
Real Analysis:
Differential Calculus
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1. One-Variable Calculus: Differentiability of Functions
• Slope of a Linear Function:
The slope of a linear function f measures how much f (x) changes for each unit
increase in x.
– It measures the rate of change of the function f .
- Linear functions have the same rate of change no matter where we start.

• The view of the slope of a linear function as its rate of change (the marginal effect)
plays a key role in economic analysis:
– marginal cost;
– marginal utility;
– marginal product of labour.
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1.1 Slope of Nonlinear Functions
• How do we measure the marginal effects of nonlinear functions?

• Suppose that y = f (x) is a nonlinear function and we are at the point (x0, f (x0)) on
the graph of f , as in the following figure.
–We want to measure the rate of change of f when x = x0.
- A natural solution to this problem is to draw the tangent line to the graph of f at
x0 as pictured in the figure.

• Since the tangent line very closely approximates the graph of f around (x0, f (x0)),
it is a good proxy for the graph of f itself.
– The slope of the tangent line should be a good measure for the slope of the non-
linear function at x0.

• For nonlinear f , the slope of tangent line varies from point to point.
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•We use the notion of the tangent line approximation to a graph in our daily lives.
– Contractors who plan to build a large mall or power plant or farmers who want too
subdivide large plots of land will generally assume that they are working on a flat
plane,
- even though they know that they are actually working on the rather round earth
surface.

– In effect, they are working with the tangent plane to the earth and the computations
that they make on it will be exact to 10 or 20 decimal places – easily close enough
for their purposes.
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•We define the slope of a nonlinear function f at a point (x0, f (x0)) on its graph as
the slope of the tangent line to the graph of f at that point.
–We call the slope of the tangent line to the graph of f at (x0, f (x0)) the derivative
of f at x0, and we write it as

f 0 (x0) or
df

dx
(x0) .

- The latter notation comes from the fact that the slope is the change in f divided
by the change in x, or f

x
.

• Since the derivative is such an important concept, we need an analytical definition to
work with.
– This problem is best handled using a limiting process.
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• Recall that a line segment joining two points on a graph is called a secant line.

• Back off a bit from the point (x0, f (x0)) on the graph of f to the point (x0 + h1, f (x0 + h1)),
where h1 is some small number.
– Draw the secant line `1 to the graph joining these two points, as in the following
figure.

• By choosing the second point closer and closer to (x0, f (x0)), we will be drawing
better and better approximations to the desired tangent line.

• Choose h2 closer to zero than h1 and draw the secant line `2 joining (x0, f (x0)) and
(x0 + h2, f (x0 + h2)) .

• Continue in this way choosing a sequence {hn} of small numbers which converges
monotonically to 0.
– For each n, draw the secant line through the two distinct points on the graph
(x0, f (x0)) and (x0 + hn, f (x0 + hn)) .
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• The secant lines {`n} geometrically approach the tangent line to the graph of f at
(x0, f (x0)), and their slopes approach the slope of the tangent line.

• As `n passes through the two points (x0, f (x0)) and (x0 + hn, f (x0 + hn)), its slope is
f (x0 + hn) f (x0)
(x0 + hn) x0

=
f (x0 + hn) f (x0)

hn
.

• Hence the slope of the tangent line is the limit of this process as hn converges to 0.
• Definition:
Let (x0, f (x0)) be a point on the graph of y = f (x). The derivative of f at x0, written
as f 0 (x0) or

df

dx
(x0) or

dy

dx
(x0) , is the slope of the tangent line to the graph of f at

(x0, f (x0)).

– Analytically, f 0 (x0) = lim
h!0

f (x0 + h) f (x0)
h

, if this limit exists.

–When the limit does exist, we say that the function f is differentiable at x0 with
derivative f 0 (x0).
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1.2 Differentiability and Continuity
• The continuity of f is a necessary condition for its differentiability, but not sufficient.

• Theorem 1:
Let f be defined on an open interval I containing the point x0. If f is differentiable
at x0, then f is continuous at x0.
– Proof: To be discussed in class.

• Counter-example: Consider the function f (x) = |x| .
– Show that this function is continuous at x = 0.

– Show that this function is not differentiable at x = 0.
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1.3 Higher-Order Derivatives
• Continuously Differentiable Functions:
If f is a differentiable function, its derivative f 0(x) is another function of x. If f 0(x)
is a continuous function of x, we say that the original function f is continuously
differentiable, or C1 for short.
– Geometrically, the function f 0 will be continuous if the tangent line to the graph of f
at (x, f(x)) changes continuously as x changes.

– Example: Every polynomial is a continuous function. Since the derivative of a
polynomial is a polynomial of one less degree, it is also continuous.
) Every polynomial is a C1 function.
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• Second Derivative:
Let f be a C1 function on R. Since its derivative f 0(x) is a continuous function on R,
we can ask whether or not the function f 0 has a derivative at a point x0.
– The derivative of f 0(x) at x0 is called the second derivative of f at x0 and is written
as

f 00 (x0) or
d

dx


df

dx


(x0) =

d2f

dx2
(x0) .

– The second derivative of f at x0 is defined as

f 00 (x0) = lim
h!0

f 0 (x0 + h) f 0 (x0)
h

, if this limit exists.
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• Twice Continuously Differentiable Functions:
If f has a second derivative everywhere, then f 00 is a well-defined function of x. If f 00
is a continuous function of x, then we say that f is twice continuously differentiable,
or C2 for short.
– Example: Every polynomial is a C2 function.

• This process continues for all positive integers.
– If f (x) has derivatives of order 1, 2, . . . , k and if the kth derivative of f – written as

f [k](x), or d
kf

dxk
(x) – is itself a continuous function, we say that f is Ck.

• If f has a continuous derivative of every order, that is, if f is Ck for every positive
integer k, then we say that f is C1 or “infinitely differentiable”.
– Example: All polynomials are C1 functions.
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1.4 Approximation by Differentials
• The definition of the derivative leads us naturally to the construction of the linear
approximation of a function.

• Recall that for a linear function f (x) = mx + b, the derivative f 0(x) = m gives the
slope of the graph of f and measures the rate of change or marginal change of f :
increase in the value of f for every unit increase in the value of x.

• Let us carry over this marginal analysis to nonlinear functions.
– After all, this was one of the main reasons for defining the derivative of such an f .
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• In formulating the analytic definition of the derivative of f , we used the fact that the
slope of the tangent line to the graph at (x0, f (x0)) is well approximated by the slope
of the secant line through (x0, f (x0)) and a nearby point (x0 + h, f (x0 + h)) on the
graph.

