a continuously differentiable function on an open set $B \subset \mathbb{R}^m$ which contains the set g(A). If $F : A \to \mathbb{R}$ is defined by F(x) = f(g(x)) on A, and $a \in A$, then F is differentiable at a and we have, for i = 1, 2, ..., n,

$$D_{i}F(a) = \sum_{j=1}^{m} D_{j}f\left(g^{1}(a), g^{2}(a), ..., g^{m}(a)\right) D_{i}g^{j}(a)$$

4. Homogeneous Functions and Euler's Theorem

- A function $f : \mathbb{R}^n_+ \to \mathbb{R}$ is homogeneous of degree r on \mathbb{R}^n_+ if for all x in \mathbb{R}^n_+ , and all $t > 0, f(tx) = t^r f(x)$.
 - Example: Consider $f : \mathbb{R}^2_+ \to \mathbb{R}$ given by $f(x_1, x_2) = x_1^a x_2^b$, where a > 0 and b > 0. Then, if t > 0, we have $f(tx_1, tx_2) = (tx_1)^a (tx_2)^b = t^{a+b} x_1^a x_2^b = t^{a+b} f(x_1, x_2)$. So f is homogeneous of degree (a + b).

• Theorem 4:

Suppose $f : \mathbb{R}^n_+ \to \mathbb{R}$ is homogeneous of degree r on \mathbb{R}^n_+ , and continuously differentiable on \mathbb{R}^n_{++} . Then, for each i = 1, 2, ..., n, $D_i f$ is homogeneous of degree r - 1 on \mathbb{R}^n_{++} .

- Proof: To be discussed in class.

• Theorem 5 (Euler's Theorem):

Suppose $f : \mathbb{R}^n_+ \to \mathbb{R}$ is homogeneous of degree r on \mathbb{R}^n_+ , and continuously differentiable on \mathbb{R}^n_{++} . Then $x \cdot \nabla f(x) = rf(x)$, for all $x \in \mathbb{R}^n_{++}$.

- Proof: To be discussed in class.

5. Inverse Functions

- Let A be a set in \mathbb{R}^n , and let f be a function from A to \mathbb{R}^n .
 - f is one-to-one on A if whenever x^1 , $x^2 \in A$ and $x^1 \neq x^2$, we have $f(x^1) \neq f(x^2)$.
 - If there is a function g, from f(A) to A, such that g(f(x)) = x for each $x \in A$, then g is called the **inverse function** of f on f(A).

- Notation: We often write f^{-1} for the inverse function of f.

- **Example:** Consider $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 2x.
 - Note that f is one-to-one on \mathbb{R} .
 - Also, we can define the function $g : \mathbb{R} \to \mathbb{R}$ by $g(y) = \frac{y}{2}$, and note that it has the property g(f(x)) = x. Hence g is then the inverse function of f on \mathbb{R} .

- Furthermore,
$$g'(f(x)) = \frac{1}{2} = \frac{1}{f'(x)}$$
, for all $x \in \mathbb{R}$.

- For functions of a single variable, it is easy to look at the graph of the function defined on an interval E and determine whether or not the function is one-to-one on E.
 - As the following figure illustrates, the graph of f cannot turn around; i.e., it cannot have any *local maxima* or *minima* on E.
 - It must be *monotonically increasing* or *monotonically decreasing* on E.
 - The function whose graph is pictured in the following figure is not one-to-one because two points x_1 and x_2 map to the same point y^* .
- Example: Consider the function $f(x) = x^2$.
 - As a function defined on the entire real line \mathbb{R} , *f* is *not* one-to-one. Why?
 - However, if we restrict the domain of f to be $[0, \infty)$, then the restricted f is one-to-one and has a well-defined inverse $g(y) = \sqrt{y}$.

A function is not one-to-one in an interval containing a local max or min.

- Example: Consider the function $f(x) = x^3 3x$.
 - Look at its graph in the following figure.
 - f is not one-to-one on the entire real line \mathbb{R} .
 - -f has two local extrema, so it is *not* a monotone function.
 - However, since f is monotone for x > 1, its restriction to $(1, \infty)$ is invertible.
- The following theorem summarizes the discussion thus far for functions of a single variable.

• Theorem 6:

A function f defined on an interval E in \mathbb{R} has a well-defined inverse on the interval f(E) if and only if f is monotonically increasing on all of E or monotonically decreasing on all of E.

- Calculus Criterion for a Single-Variable Function to be Monotonically Increasing or Decreasing:
 - f is an *increasing function* if $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$;
 - f is a decreasing function if $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$.

– Theorem 7:

Let *f* be a continuously differentiable function on domain $D \subset \mathbb{R}$. If f' > 0 on interval $(a, b) \subset D$, then *f* is increasing on (a, b). If f' < 0 on interval $(a, b) \subset D$, then *f* is decreasing on (a, b).

- If f is increasing on (a, b), then $f' \ge 0$ on (a, b).
- If f is decreasing on (a, b), then $f' \leq 0$ on (a, b).
- Proof: To be discussed in class.

• Combining Theorems 6 and 7 we get:

Theorem 8:

A C^1 function f defined on an interval E in \mathbb{R} is one-to-one and therefore invertible on E if either f'(x) > 0 for all $x \in E$ or f'(x) < 0 for all $x \in E$.

- Let *E* be an open interval in \mathbb{R} , and $f : E \to \mathbb{R}$ be continuously differentiable on *E*. Let $a \in E$, and suppose that $f'(a) \neq 0$.
 - Let $\boldsymbol{f}^{\prime}\left(\boldsymbol{a}\right)>\mathbf{0}$.
 - ⇒ Since f' is continuous, there is an open ball $B_{\epsilon}(a)$ such that f'(x) > 0 for all x in $B_{\epsilon}(a)$.
 - \Rightarrow *f* is increasing in $B_{\epsilon}(a)$.
 - Thus, for every $y \in f(B_{\epsilon}(a))$, there is a unique x in $B_{\epsilon}(a)$ such that f(x) = y.
 - That is, there is a unique function $g : f(B_{\epsilon}(a)) \to B_{\epsilon}(a)$ such that g(f(x)) = x for all $x \in B_{\epsilon}(a)$.

- Thus, g is an inverse function of f on $f(B_{\epsilon}(a))$.
- We say that g is the inverse of f "locally" around the point f(a).
- [Note that there is no guarantee that the inverse function is defined on the entire set $f\left(E\right)$.]
- Let $\boldsymbol{f}^{\prime}\left(\boldsymbol{a}\right)<\mathbf{0}$.
 - An inverse function could similarly be defined "locally" around f(a) .

- The important restriction to carry out the above kind of analysis is $f'(a) \neq 0$.
 - To illustrate this, consider $f : \mathbb{R} \to \mathbb{R}_+$ given by $f(x) = x^2$ and consider a = 0.
 - Clearly f is continuously differentiable on \mathbb{R} , but f'(a) = f'(0) = 0.
 - Draw the curve for $f(x) = x^2$ and convince yourself that we cannot define a unique inverse function of f even "locally" around f(0).
 - That is, choose any open ball $B_{\epsilon}(0)$, and consider any point, $y \neq 0$, in the set $f(B_{\epsilon}(0))$.
 - There will be *two* values x_1 , x_2 in $B_{\epsilon}(0)$, $x_1 \neq x_2$, such that $f(x_1) = y$ and $f(x_2) = y$.
- Note: $f'(a) \neq 0$ is not a necessary condition to get a unique inverse function of f.
 - For example, consider $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3$.
 - Then f is continuously differentiable on \mathbb{R} , with f'(0) = 0.
 - However f is an increasing function, and clearly has a unique inverse function $g(y) = y^{1/3}$ on \mathbb{R} , and hence locally around f(0).

5.1 Derivative of the Inverse Function

- From a geometric point of view, if f maps x_0 to y_0 , so that the point (x_0, y_0) is on the graph of f, then f^{-1} maps y_0 back to x_0 , and therefore the point (y_0, x_0) is on the graph of f^{-1} .
 - For any point (x, y) on the graph of f, the point (y, x) is on the graph of f^{-1} .
 - This means that the graph of f^{-1} is simply the reflection of the graph of f across the 45^0 line.
 - The following two figures illustrate this phenomenon.
 - Due to the close relationship between the graph of an invertible function f and the graph of its inverse f^{-1} , it is not surprising that there is a close relationship between their derivatives.
 - In particular, if f is C^1 so that its graph has a smoothly varying tangent line, then the graph of f^{-1} also will have a smoothly varying tangent line; that is, f^{-1} will be C^1 too.

Figure 4.2

The graphs of the functions y = 2x and $y = \frac{1}{2}x$.

The graphs of the functions $y = x^2$ and $y = \sqrt{x}$ for $x, y \ge 0$.

• The following theorem gives a complete picture for the existence and differentiability of the inverse of a single-variable C^1 function.

• Theorem 9:

Let f be a C^1 function defined on the interval I in \mathbb{R} . If $f'(x) \neq 0$ for all $x \in I$, then (a) f is invertible on I,

(b) its inverse g is a ${\cal C}^1$ function on the interval f(I), and

(c) for all y in the domain of the inverse function g,

$$g'(y) = \frac{1}{f'(g(y))}.$$

• Example: Consider the following pair of functions which are inverses of each other:

$$f(x) = \frac{x-1}{x+1}, \text{ and } g(y) = \frac{1+y}{1-y}.$$

- Since $f(2) = \frac{1}{3}$, the inverse g of f maps $\frac{1}{3}$ to 2, that is, $g\left(\frac{1}{3}\right) = 2$.
- Since $f'(x) = \frac{2}{(x+1)^2}, f'(2) = \frac{2}{9} \neq 0$, by Theorem 9,
 $g'\left(\frac{1}{3}\right) = \frac{1}{f'(2)} = \frac{9}{2}.$

– We can check this by computing directly that

$$g'(y) = \frac{2}{(1-y)^2} \\ \Rightarrow g'\left(\frac{1}{3}\right) = \frac{2}{4/9} = \frac{9}{2}.$$

• Let A be a set in \mathbb{R}^n , and let f be a function from A to \mathbb{R}^n .