– In symbols, f (x0 + h) f (x0)
h

t f 0 (x0) , for small h, where t means “is well ap-
proximated by” or “is close in value to”.

• If we set h = 1, then the above relationship becomes

f (x0 + 1) f (x0) t f 0 (x0) ;

– in words, the derivative of f at x0, f 0 (x0), is a good approximation to the marginal
change of f at x0.
- Of course, the less curved the graph of f at x0, the better is the approximation.
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• Example: Consider the production function F (L) = 1
2

p
L.

– Suppose that the firm is currently using 100 units of labour.

– Marginal product of labour: F 0 (100) = 1
4 (100)

1
2 = 1

40 = 0.025;

– The actual increase in output is: F (101)F (100) = 0.02494..., pretty close to 0.025.

•What if the change in the amount of x is not exactly one unit?
– Substituting x, the exact change in x, for h, we get

f (x0 +x) f (x0)
x

t f 0 (x0) , implying that

y  f (x0 +x) f (x0) t f 0 (x0)x,

or f (x0 +x) t f (x0) + f 0 (x0)x.

– Here we write y for the exact change in y = f (x) when x changes by x.
- Once again, the less curved the graph and/or the smaller the change x in x, the
better the approximation.
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• The expression f (x0 +x) t f (x0) + f
0 (x0)x gives an effective way of approxi-

mating f (x) for x close to some x0.

• Example: Consider again the production function y = F (x) = 1
2

p
x.

Suppose the firm cuts its labour force from 900 to 896 units. Let us estimate the
change in output, y and the new output at x = 896.
– Note that F 0(x) = 1

4x
1
2 . Substituting x0 = 900 and x = 4,

 y t F 0 (x0)x = 1
4 (900)

1
2 (4) = 

1

30
, that is, output will decrease by approxi-

mately 1
30

units;

 New output, F (x0 +x) t F (x0) + F 0 (x0)x = 15
1

30
= 14.9666...

– The actual new output is: F (896) = 1
2

p
896 = 14.9663...;

 once again the approximation by the derivative is a good one.
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• The equations

y  f (x0 +x) f (x0) t f 0 (x0)x,

or f (x0 +x) t f (x0) + f 0 (x0)x,

are merely analytic representations of the geometric fact that the tangent line ` to the
graph of y = f (x) at (x0, f (x0)) is a good approximation to the graph itself for x near
x0.

• As the following figure indicates,
– the left-hand sides of the equations pertain to movement along the graph of f ,

– the right-hand sides pertain to movement along the tangent line `,
- because the equation of the tangent line, the line through the point (x0, f (x0))
with slope f 0 (x0), is

y = f (x0) + f
0 (x0) (x x0) = f (x0) + f 0 (x0)x.
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•Write y for the actual change in y as x changes by x, that is, for the change along
the graph of f , as in the figure.

•Write dy for change in y along the tangent line ` as x changes by x.

• Then the above equation can be written as

y t dy = f 0 (x0)x.

•We usually write dx instead of x while working with changes along the tangent line,
even though x is equal to dx.

• Differentials: The increments dy and dx along the tangent line ` are called differentials.

•We sometimes write the differential df in place of dy.

• The equation of differentials for the variation along the tangent line

df = f 0 (x0) dx or dy = f 0 (x0) dx

gives added weight to the notation df
dx

for the derivative f 0(x).



17

2. Calculus of Several Variables: Partial Derivatives
• To apply calculus to the study of functions of several variables, we take the simplest
approach.
–We change one variable at a time, keeping all the other variables constant.

– Since we are not looking at the total variation of f but just the partial variation
– the variation brought about by the change in only one variable, say xi – the
corresponding derivative is called the partial derivative of f with respect to xi.

- It is denoted by @f
@xi

; other common notations include fi, fxi, and Dif.

• Recall that the derivative of a function f of one variable at x0 is
df

dx
(x0) = lim

h!0

f (x0 + h) f (x0)
h

.

• The partial derivative with respect to xi of a function of several variables, f (x1, x2, ..., xn) ,
at the vector x0 =


x01, x

0
2, ..., x

0
n


is defined in a similar manner.
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• Definition:
Let A be an open set in Rn, x0 =


x01, x

0
2, ..., x

0
n


2 A, and f : A! R. Then

@f

@xi


x01, x

0
2, ..., x

0
n


= lim
h!0

f

x01, x

0
2, ..., x

0
i + h, ..., x

0
n


 f


x01, x

0
2, ..., x

0
i , ..., x

0
n



h
,

if this limit exists, where i = 1, 2, ..., n.

• Note that only ith variable changes; others are treated as constants.
– This means, of course, that we can compute partial derivatives just like ordinary
derivatives of a function of one variable.
- That is, if f (x1, x2, ..., xn) is given by some formula involving (x1, x2, ..., xn) , then
we find Dif (x) by differentiating the function whose value at xi is given by the
formula when all xj (for j 6= i) are thought of as constants.

• Example: Suppose f : R2 ! R is given by f (x1, x2) = x31 + 3x32 + 2x1x2. Then
–D1f (x) = 3x21 + 2x2,

–D2f (x) = 9x22 + 2x1.
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2.1 Geometric Interpretation of Partial Derivatives
• Note that we can represent a function z = f (x, y) geometrically by drawing its graph
in R3.

•When we study @f
@x
(a, b), we are holding y constant at b and looking at variations in

x around x = a.
– In terms of the graph, we are looking at f only on the two-dimensional slice {y = b}
in R3 as in the following figure.

– On this slice, the graph of f is a curve – the graph of the function of one variable
x 7! f (x, b).

- The partial derivative @f
@x
(a, b) is the slope of the tangent line to this graph on this

slice, line ` in the figure.

• Similarly, @f
@y
(a, b) is the slope of the tangent line to the curve which is the intersection

of the graph of f with the slice {x = a}, as illustrated in the next figure.
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2.2 The Total Derivative
• Suppose we are interested in the behaviour of a function F (x, y) in the neighbour-
hood of a given point (x, y).
– Calculus of one variable and the concept of partial derivative tell us that
- if we hold y fixed at y and change x to x +x, then

F (x +x, y) F (x, y) 
@F

@x
(x, y) ·x;

- if we hold x fixed at x and change y to y +y, then

F (x, y +y) F (x, y) 
@F

@y
(x, y) ·y.