• Jacobians:

Suppose A is an open set in \mathbb{R}^n , and f is a function from A to \mathbb{R}^n , with component functions f^1 , ..., f^n . If $a \in A$, and the partial derivatives of f^1 , ..., f^n exist at a, then the $n \times n$ matrix

$$Df(a) = \begin{pmatrix} D_1 f^1(a) & D_2 f^1(a) & \cdots & D_n f^1(a) \\ D_1 f^2(a) & D_2 f^2(a) & \cdots & D_n f^2(a) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f^n(a) & D_2 f^n(a) & \cdots & D_n f^n(a) \end{pmatrix}$$

is defined as the **Jacobian matrix** of f at a.

- The determinant of this matrix, denoted by $J_f(a)$, is called the **Jacobian** of f at a.
- When $A \subset \mathbb{R}^n$, and $f : A \to \mathbb{R}^n$, the counter-part of $f'(a) \neq 0$ is that the Jacobian of f at $a, J_f(a)$, is non-zero.

• Theorem 10 (Inverse Function Theorem):

Let *A* be an open set of \mathbb{R}^n , and $f : A \to \mathbb{R}^n$ be continuously differentiable on *A*. Suppose $a \in A$ and the Jacobian of *f* at a, $J_f(a)$, is non-zero. Then there is an open set $X \subset A$ containing *a*, and an open set $Y \subset \mathbb{R}^n$ containing f(X), and a unique function $g : Y \to X$, such that

(i) for all $x \in X$, g(f(x)) = x, and

(ii) g is continuously differentiable on Y with

 $Dg(f(a)) = [Df(a)]^{-1}.$

- In order to show that $Dg(f(a)) = [Df(a)]^{-1}$ we proceed as follows.
 - Under the hypothesis of the Inverse Function Theorem, there is a function $g: Y \rightarrow X$, such that g is continuously differentiable on Y and g(f(x)) = x for all $x \in X$.
 - We can define for $x \in X$, $F^{1}(x) = g^{1}(f(x))$ as a composite function of f and g^{1} .
 - Using the Chain Rule we get

$$D_{i}F^{1}(x) = \sum_{j=1}^{n} D_{j}g^{1}(f(x)) D_{i}f^{j}(x), \ i = 1, ..., n$$

- But since $F^{1}(x) = g^{1}(f(x)) = x_{1}$, we have

$$D_i F^1(x) = \begin{cases} 1 & \text{for } i = 1\\ 0 & \text{for } i \neq 1. \end{cases}$$

– We can repeat these calculations with $F^{2}(x) = g^{2}(f(x))$, and get

$$D_i F^2(x) = \begin{cases} 1 & \text{for } i = 2 \\ 0 & \text{for } i \neq 2. \end{cases}$$

- The results for $F^{3}(x), ..., F^{n}(x)$ should now be obvious.
- This information can then be written in familiar matrix multiplication form:

$$I = \begin{pmatrix} D_1 g^1(f(x)) & D_2 g^1(f(x)) & \cdots & D_n g^1(f(x)) \\ D_1 g^2(f(x)) & D_2 g^2(f(x)) & \cdots & D_n g^2(f(x)) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 g^n(f(x)) & D_2 g^n(f(x)) & \cdots & D_n g^n(f(x)) \end{pmatrix} \cdot \begin{pmatrix} D_1 f^1(x) & D_2 f^1(x) & \cdots & D_n f^1(x) \\ D_1 f^2(x) & D_2 f^2(x) & \cdots & D_n f^2(x) \\ \vdots & \vdots & \ddots & \vdots \\ D_1 f^n(x) & D_2 f^n(x) & \cdots & D_n f^n(x) \end{pmatrix}$$

- That is,
$$I = Dg(f(x)) \cdot Df(x)$$
.

- Thus, the matrix Df(a) is invertible, and we have $Dg(f(a)) = [Df(a)]^{-1}$.
- It follows that (taking determinants) the Jacobian of g at f(a) is equal to the reciprocal of the Jacobian of f at a:

$$J_{g}\left(f\left(a\right)\right) = \frac{1}{J_{f}\left(a\right)}.$$

 So far we have been working with functions where the endogenous or independent variables are explicit functions of the exogenous or independent variables:

$$y = F(x_1, x_2, ..., x_n).$$

When the variables are separated like this, we say that the endogenous variable (y) is an *explicit function* of the exogenous variables $(x_1, x_2, ..., x_n)$.

• Consider the expression

$$G(x_1, x_2, ..., x_n, y) = 0$$

where the exogenous variables $(x_1, x_2, ..., x_n)$ are mixed with the endogenous variable (y).

- If for each $(x_1, x_2, ..., x_n)$, the above equation determines a corresponding value of y, we say that the equation defines the endogenous variable y as an **implicit function** of the exogenous variables $x_1, x_2, ..., x_n$.

- An expression like above is often so complicated that one cannot solve it to separate the exogenous variables on one side and the endogenous one on the other.
 - However, we still want to answer the basic question: how does a small change in one of the exogenous variables affect the value of the endogenous variable?
 - In what follows we explain how to answer this question for *implicit functions*.

- Example 1: The equation 4x + 2y 5 = 0 express y as an implicit function of x.
 - We can solve the equation and write y as an explicit function of x: y = 2.5 2x.
- Example 2: A more complex example is the equation: $y^2 5xy + 4x^2 = 0$.
 - We substitute any specified value of x into the equation and then solve the resulting quadratic equation for y.
 - Even though this equation is more complex than Example 1, we can still convert the equation into an explicit function (actually, a correspondence) by applying the quadratic formula:

$$y = \frac{5x \pm \sqrt{25x^2 - 16x^2}}{2} = \frac{1}{2}(5x \pm 3x) = \begin{cases} 4x \\ x. \end{cases}$$

- Example 3: Changing one exponent in Example 2 to construct the implicit function $y^5 5xy + 4x^2 = 0$ yields an expression which cannot be solved into an explicit function because there is no general formula for solving quintic equations.
 - However, this equation still defines y as a function of x: for example, x = 0 implies y = 0; x = 1 gives y = 1, and so on.

- Example 4: Consider a profit-maximizing firm that uses a single input x at a cost of w dollars per unit to produce a single output via a production function y = f(x). If output sells for p dollars a unit, the firm's profit function for any fixed p and w is: $\pi(x) = p \cdot f(x) w \cdot x$.
 - The profit-maximizing choice of x is determined from setting the derivative of the profit function equal to zero:

$$p \cdot f'(x) - w = 0.$$

- Think of p and w as exogenous variables. For each choice of p and w, the firm chooses x that satisfies the above equation.
- There is no reason to limit the models to production functions for which the above equation can be solved explicitly for x in terms of p and w.
- To study the profit-maximizing behaviour of a general firm, we need to work with the above equation as defining x as an *implicit function* of p and w.
- We will want to know, for example, how the optimal choice of input x changes as p or w increases.

- The fact that we can write down an implicit function G(x, y) = c does not mean that this equation automatically defines y as a function of x.
- Consider, for example, the simple implicit function

$$x^2 + y^2 = 1. (*)$$

- When x > 1, there is no y which satisfies (*).
- Usually we start with a specific solution (x_0, y_0) of the implicit equation G(x, y) = cand ask if we vary x a little from x_0 , can we find a y near the original y_0 that satisfies the equation.
 - For example, if we start with the solution (x = 0, y = 1) of (*) and vary x a little, we can find a unique $y = \sqrt{1 x^2}$ near y = 1 that corresponds to the new x.
 - We can even draw the graph of this explicit relationship, $y = \sqrt{1 x^2}$, around the point (0, 1), as we do in the following figure.

· · ·

The graph of $x^2 + y^2 = 1$ near the point (0, 1).

Figure 15.1
- However, if we start at the solution (x = 1, y = 0) of (*), then *no such functional relationship exists*.
 - Look at the figure in the next page.
 - If we increase x a little to $x = 1 + \varepsilon$, then there is no corresponding y so that $(1 + \varepsilon, y)$ solves (*).
 - If we decrease x a little to $x = 1 \varepsilon$, then there are two equally good candidates for y near y = 0, namely

$$y = +\sqrt{2\varepsilon - \varepsilon^2}$$
, and $y = -\sqrt{2\varepsilon - \varepsilon^2}$.

- As the figure illustrates, because the curve $x^2 + y^2 = 1$ is vertical around (1,0), it does **not** define y as a function of x around (1,0).

The graph of $x^2 + y^2 = 1$ near the point (1, 0).

Figure

15.2

6.1 Implicit Function Theorem: One Exogenous Variable

- For a given implicit function G(x, y) = c and a specified solution point (x_0, y_0) , we want the answers to the following two questions:
 - Does G(x, y) = c determine y as a continuous function of x, y = y(x), for x near x_0 and y near y_0 ?
 - If so, how do changes in x affect the corresponding y's?
- Answers of these two questions are closely related to each other:
 - If the first question has a positive answer, one can use the chain rule to compute y'(x) in terms of $\partial G/\partial x$ and $\partial G/\partial y$.
 - On the other hand, this formula for y'(x) in terms of $\partial G/\partial x$ and $\partial G/\partial y$ leads to the natural criterion for the existence question.
- We suppose that there is a C^1 solution y = y(x) to the equation G(x, y) = c, that is,

$$G(x, y(x)) = c. \tag{A}$$

– Use the Chain Rule to differentiate (A) with respect to x at x_0 :

$$\frac{\partial G}{\partial x}(x_0, y(x_0)) \cdot \frac{dx}{dx} + \frac{\partial G}{\partial y}(x_0, y(x_0)) \cdot \frac{dy}{dx}(x_0) = 0,$$

or
$$\frac{\partial G}{\partial x}(x_0, y_0) + \frac{\partial G}{\partial y}(x_0, y_0) \cdot y'(x_0) = 0.$$