•What if we allow both x and y to vary simultaneously?
– Since we are working in the realm of linear approximations, it is natural that the
effect of the combined change is roughly the sum of the effects of the one-variable
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changes:
F (x +x, y +y) F (x, y) 

@F

@x
(x, y) ·x +

@F

@y
(x, y) ·y.

–We sometimes use the above expression in the following form:

F (x +x, y +y)  F (x, y) +
@F

@x
(x, y) ·x +

@F

@y
(x, y) ·y.

• Example: Consider a production function Q = F (K,L) = 4K 3
4L

1
4 around the point

(K, L) = (10000, 625).

– Q = F (10000, 625) = 20, 000; @Q

@K
(10000, 625) = 1.5;

@Q

@L
(10000, 625) = 8.

– If L is held constant and K increased by K , Q will increase by approximately
1.5 ·K.
- For an increase in K by 10 units, we estimate

Q(10010, 625) = 20, 000 + 1.5 · 10 = 20, 015,

a good approximation to Q(10010, 625) = 20, 014.998 ... .
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– Similarly, a 2-unit decrease in L should induce a 2 · 8 = 16-unit decrease in Q.
- Consequently, for a 2-unit decrease in L we estimate

Q(10000, 623) = 20, 000 8 · 2 = 19, 984,

a good approximation to Q(10000, 623) = 19, 983.981 ... .

– Finally, if we want to consider the effect of both changes, we would use the above
expression to estimate

F (10010, 623)  F (10000, 625) +
@F

@K
(10000, 625) · 10 +

@F

@L
(10000, 625) · (2)

= 20, 000 + (1.5 · 10) + (8 · (2))
= 19, 999,

which compares well with the exact value 19, 998.967... .
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2.2.1 Geometric Interpretation of Total Derivative
•What is the geometric significance of the approximation

F (x +x, y +y)  F (x, y) +
@F

@x
(x, y) ·x +

@F

@y
(x, y) ·y?

• For a function of one variable, the corresponding approximation is

f (x + h) t f (x) + f 0 (x) · h.

– As discussed above, the right-hand side is the equation of the tangent line to the
graph of f at x.

– That is, this equation states that the tangent line to the graph of f at x is a good
approximation to the graph itself in the vicinity of (x, f(x)), as illustrated in the
following figure.
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• For a function z = F (x, y) of two variables, the analogue of the tangent line is the
tangent plane to the graph, as illustrated in the following figure.
– That is, the expression

F (x +x, y +y)  F (x, y) +
@F

@x
(x, y) ·x +

@F

@y
(x, y) ·y

says that the tangent plane to the graph of F at (x, y, F (x, y)) is a good approx-
imation to the graph itself in the vicinity of (x, y, F (x, y)).

) The change F (x + s, y + t)  F (x, y) can be well approximated by the linear
mapping

(s, t) 7!
@F

@x
(x, y) · s +

@F

@y
(x, y) · t.
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• Thus, we consider the vector

@F

@x
(x, y),

@F

@y
(x, y)


as representing the linear

approximation of F around (x, y).
– In this sense, we call this linear map and the vector which represents it the deriva-
tive of F at (x, y) and write it as

DF (x, y) = OF (x, y) =

@F

@x
(x, y),

@F

@y
(x, y)


.

– This vector is also called the gradient vector of F at (x, y).

• It is rather natural to form a vector whose entries are all the partial derivatives of F
and call it the derivative of F .
– But, it is important to realize that more is happening here since the linear mapping
which this gradient vector represents is the appropriate linear approximation of F
at (x, y).
- As mentioned above, we use this approximation all the time when we use linear
mathematics for major construction projects on our round earth.
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•We use the notations dx, dy, and dF when we are working on the tangent plane to
the graph of F at (x, y).
– These variations on the tangent plane are called differentials.

• Using the differentials, the above expression is written as

dF =
@F

@x
(x, y) · dx +

@F

@y
(x, y) · dy.

– This expression for dF in terms of dx and dy is called the total differential of F at
(x, y).
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2.2.2 Functions of More than Two Variables
• The observations and analytical expressions for functions on R2 carry over in a nat-
ural way to functions on Rn.

• If we are studying a function F (x1, x2, ..., xn) of n variables in a neighbourhood of
some selected point x = (x1, x2, ..., xn), then

F (x1 +x1, ..., x

n +xn)

 F (x1, x2, ..., xn) +
@F

@x1
(x) ·x1+ ... +

@F

@xn
(x) ·xn.

– The right-hand side is the representation of the (n-dimensional) tangent hyperplane
to the graph of F .

• The above equation says that the linear mapping

(h1, h2, ..., hn) 7!
@F

@x1
(x) · h1 + ... +

@F

@xn
(x) · hn

is a good approximation to the actual change in F .
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•We call this linear map and the vector which represents it the derivative of F at x
and write it as

DF (x) = OF (x) =

@F

@x1
(x), ...,

@F

@xn
(x)


.

– This vector is also called the gradient vector of F at x.

•We frequently use the differentials dF , dx1, dx2, . . . , dxn to denote changes on the
tangent hyperplane.

• The above expression says that in the vicinity of the point x, the tangent hyperplane
to the graph of F is a good approximation to the graph itself in that the actual change
F = F (x +x) F (x) is well approximated by the total differential

dF =
@F

@x1
(x) · dx1 + ... +

@F

@xn
(x) · dxn

on the tangent hyperplane with dxi = xi for all i.
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2.3 Explicit Functions from Rn to Rm

• Up to now we have been studying functions with only one endogenous variable. But
functions with several endogenous variables arise naturally in economic models.

• Most real-world firms produce more than one product. To model their production, we
need a production function for each product.
– If the firm uses three inputs to produce two outputs, we need two separate produc-
tion functions: q1 = f 1 (x1, x2, x3) , and q2 = f 2 (x1, x2, x3) .

–We can write q = (q1, q2) as an output vector for this firm and summarize the firm’s
activities by a function F = (f 1, f 2):

q = (q1, q2) =

f 1 (x1, x2, x3) , f

2 (x1, x2, x3)

 F (x1, x2, x3) .

– The domain of F lies in R3, and its target space is R2. We write F : R3 ! R2.

• A firm which uses n inputs to produce m products would have a production function
F : Rn ! Rm.
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•When there are m endogenous variables in the system, there should be m separate
functions to determine their values:

y1 = f 1 (x1, ..., xn) ,

y2 = f 2 (x1, ..., xn) ,
...

ym = fm (x1, ..., xn) .