- Solving for $y'(x_0)$ yields

$$y'(x_0) = -\frac{\frac{\partial G}{\partial x}(x_0, y_0)}{\frac{\partial G}{\partial y}(x_0, y_0)}.$$
(B)

- We see from (B) that if the solution y(x) to the equation G(x, y) = c exists and is differentiable, it is *necessary* that $\frac{\partial G}{\partial y}(x_0, y_0)$ be *non-zero*.
- As the following fundamental result of mathematical analysis indicates, this necessary condition is also a sufficient condition.

• Theorem 11(a) (Implicit Function Theorem: one exogenous variable):

Let G(x, y) be a C^1 function on an open ball around (x^*, y^*) in \mathbb{R}^2 . Suppose that $G(x^*, y^*) = c$. If $\frac{\partial G}{\partial y}(x^*, y^*) \neq 0$, then there exists a C^1 function y = y(x) defined on an open interval I around the point x^* such that:

(a) $G(x, y(x)) \equiv c$ for all x in I,

(b) $y(x^*) = y^*$, and

(c)
$$y'(x^*) = -\frac{\frac{\partial G}{\partial x}(x^*, y^*)}{\frac{\partial G}{\partial y}(x^*, y^*)}$$
.

• Example: Consider the function $G : \mathbb{R}^2_{++} \to \mathbb{R}$ defined by $G(x, y) = x^{\alpha}y^{\beta}$, where α, β are positive constants.

- At
$$(x^*, y^*) = (1, 1)$$
, $G(x^*, y^*) = 1$.

$$-\frac{\partial G}{\partial y}\left(1,1\right)=\beta>0, \text{ that is, } \frac{\partial G}{\partial y}\left(1,1\right)\neq 0.$$

- Also G is a C^1 function on \mathbb{R}^2_{++} .
- Hence we can invoke the implicit function theorem to obtain a C^1 function y = y(x) defined on an open interval I around the point $x^* = 1$ such that:

$$\circ x^{\alpha} (y(x))^{\beta} = 1$$
 for all x in $I; y(1) = 1$, and

$$\circ y'(1) = -\frac{\partial G}{\partial x}(1,1) \diagup \frac{\partial G}{\partial y}(1,1) = -\frac{\alpha}{\beta}.$$

- Example: Return now to the equation $x^2 + y^2 = 1$.
 - We saw that this equation does determine y as a function of x around the point (x = 0, y = 1).
 - $\frac{\partial G}{\partial y}(0,1) = 2 \neq 0$. So the Implicit Function Theorem assures us that y(x) exists around (0,1).
 - Furthermore, the theorem tells us that $y'(0) = -\frac{\frac{\partial G}{\partial x}(0,1)}{\frac{\partial G}{\partial u}(0,1)} = -\frac{0}{2} = 0.$
 - In this case, we have an explicit formula for y(x): $y(x) = \sqrt{1 x^2}$.
 - We can compute directly from this explicit formula that $y'(0) = -\frac{x}{\sqrt{1-x^2}}\Big|_{x=0} = 0.$

– On the other hand, we noted earlier that no function y(x) exists for $x^2 + y^2 = 1$ around (x = 1, y = 0).

- This is consistent with the theorem since $\frac{\partial G}{\partial y} = 2y = 0$ at (1, 0).

6.2 Implicit Function Theorem: Several Exogenous Variables

• The Implicit Function Theorem for one exogenous variable and the discussion around it carry over in a straightforward way to the situation where there are many exogenous variables, but still one equation and therefore one endogenous variable:

$$G(x_1, x_2, ..., x_n, y) = c.$$
 (C)

- Around a given point $(x_1^*, x_2^*, ..., x_n^*, y^*)$, we want to vary $x = (x_1, x_2, ..., x_n)$ and then find a *y*-value which corresponds to each such $(x_1, x_2, ..., x_n)$.
- In this case, we say that the equation (C) defines y as an implicit function of $(x_1, x_2, ..., x_n)$.
- Again, given $G(\cdot)$ and $(x_1^*, x_2^*, ..., x_n^*, y^*)$, we want to know whether this functional relationship exists, and, if yes, how *y* changes if any of the x_i 's change from x_i^* .
 - Since we are working with a function of several variables $(x_1, x_2, ..., x_n)$, we will hold all but one of the x_i 's constant and vary one exogenous variable at a time.

- But this puts us back in the two-variable situation that we have been discussing.
- The natural extension of the Implicit Function Theorem for one exogenous variable in this setting is the following.