• Instead of viewing the system as m functions of n variables, we can view it as a
single function from Rn to Rm:

F (x1, ..., xn) =

f 1 (x1, ..., xn) , f

2 (x1, ..., xn) , ..., f
m (x1, ..., xn)


.

• On the other hand, if we start with a single function F : Rn ! Rm as above, we see
that each component of F , fi (x1, ..., xn) , is a function from Rn to R.

• This method is especially useful when we develop and use the theorems of calculus
for a function from Rn to Rm.
–We apply the usual theory to each component function fi : Rn ! R separately and
then combine all the information learned so far back into one big vector or matrix.
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• Consider F =

f 1, f 2, ..., fm


: Rn ! Rm at a specific point x = (x1, x2, ..., xn) in

Rn and use approximation by differentials to estimate the effect of a change at x by
x = (x1,x2, ...,xn) .

•We first apply the approximation by differentials to each component fi of F , i =
1, 2, . . . ,m:

f 1 (x +x) f 1 (x) 
@f 1

@x1
(x) ·x1 + ... +

@f 1

@xn
(x) ·xn,

f 2 (x +x) f 2 (x) 
@f 2

@x1
(x) ·x1 + ... +

@f 2

@xn
(x) ·xn,

... ... ...

fm (x +x) fm (x) 
@fm

@x1
(x) ·x1 + ... +

@fm

@xn
(x) ·xn.
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• Then we use vector and matrix notation to combine these and get

F (x +x) F (x) 

0

BBBB@

@f 1

@x1
(x) · · ·

@f 1

@xn
(x)

... . . . ...
@fm

@x1
(x) · · ·

@fm

@xn
(x)

1

CCCCA

0

BB@

x1
x2...
xn

1

CCA .

– This expression describes the linear approximation of F at x.

•We write the matrix on the right-hand side as

DF (x) = DFx =

0

BBBB@

@f 1

@x1
(x) · · ·

@f 1

@xn
(x)

... . . . ...
@fm

@x1
(x) · · ·

@fm

@xn
(x)

1

CCCCA
,

and call it the derivative or the Jacobian derivative of F at x.
– This matrix, also referred to as the Jacobian matrix, is the natural generalization
of the gradient vector of a single endogenous variable tom endogenous variables.
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• As we emphasized in the last subsection, it is natural to form a matrix composed of
all the first order partial derivatives of the component functions, fis, and call it the
derivative of F .
– But more is happening here.
- The above expression says that the linear map which this matrix represents is the
effective linear approximation of F around x.

• This is the essence of what calculus is all about.
In studying the behaviour of a nonlinear function F : Rn ! Rm in the vicinity of some
specific point x:

(1) we use derivatives to form the linear approximation DF (x),

(2) we use linear algebra to study the behaviour of the linear mapping DF (x), and

(3) we use calculus theory to translate information about the linear function DF (x) to
the corresponding information about the nonlinear function F in a neighbourhood
of x.
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2.4 Higher Order Derivatives
• Let A be an open set in Rn, and f : A! R.

• Example: Suppose f : R2 ! R is given by f (x1, x2) = x31 + 3x32 + 2x1x2. Then
–D1f (x) = 3x21 + 2x2,

–D2f (x) = 9x22 + 2x1.

– In this example the gradient vector is

Of (x) =

3x21 + 2x2, 9x

2
2 + 2x1


, for all x 2 R2.

•When f : A ! R has (first-order) partial derivatives at each x 2 A, we say that f
has (first-order) partial derivatives on A.
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• Second-Order Partial Derivatives and the Hessian Matrix:

–When f : A ! R has (first-order) partial derivatives at each x on A, these first-
order partial derivatives are themselves functions from A to R.
- If these (first-order) partial derivatives are continuous on A, then we say that f is
continuously differentiable


C1

on A.

- If these functions have (first-order) partial derivatives on A, these partial deriva-
tives are called the second-order partial derivatives of f on A.

– To elaborate, ifDif (x) exists for all x 2 A, we can define the functionDif : A! R.

- If this function has (first-order) partial derivatives on A, then the j-th (first-order)
partial derivative of Dif at x (that is, Dj (Dif (x))) is a second-order partial deriv-
ative of f at x, and is denoted byDijf (x) . [Here i = 1, 2, ..., n, and j = 1, 2, ..., n.]

- In the example described above,

D11f (x) = 6x1, D22f (x) = 18x2,

D12f (x) = 2 = D21f (x) .
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- We note in this example that the “cross partials” D12f (x) and D21f (x) are equal.
This is not a coincidence; it is a more general phenomenon as noted in the fol-
lowing Theorem, known as “Young’s Theorem”.

• Theorem 2 (Young’s Theorem):
Suppose A is an open set in Rn, and f has first and second-order partial derivatives
on A. If Dijf and Djif are continuous on A, then Dijf (x) = Djif (x) , for all x 2 A.

•When all the hypotheses of Theorem 1 hold for all i = 1, 2, ..., n, and j = 1, 2, ..., n,
we will say that f is twice continuously differentiable


C2

on A.

– This will be the typical situation in many applications.
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•When the first and second-order partial derivatives of f : A! R exist on A, the nn
matrix of second-order partial derivatives of f described below

Hf (x) = D
2f (x) =

0

BB@

D11f (x) D12f (x) · · · D1nf (x)
D21f (x) D22f (x) · · · D2nf (x)... ... . . . ...
Dn1f (x) Dn2f (x) · · · Dnnf (x)

1

CCA

is called the Hessian matrix of f at x 2 A, and is denoted by Hf (x) or D2f (x) .

–When f is twice continuously differentiable on A, the Hessian matrix of f is sym-
metric at all x 2 A.

– In the example described above, the Hessian matrix of f for all (x1, x2) 2 R2 is

Hf (x) =


6x1 2
2 18x2


.
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3. Composite Functions and the Chain Rule
• Let g : A ! Rm be a function with component functions gi : A ! R (i = 1, 2, ...,m)
which are defined on an open set A  Rn, and let f : B ! R be a function defined
on an open set B  Rm which contains the set g (A) .

– Then we can define F : A ! R by F (x) = f (g (x)) = f

g1 (x) , g2 (x) , ..., gm (x)



for each x 2 A.

- This is known as a composite function (of f and g).