• Theorem 11(b) (Implicit Function Theorem: several exogenous variables):

Let $G(x_1, x_2, ..., x_k, y)$ be a C^1 function on an open ball around $(x_1^*, x_2^*, ..., x_k^*, y^*)$ in \mathbb{R}^{k+1} such that $G(x_1^*, x_2^*, ..., x_k^*, y^*) = c$. If $\frac{\partial G}{\partial y}(x_1^*, x_2^*, ..., x_k^*, y^*) \neq 0$, then there exists a C^1 function $y = y(x_1, x_2, ..., x_k)$ defined on an open ball B around $(x_1^*, x_2^*, ..., x_k^*)$ such that:

(a)
$$G(x_1, x_2, ..., x_k, y(x_1, x_2, ..., x_k)) = c$$
 for all $(x_1, x_2, ..., x_k) \in B$,

(b)
$$y^* = y(x_1^*, x_2^*, ..., x_k^*)$$
, and
(c) $\frac{\partial y}{\partial x_i}(x_1^*, x_2^*, ..., x_k^*) = -\frac{\frac{\partial G}{\partial x_i}(x_1^*, x_2^*, ..., x_k^*, y^*)}{\frac{\partial G}{\partial y}(x_1^*, x_2^*, ..., x_k^*, y^*)}$, for all $i = 1, 2, ..., k$

• **Definition:** A set of m equations in m + n unknowns

 $G^{1}(x_{1}, x_{2}, ..., x_{m+n}) = c_{1},$ $G^{2}(x_{1}, x_{2}, ..., x_{m+n}) = c_{2},$ (D)

 $G^m(x_1, x_2, ..., x_{m+n}) = c_m,$

is called a *system of implicit functions* if there is a partition of the variables into *exogenous variables* and *endogenous variables*, so that if one substitutes into (D) numerical values for the exogenous variables, the resulting system can be solved uniquely for corresponding values of the endogenous variables.

- This is a natural generalization of the single-equation implicit function.

6.3.1 Linear System of Implicit Functions

- From our discussion in linear algebra we know that for *linear* system of implicit functions, in order for each choice of values of the exogenous variables to determine a unique set of values of the endogenous variables it is necessary and sufficient that:
- (1) the number of endogenous variables is equal to the number of equations, and
- (2) the (square) matrix of coefficients corresponding to the endogenous variables be invertible (have non-zero determinant).
- Example: Consider the linear system of implicit functions:

$$4x + 2y + 2z - r + 3s = 5,$$

$$2x + 0 \cdot y + 2z + 8r - 5s = 7,$$

$$2x + 2y + 0 \cdot z + r - s = 0.$$

 Since there are three equations, we need three endogenous variables, and, therefore, two exogenous variables. – Let us try to work with y, z and r as endogenous and x and s as exogenous. Putting the exogenous variables on the right side and the endogenous variables on the left, we rewrite the system as

$$\begin{bmatrix} 2 & 2 & -1 \\ 0 & 2 & 8 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \\ r \end{bmatrix} = \begin{bmatrix} 5 - 4x - 3s \\ 7 - 2x + 5s \\ -2x + s \end{bmatrix}$$

– Since the determinant of the coefficient matrix is 40, we can invert it and solve for (y, z, r) explicitly in terms of x and s:

$$\begin{bmatrix} y \\ z \\ r \end{bmatrix} = \begin{bmatrix} 2 & 2 & -1 \\ 0 & 2 & 8 \\ 2 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 - 4x - 3s \\ 7 - 2x + 5s \\ -2x + s \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 2 & -2 & 18 \\ 16 & 4 & -16 \\ -4 & 4 & 4 \end{bmatrix} \begin{bmatrix} 5 - 4x - 3s \\ 7 - 2x + 5s \\ -2x + s \end{bmatrix}$$

– On the other hand, if we want x, y and z to be endogenous, we have to solve the system

$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5+r-3s \\ 7-8r+5s \\ 0-r+s \end{bmatrix}$$

- Since the determinant of the coefficient matrix is zero, we know that there are righthand sides for which the above system cannot be solved for (x, y, z).
 - For example, for r = -5 and s = 0, the system becomes

$$4x + 2y + 2z = 0, 2x + 0 \cdot y + 2z = 47, 2x + 2y + 0 \cdot z = 5.$$

- Adding the last two equations yields the inconsistent system:

$$4x + 2y + 2z = 0, 4x + 2y + 2z = 52.$$

- Since there is no solution in (x, y, z) for (r, s) = (-5, 0), this partition into exogenous and endogenous variables does not work.

6.3.2 Nonlinear System of Implicit Functions

- The corresponding result for nonlinear systems follows from the usual calculus paradigm:
 - linearize by taking the derivative;
 - apply the linear theorem to this linearized system; and
 - transfer these results back to the original nonlinear system.
- Write the nonlinear system of m equations in m + n unknowns as

- Here we want $(y_1, y_2, ..., y_m)$ to be endogenous variables and $(x_1, x_2, ..., x_n)$ to be exogenous variables.