• The “Chain Rule” of differentiation provides us with a formula for finding the par-
tial derivatives of a composite function, F, in terms of the partial derivatives of the
individual functions, f and g.
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• Theorem 3 (Chain Rule):

Let g : A ! Rm be a function with component functions gi : A ! R (i = 1, 2, ...,m)
which are continuously differentiable on an open set A  Rn. Let f : B ! R be a
continuously differentiable function on an open set B  Rm which contains the set
g (A) . If F : A ! R is defined by F (x) = f (g (x)) on A, and a 2 A, then F is
differentiable at a and we have, for i = 1, 2, ..., n,

DiF (a) =

mX

j=1

Djf

g1 (a) , g2 (a) , ..., gm (a)


Dig

j (a) .
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4. Homogeneous Functions and Euler’s Theorem
• A function f : Rn+ ! R is homogeneous of degree r on Rn+ if for all x in Rn+, and all
t > 0, f (tx) = trf (x) .

– Example: Consider f : R2+ ! R given by f (x1, x2) = xa1xb2, where a > 0 and b > 0.
Then, if t > 0, we have f (tx1, tx2) = (tx1)a (tx2)b = ta+bxa1xb2 = ta+bf (x1, x2) . So f
is homogeneous of degree (a + b) .

• Theorem 4:
Suppose f : Rn+ ! R is homogeneous of degree r on Rn+, and continuously differ-
entiable on Rn++. Then, for each i = 1, 2, ..., n, Dif is homogeneous of degree r  1
on Rn++.
– Proof: To be discussed in class.
• Theorem 5 (Euler’s Theorem):
Suppose f : Rn+ ! R is homogeneous of degree r on Rn+, and continuously differ-
entiable on Rn++. Then x · Of (x) = rf (x) , for all x 2 Rn++.
– Proof: To be discussed in class.



41

5. Inverse Functions
• Let A be a set in Rn, and let f be a function from A to Rn.
– f is one-to-one on A if whenever x1, x2 2 A and x1 6= x2, we have f


x1

6= f


x2

.

– If there is a function g, from f (A) to A, such that g (f (x)) = x for each x 2 A, then
g is called the inverse function of f on f (A) .
- Notation: We often write f1 for the inverse function of f .

• Example: Consider f : R! R is defined by f (x) = 2x.
– Note that f is one-to-one on R.

– Also, we can define the function g : R ! R by g (y) = y

2
, and note that it has the

property g (f (x)) = x. Hence g is then the inverse function of f on R.

– Furthermore, g0 (f (x)) = 1
2
=

1

f 0 (x)
, for all x 2 R.
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• For functions of a single variable, it is easy to look at the graph of the function defined
on an interval E and determine whether or not the function is one-to-one on E.
– As the following figure illustrates, the graph of f cannot turn around; i.e., it cannot
have any local maxima or minima on E.

– It must be monotonically increasing or monotonically decreasing on E.

– The function whose graph is pictured in the following figure is not one-to-one be-
cause two points x1 and x2 map to the same point y.

• Example: Consider the function f (x) = x2.
– As a function defined on the entire real line R, f is not one-to-one. Why?

– However, if we restrict the domain of f to be [0,1), then the restricted f is one-to-
one and has a well-defined inverse g(y) = py.
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• Example: Consider the function f (x) = x3  3x.
– Look at its graph in the following figure.

– f is not one-to-one on the entire real line R.

– f has two local extrema, so it is not a monotone function.

– However, since f is monotone for x > 1, its restriction to (1,1) is invertible.

• The following theorem summarizes the discussion thus far for functions of a single
variable.

• Theorem 6:
A function f defined on an interval E in R has a well-defined inverse on the inter-
val f (E) if and only if f is monotonically increasing on all of E or monotonically
decreasing on all of E.
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• Calculus Criterion for a Single-Variable Function to be Monotonically Increas-
ing or Decreasing:
– f is an increasing function if x1 > x2 ) f (x1) > f (x2) ;

– f is a decreasing function if x1 > x2 ) f (x1) < f (x2) .

– Theorem 7:
Let f be a continuously differentiable function on domain D  R.
If f 0 > 0 on interval (a, b)  D, then f is increasing on (a, b).
If f 0 < 0 on interval (a, b)  D, then f is decreasing on (a, b).
If f is increasing on (a, b), then f 0  0 on (a, b).
If f is decreasing on (a, b), then f 0  0 on (a, b).

- Proof: To be discussed in class.
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• Combining Theorems 6 and 7 we get:

Theorem 8:
A C1 function f defined on an interval E in R is one-to-one and therefore invertible
on E if either f 0(x) > 0 for all x 2 E or f 0(x) < 0 for all x 2 E.

• Let E be an open interval in R, and f : E ! R be continuously differentiable on E.
Let a 2 E, and suppose that f 0 (a) 6= 0.

– Let f 0 (a) > 0 .

) Since f 0 is continuous, there is an open ball B (a) such that f 0 (x) > 0 for all x in
B (a) .

) f is increasing in B (a) .

- Thus, for every y 2 f (B (a)) , there is a unique x in B (a) such that f (x) = y.

- That is, there is a unique function g : f (B (a)) ! B (a) such that g (f (x)) = x
for all x 2 B (a) .
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- Thus, g is an inverse function of f on f (B (a)) .

- We say that g is the inverse of f “locally” around the point f (a) .

- [Note that there is no guarantee that the inverse function is defined on the entire
set f (E) .]

– Let f 0 (a) < 0 .

- An inverse function could similarly be defined “locally” around f (a) .
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• The important restriction to carry out the above kind of analysis is f 0 (a) 6= 0 .

– To illustrate this, consider f : R! R+ given by f (x) = x2 and consider a = 0.
- Clearly f is continuously differentiable on R, but f 0 (a) = f 0 (0) = 0.
- Draw the curve for f (x) = x2 and convince yourself that we cannot define a
unique inverse function of f even “locally” around f (0) .
 That is, choose any open ball B (0) , and consider any point, y 6= 0, in the set
f (B (0)) .

 There will be two values x1, x2 in B (0) , x1 6= x2, such that f (x1) = y and
f (x2) = y.

• Note: f 0 (a) 6= 0 is not a necessary condition to get a unique inverse function of f.
– For example, consider f : R! R is defined by f (x) = x3.
– Then f is continuously differentiable on R, with f 0 (0) = 0.
– However f is an increasing function, and clearly has a unique inverse function
g (y) = y1/3 on R, and hence locally around f (0) .
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5.1 Derivative of the Inverse Function
• From a geometric point of view, if f maps x0 to y0, so that the point (x0, y0) is on the
graph of f , then f1 maps y0 back to x0, and therefore the point (y0, x0) is on the
graph of f1.
– For any point (x, y) on the graph of f , the point (y, x) is on the graph of f1.