• The linearization of system (E) around the point $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$ is:

$$\frac{\partial F^{1}}{\partial y_{1}}dy_{1} + \dots + \frac{\partial F^{1}}{\partial y_{m}}dy_{m} + \frac{\partial F^{1}}{\partial x_{1}}dx_{1} + \dots + \frac{\partial F^{1}}{\partial x_{n}}dx_{n} = 0,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (E')$$

$$\frac{\partial F^m}{\partial y_1} dy_1 + \dots + \frac{\partial F^m}{\partial y_m} dy_m + \frac{\partial F^m}{\partial x_1} dx_1 + \dots + \frac{\partial F^m}{\partial x_n} dx_n = 0,$$

where all the partial derivatives are evaluated at $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$.

• The linear system (E') can be solved for ($dy_1, dy_2, ..., dy_m$) in terms of ($dx_1, dx_2, ..., dx_n$) if and only if the coefficient matrix of the dy_i 's

$$\begin{pmatrix} \frac{\partial F^1}{\partial y_1} & \dots & \frac{\partial F^1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^m}{\partial y_1} & \dots & \frac{\partial F^m}{\partial y_m} \end{pmatrix}$$

(F)

is invertible (have non-zero determinant) at $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$.

• Since the system is linear, when the coefficient matrix in (F) is invertible, we can use its inverse to solve the system (E') for ($dy_1, dy_2, ..., dy_m$) in terms of ($dx_1, dx_2, ..., dx_n$):

$$\begin{bmatrix} dy_1 \\ dy_2 \\ \vdots \\ dy_m \end{bmatrix} = -\begin{bmatrix} \frac{\partial F^1}{\partial y_1} & \dots & \frac{\partial F^1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^m}{\partial y_1} & \dots & \frac{\partial F^m}{\partial y_m} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial F^1}{\partial x_1} dx_1 + \dots + \frac{\partial F^1}{\partial x_n} dx_n \\ \vdots \\ \frac{\partial F^m}{\partial x_1} dx_1 + \dots + \frac{\partial F^m}{\partial x_n} dx_n \end{bmatrix}.$$
(G)

- Since the linear approximation (E') of the original system (E) is a true implicit function of ($dy_1, dy_2, ..., dy_m$) in terms of ($dx_1, dx_2, ..., dx_n$), the basic principle of calculus leads us to the following conclusion:
 - if the coefficient matrix in (F) is invertible, then the nonlinear system (E) defines $(y_1, y_2, ..., y_m)$ as implicit functions of $(x_1, x_2, ..., x_n)$, at least in a neighbourhood of $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$.
- ⇒ The sufficient condition for the existence of implicit functions for the nonlinear system (E) is: the coefficient matrix in (F) is invertible.

- Furthermore, one can actually use the linear solution (G) of $(dy_1, dy_2, ..., dy_m)$ in terms of $(dx_1, dx_2, ..., dx_n)$ to find the derivatives of the y_i 's with respect to the x_j 's at $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$.
- To compute $\frac{\partial y_k}{\partial x_h}$ for some *h* and *k*, recall that this derivative estimates the effect on y_k of a unit increase in x_h ($dx_h = 1$).
- So we set all the dx_j's equal to zero in (E') or (G) except dx_h and then solve (E') or (G) for the corresponding dy_i's.
 - For example, if we use (G), we find

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_h} \\ \vdots \\ \frac{\partial y_m}{\partial x_h} \end{bmatrix} = -\begin{bmatrix} \frac{\partial F^1}{\partial y_1} & \cdots & \frac{\partial F^1}{\partial y_m} \\ \vdots & \cdots & \vdots \\ \frac{\partial F^m}{\partial y_1} & \cdots & \frac{\partial F^m}{\partial y_m} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial F^1}{\partial x_h} \\ \vdots \\ \frac{\partial F^m}{\partial x_h} \end{bmatrix}$$

• Alternatively we can apply Cramer's Rule to (E') and compute

$$\frac{\partial Y_{k}}{\partial x_{h}} = -\frac{\begin{vmatrix} \frac{\partial F^{1}}{\partial y_{1}} & \cdots & \frac{\partial F^{1}}{\partial x_{h}} & \cdots & \frac{\partial F^{1}}{\partial y_{m}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial F^{m}}{\partial y_{1}} & \cdots & \frac{\partial F^{m}}{\partial x_{h}} & \cdots & \frac{\partial F^{m}}{\partial y_{m}} \end{vmatrix}}{\begin{vmatrix} \frac{\partial F^{1}}{\partial y_{1}} & \cdots & \frac{\partial F^{1}}{\partial y_{k}} & \cdots & \frac{\partial F^{1}}{\partial y_{m}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial F^{m}}{\partial y_{1}} & \cdots & \frac{\partial F^{m}}{\partial y_{k}} & \cdots & \frac{\partial F^{m}}{\partial y_{m}} \end{vmatrix}}{\begin{vmatrix} \frac{\partial F^{m}}{\partial y_{1}} & \cdots & \frac{\partial F^{m}}{\partial y_{k}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial F^{m}}{\partial y_{1}} & \cdots & \frac{\partial F^{m}}{\partial y_{k}} & \cdots & \frac{\partial F^{m}}{\partial y_{m}} \end{vmatrix}}{\begin{vmatrix} \frac{\partial F^{m}}{\partial y_{1}} & \cdots & \frac{\partial F^{m}}{\partial y_{k}} \\ \frac{\partial F^{m}}{\partial y_{m}} & \cdots & \frac{\partial F^{m}}{\partial y_{m}} \\ \end{vmatrix}}$$