– This means that the graph of f1 is simply the reflection of the graph of f across
the 450 line.
- The following two figures illustrate this phenomenon.

– Due to the close relationship between the graph of an invertible function f and the
graph of its inverse f1, it is not surprising that there is a close relationship between
their derivatives.

– In particular, if f is C1 so that its graph has a smoothly varying tangent line, then
the graph of f1 also will have a smoothly varying tangent line; that is, f1 will be
C1 too.
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• The following theorem gives a complete picture for the existence and differentiability
of the inverse of a single-variable C1 function.

• Theorem 9:
Let f be a C1 function defined on the interval I in R. If f 0(x) 6= 0 for all x 2 I , then

(a) f is invertible on I,

(b) its inverse g is a C1 function on the interval f (I), and

(c) for all y in the domain of the inverse function g,

g0 (y) =
1

f 0 (g (y))
.
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• Example: Consider the following pair of functions which are inverses of each other:

f (x) =
x 1
x + 1

, and g (y) = 1 + y
1 y

.

– Since f (2) = 1
3
, the inverse g of f maps 1

3
to 2, that is, g


1

3


= 2.

– Since f 0 (x) = 2

(x + 1)2
, f 0 (2) =

2

9
6= 0, by Theorem 9,

g0

1

3


=

1

f 0 (2)
=
9

2
.

–We can check this by computing directly that

g0 (y) =
2

(1 y)2

) g0

1

3


=

2

4/9
=
9

2
.
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• Let A be a set in Rn, and let f be a function from A to Rn.

• Jacobians:
Suppose A is an open set in Rn, and f is a function from A to Rn, with component
functions f 1, ..., fn. If a 2 A, and the partial derivatives of f 1, ..., fn exist at a, then
the n n matrix

Df (a) =

0

BB@

D1f
1 (a) D2f

1 (a) · · · Dnf 1 (a)
D1f

2 (a) D2f
2 (a) · · · Dnf 2 (a)... ... . . . ...

D1f
n (a) D2f

n (a) · · · Dnfn (a)

1

CCA

is defined as the Jacobian matrix of f at a.
– The determinant of this matrix, denoted by Jf (a) , is called the Jacobian of f at a.

•When A  Rn, and f : A! Rn, the counter-part of f 0 (a) 6= 0 is that the Jacobian of
f at a, Jf (a) , is non-zero.
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• Theorem 10 (Inverse Function Theorem):
Let A be an open set of Rn, and f : A ! Rn be continuously differentiable on A.
Suppose a 2 A and the Jacobian of f at a, Jf (a) , is non-zero. Then there is an
open set X  A containing a, and an open set Y  Rn containing f (X) , and a
unique function g : Y ! X, such that
(i) for all x 2 X, g (f (x)) = x, and

(ii) g is continuously differentiable on Y with

Dg (f (a)) = [Df (a)]1 .
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• In order to show that Dg (f (a)) = [Df (a)]1 we proceed as follows.
– Under the hypothesis of the Inverse Function Theorem, there is a function g : Y !
X, such that g is continuously differentiable on Y and g (f (x)) = x for all x 2 X.

–We can define for x 2 X, F 1 (x) = g1 (f (x)) as a composite function of f and g1.

– Using the Chain Rule we get

DiF
1 (x) =

nX

j=1

Djg
1 (f (x))Dif

j (x) , i = 1, ..., n.

– But since F 1 (x) = g1 (f (x)) = x1, we have

DiF
1 (x) =


1 for i = 1
0 for i 6= 1.

–We can repeat these calculations with F 2 (x) = g2 (f (x)) , and get

DiF
2 (x) =


1 for i = 2
0 for i 6= 2.
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– The results for F 3 (x) , ..., F n (x) should now be obvious.

– This information can then be written in familiar matrix multiplication form:

I =

0

BB@

D1g
1 (f (x)) D2g

1 (f (x)) · · · Dng1 (f (x))
D1g

2 (f (x)) D2g
2 (f (x)) · · · Dng2 (f (x))... ... . . . ...

D1g
n (f (x)) D2g

n (f (x)) · · · Dngn (f (x))

1

CCA·

0

BB@

D1f
1 (x) D2f

1 (x) · · · Dnf 1 (x)
D1f

2 (x) D2f
2 (x) · · · Dnf 2 (x)... ... . . . ...

D1f
n (x) D2f

n (x) · · · Dnfn (x)

1

CCA .

– That is, I = Dg (f (x)) ·Df (x) .

– Thus, the matrix Df (a) is invertible, and we have Dg (f (a)) = [Df (a)]1 .

– It follows that (taking determinants) the Jacobian of g at f (a) is equal to the recip-
rocal of the Jacobian of f at a:

Jg (f (a)) =
1

Jf (a)
.
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6. Implicit Functions
• So far we have been working with functions where the endogenous or independent
variables are explicit functions of the exogenous or independent variables:

y = F (x1, x2, ..., xn) .

When the variables are separated like this, we say that the endogenous variable (y)
is an explicit function of the exogenous variables (x1, x2, ..., xn).

• Consider the expression

G (x1, x2, ..., xn, y) = 0

where the exogenous variables (x1, x2, ..., xn) are mixed with the endogenous vari-
able (y).
– If for each (x1, x2, ..., xn), the above equation determines a corresponding value
of y, we say that the equation defines the endogenous variable y as an implicit
function of the exogenous variables x1, x2, ..., xn.
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– An expression like above is often so complicated that one cannot solve it to sepa-
rate the exogenous variables on one side and the endogenous one on the other.
- However, we still want to answer the basic question: how does a small change in
one of the exogenous variables affect the value of the endogenous variable?
 In what follows we explain how to answer this question for implicit functions.
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• Example 1: The equation 4x + 2y  5 = 0 express y as an implicit function of x.
–We can solve the equation and write y as an explicit function of x: y = 2.5 2x.

• Example 2: A more complex example is the equation: y2  5xy + 4x2 = 0.
–We substitute any specified value of x into the equation and then solve the resulting
quadratic equation for y.

– Even though this equation is more complex than Example 1, we can still convert
the equation into an explicit function (actually, a correspondence) by applying the
quadratic formula:

y =
5x±

p
25x2  16x2

2
=
1

2
(5x± 3x) =


4x
x.

• Example 3: Changing one exponent in Example 2 to construct the implicit function
y5  5xy + 4x2 = 0 yields an expression which cannot be solved into an explicit
function because there is no general formula for solving quintic equations.
– However, this equation still defines y as a function of x: for example, x = 0 implies
y = 0; x = 1 gives y = 1, and so on.
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• Example 4: Consider a profit-maximizing firm that uses a single input x at a cost
of w dollars per unit to produce a single output via a production function y = f (x).
If output sells for p dollars a unit, the firm’s profit function for any fixed p and w is:
 (x) = p · f (x) w · x.

– The profit-maximizing choice of x is determined from setting the derivative of the
profit function equal to zero:

p · f 0(x) w = 0.

– Think of p and w as exogenous variables. For each choice of p and w, the firm
chooses x that satisfies the above equation.

– There is no reason to limit the models to production functions for which the above
equation can be solved explicitly for x in terms of p and w.

– To study the profit-maximizing behaviour of a general firm, we need to work with
the above equation as defining x as an implicit function of p and w.

–We will want to know, for example, how the optimal choice of input x changes as p
or w increases.
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• The fact that we can write down an implicit function G(x, y) = c does not mean that
this equation automatically defines y as a function of x.

• Consider, for example, the simple implicit function

x2 + y2 = 1. ()

–When x > 1, there is no y which satisfies (*).

– Usually we start with a specific solution (x0, y0) of the implicit equation G(x, y) = c
and ask if we vary x a little from x0, can we find a y near the original y0 that satisfies
the equation.
- For example, if we start with the solution (x = 0, y = 1) of (*) and vary x a little,
we can find a unique y =

p
1 x2 near y = 1 that corresponds to the new x.

- We can even draw the graph of this explicit relationship, y =
p
1 x2, around the

point (0, 1), as we do in the following figure.
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• However, if we start at the solution (x = 1, y = 0) of (*), then no such functional
relationship exists.
– Look at the figure in the next page.
- If we increase x a little to x = 1 + ", then there is no corresponding y so that
(1 + ", y) solves (*).

- If we decrease x a little to x = 1 ", then there are two equally good candidates
for y near y = 0, namely

y = +
p
2" "2, and y = 

p
2" "2.

- As the figure illustrates, because the curve x2 + y2 = 1 is vertical around (1, 0), it
does not define y as a function of x around (1, 0).
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6.1 Implicit Function Theorem: One Exogenous Variable
• For a given implicit function G(x, y) = c and a specified solution point (x0, y0), we
want the answers to the following two questions:
– Does G(x, y) = c determine y as a continuous function of x, y = y(x), for x near x0
and y near y0?

– If so, how do changes in x affect the corresponding y’s?

• Answers of these two questions are closely related to each other:
– If the first question has a positive answer, one can use the chain rule to compute
y0(x) in terms of @G/@x and @G/@y.

– On the other hand, this formula for y0(x) in terms of @G/@x and @G/@y leads to the
natural criterion for the existence question.

•We suppose that there is a C1 solution y = y(x) to the equation G(x, y) = c, that is,

G(x, y(x)) = c. (A)
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– Use the Chain Rule to differentiate (A) with respect to x at x0:
@G

@x
(x0, y(x0)) ·

dx

dx
+
@G

@y
(x0, y(x0)) ·

dy

dx
(x0) = 0,

or @G

@x
(x0, y0) +

@G

@y
(x0, y0) · y0(x0) = 0.

– Solving for y0(x0) yields

y0(x0) = 

@G

@x
(x0, y0)

@G

@y
(x0, y0)

. (B)

–We see from (B) that if the solution y(x) to the equation G(x, y) = c exists and is
differentiable, it is necessary that @G

@y
(x0, y0) be non-zero.

• As the following fundamental result of mathematical analysis indicates, this neces-
sary condition is also a sufficient condition.
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• Theorem 11(a) (Implicit Function Theorem: one exogenous variable):
Let G (x, y) be a C1 function on an open ball around (x, y) in R2. Suppose that
G (x, y) = c. If @G

@y
(x, y) 6= 0, then there exists a C1 function y = y (x) defined on

an open interval I around the point x such that :
(a) G (x, y (x))  c for all x in I,

(b) y (x) = y, and

(c) y0 (x) = 

@G

@x
(x, y)

@G

@y
(x, y)

.
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• Example: Consider the function G : R2++ ! R defined by G (x, y) = xy, where , 
are positive constants.
– At (x, y) = (1, 1) , G (x, y) = 1.

– @G
@y
(1, 1) =  > 0, that is, @G

@y
(1, 1) 6= 0.

– Also G is a C1 function on R2++.

– Hence we can invoke the implicit function theorem to obtain a C1 function y = y (x)
defined on an open interval I around the point x = 1 such that:
 x (y (x)) = 1 for all x in I ; y (1) = 1, and

 y0 (1) = 
@G

@x
(1, 1)

@G

@y
(1, 1) = 




.



65

• Example: Return now to the equation x2 + y2 = 1.
–We saw that this equation does determine y as a function of x around the point
(x = 0, y = 1).

- @G
@y
(0, 1) = 2 6= 0. So the Implicit Function Theorem assures us that y(x) exists

around (0, 1).

- Furthermore, the theorem tells us that y0(0) = 

@G

@x
(0, 1)

@G

@y
(0, 1)

= 
0

2
= 0.

– In this case, we have an explicit formula for y(x): y(x) =
p
1 x2.

- We can compute directly from this explicit formula that y0(0) =  x
p
1 x2


x=0

= 0.

– On the other hand, we noted earlier that no function y(x) exists for x2 + y2 = 1
around (x = 1, y = 0).

- This is consistent with the theorem since @G
@y

= 2y = 0 at (1, 0) .
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6.2 Implicit Function Theorem: Several Exogenous
Variables

• The Implicit Function Theorem for one exogenous variable and the discussion around
it carry over in a straightforward way to the situation where there are many exogenous
variables, but still one equation and therefore one endogenous variable:

G(x1, x2, ..., xn, y) = c. (C)

– Around a given point (x1, x2, ..., xn, y), we want to vary x = (x1, x2, ..., xn) and then
find a y-value which corresponds to each such (x1, x2, ..., xn).

– In this case, we say that the equation (C) defines y as an implicit function of
(x1, x2, ..., xn).

• Again, given G (·) and (x1, x2, ..., xn, y), we want to know whether this functional
relationship exists, and, if yes, how y changes if any of the xi’s change from xi .
– Since we are working with a function of several variables (x1, x2, ..., xn), we will hold
all but one of the xi’s constant and vary one exogenous variable at a time.
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– But this puts us back in the two-variable situation that we have been discussing.
• The natural extension of the Implicit Function Theorem for one exogenous variable
in this setting is the following.