 The following theorem – the most general form of the Implicit Function Theorem – summarizes these conclusions.

• Theorem 11(c) (Implicit Function Theorem: most general form):

Let $F^1, F^2, ..., F^m : \mathbb{R}^{m+n} \to \mathbb{R}$ be C^1 functions. Consider the system of equations

$$F^{1}(y_{1},...,y_{m},x_{1},...,x_{n}) = c_{1}$$

$$F^{2}(y_{1},...,y_{m},x_{1},...,x_{n}) = c_{2}$$

$$\vdots$$

$$F^{m}(y_{1},...,y_{m},x_{1},...,x_{n}) = c_{m}$$

as possibly defining $y_1, ..., y_m$ as implicit functions of $x_1, ..., x_n$. Suppose that $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$ is a solution to the system of equations. If the determinant of the $m \times m$ matrix

$$\begin{pmatrix} \frac{\partial F^1}{\partial y_1} & \cdots & \frac{\partial F^1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F^m}{\partial y_1} & \cdots & \frac{\partial F^m}{\partial y_m} \end{pmatrix}$$

evaluated at $(y_1^*, ..., y_m^*, x_1^*, ..., x_n^*)$ is nonzero, then there exist C^1 functions

$$\begin{array}{rcl} y_{1} \ = \ f^{1} \left(x_{1},...,x_{n} \right) \\ y_{2} \ = \ f^{2} \left(x_{1},...,x_{n} \right) \\ & \vdots \\ y_{m} \ = \ f^{m} \left(x_{1},...,x_{n} \right) \end{array}$$

defined on an open ball B around $(x_1^\ast,...,x_n^\ast)$ such that

$$F^{1}(f^{1}(x), ..., f^{m}(x), x_{1}, ..., x_{n}) = c_{1}$$

$$F^{2}(f^{1}(x), ..., f^{m}(x), x_{1}, ..., x_{n}) = c_{2}$$

$$\vdots$$

$$F^{m}(f^{1}(x), ..., f^{m}(x), x_{1}, ..., x_{n}) = c_{m}$$

for all $x = (x_1, ..., x_n)$ in B and

$$\begin{array}{l} y_1^* \ = \ f^1 \left(x_1^*, ..., x_n^* \right) \\ y_2^* \ = \ f^2 \left(x_1^*, ..., x_n^* \right) \\ \vdots \\ y_m^* \ = \ f^m \left(x_1^*, ..., x_n^* \right). \end{array}$$

Furthermore, one can compute $\frac{\partial y_k}{\partial x_h}(y^*, x^*) = \frac{\partial f^k}{\partial x_h}(x^*)$ by setting $dx_h = 1$ and $dx_j = 0$ for $j \neq h$ in

$$\frac{\partial F^{1}}{\partial y_{1}}dy_{1} + \dots + \frac{\partial F^{1}}{\partial y_{m}}dy_{m} + \frac{\partial F^{1}}{\partial x_{1}}dx_{1} + \dots + \frac{\partial F^{1}}{\partial x_{n}}dx_{n} = 0$$

$$\vdots$$

$$\frac{\partial F^{m}}{\partial y_{1}}dy_{1} + \dots + \frac{\partial F^{m}}{\partial y_{m}}dy_{m} + \frac{\partial F^{m}}{\partial x_{1}}dx_{1} + \dots + \frac{\partial F^{m}}{\partial x_{n}}dx_{n} = 0$$

and solving the resulting system for dy_k .

References

- Must read the following chapters and sections from the textbook:
 - Chapter 2 (pages 10 38): One-Variable Calculus: Foundations,
 - Section 4.2 (pages 75 81): Inverse Functions and Their Derivatives,
 - Chapter 14 (pages 300 333): Calculus of Several Variables,
 - Section 20.1 (pages 483 493): Homogeneous Functions,
 - Chapter 15 (pages 334 371): Implicit Functions and Their Derivatives.
- This material is based on
 - 1. Bartle, R., The Elements of Real Analysis, (chapter 7),
- 2. Apostol, T., *Mathematical Analysis: A Modern Approach to Advanced Calculus*, (chapters 6, 7).
- 3. Spivak, M., Calculus on Manifolds, (chapter 2).