• Theorem 11(b) (Implicit Function Theorem: several exogenous variables):
Let G (x1, x2, ..., xk, y) be a C1 function on an open ball around (x1, x2, ..., xk, y) in
Rk+1 such that G (x1, x2, ..., xk, y) = c. If

@G

@y
(x1, x


2, ..., x


k, y

) 6= 0, then there exists

a C1 function y = y (x1, x2, ..., xk) defined on an open ball B around (x1, x2, ..., xk)
such that :

(a) G (x1, x2, ..., xk, y (x1, x2, ..., xk)) = c for all (x1, x2, ..., xk) 2 B,

(b) y = y (x1, x2, ..., xk) , and

(c) @y
@xi

(x1, x

2, ..., x


k) = 

@G

@xi
(x1, x


2, ..., x


k, y

)

@G

@y
(x1, x


2, ..., x


k, y

)

, for all i = 1, 2, ..., k.
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6.3 System of Implicit Functions
• Definition: A set of m equations in m + n unknowns

G1(x1, x2, ..., xm+n) = c1,

G2(x1, x2, ..., xm+n) = c2,

(D)
...

Gm(x1, x2, ..., xm+n) = cm,

is called a system of implicit functions if there is a partition of the variables into
exogenous variables and endogenous variables, so that if one substitutes into (D)
numerical values for the exogenous variables, the resulting system can be solved
uniquely for corresponding values of the endogenous variables.
– This is a natural generalization of the single-equation implicit function.
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6.3.1 Linear System of Implicit Functions
• From our discussion in linear algebra we know that for linear system of implicit func-
tions, in order for each choice of values of the exogenous variables to determine a
unique set of values of the endogenous variables it is necessary and sufficient that:

(1) the number of endogenous variables is equal to the number of equations, and

(2) the (square) matrix of coefficients corresponding to the endogenous variables be
invertible (have non-zero determinant).

• Example: Consider the linear system of implicit functions:

4x + 2y + 2z  r + 3s = 5,

2x + 0 · y + 2z + 8r  5s = 7,

2x + 2y + 0 · z + r  s = 0.

– Since there are three equations, we need three endogenous variables, and, there-
fore, two exogenous variables.
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– Let us try to work with y, z and r as endogenous and x and s as exogenous. Putting
the exogenous variables on the right side and the endogenous variables on the left,
we rewrite the system as

2

4
2 2 1
0 2 8
2 0 1

3

5

2

4
y
z
r

3

5 =

2

4
5 4x 3s
7 2x + 5s
2x + s

3

5 .

– Since the determinant of the coefficient matrix is 40, we can invert it and solve for
(y, z, r) explicitly in terms of x and s:
2

4
y
z
r

3

5 =

2

4
2 2 1
0 2 8
2 0 1

3

5
12

4
5 4x 3s
7 2x + 5s
2x + s

3

5 = 1

40

2

4
2 2 18
16 4 16
4 4 4

3

5

2

4
5 4x 3s
7 2x + 5s
2x + s

3

5 .
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– On the other hand, if we want x, y and z to be endogenous, we have to solve the
system 2

4
4 2 2
2 0 2
2 2 0

3

5

2

4
x
y
z

3

5 =

2

4
5 + r  3s
7 8r + 5s
0 r + s

3

5 .

– Since the determinant of the coefficient matrix is zero, we know that there are right-
hand sides for which the above system cannot be solved for (x, y, z).
- For example, for r = 5 and s = 0, the system becomes

4x + 2y + 2z = 0,

2x + 0 · y + 2z = 47,

2x + 2y + 0 · z = 5.

- Adding the last two equations yields the inconsistent system:
4x + 2y + 2z = 0,

4x + 2y + 2z = 52.

- Since there is no solution in (x, y, z) for (r, s) = (5, 0), this partition into exoge-
nous and endogenous variables does not work.
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6.3.2 Nonlinear System of Implicit Functions
• The corresponding result for nonlinear systems follows from the usual calculus par-
adigm:
– linearize by taking the derivative;
– apply the linear theorem to this linearized system; and
– transfer these results back to the original nonlinear system.
•Write the nonlinear system of m equations in m + n unknowns as

F 1(y1, y2, ..., ym, x1, x2, ..., xn) = c1,

F 2(y1, y2, ..., ym, x1, x2, ..., xn) = c2,

... ... (E)

Fm(y1, y2, ..., ym, x1, x2, ..., xn) = cm.

– Here we want (y1, y2, ..., ym) to be endogenous variables and (x1, x2, ..., xn) to be
exogenous variables.
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• The linearization of system (E) around the point (y1, ..., ym, x1, ..., xn) is:
@F 1

@y1
dy1 + ... +

@F 1

@ym
dym +

@F 1

@x1
dx1 + ... +

@F 1

@xn
dxn = 0,

... ... ... (E 0)

@Fm

@y1
dy1 + ... +

@Fm

@ym
dym +

@Fm

@x1
dx1 + ... +

@Fm

@xn
dxn = 0,

where all the partial derivatives are evaluated at (y1, ..., ym, x1, ..., xn) .

• The linear system (E 0) can be solved for (dy1, dy2, ..., dym) in terms of (dx1, dx2, ..., dxn)
if and only if the coefficient matrix of the dyi ’s

0

BBBB@

@F 1

@y1
. . .

@F 1

@ym... . . . ...
@Fm

@y1
. . .

@Fm

@ym

1

CCCCA
(F)

is invertible (have non-zero determinant) at (y1, ..., ym, x1, ..., xn).
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• Since the system is linear, when the coefficient matrix in (F) is invertible, we can use
its inverse to solve the system (E 0) for (dy1, dy2, ..., dym) in terms of (dx1, dx2, ..., dxn):

2

664

dy1
dy2...
dym

3

775 = 

2

66664

@F 1

@y1
. . .

@F 1

@ym... . . . ...
@Fm

@y1
. . .

@Fm

@ym

3

77775

12

66664

@F 1

@x1
dx1 + ... +

@F 1

@xn
dxn

...
@Fm

@x1
dx1 + ... +

@Fm

@xn
dxn

3

77775
. (G)

• Since the linear approximation (E 0) of the original system (E) is a true implicit function
of (dy1, dy2, ..., dym) in terms of (dx1, dx2, ..., dxn), the basic principle of calculus leads
us to the following conclusion:
– if the coefficient matrix in (F) is invertible, then the nonlinear system (E) defines
(y1, y2, ..., ym) as implicit functions of (x1, x2, ..., xn), at least in a neighbourhood of
(y1, ..., y


m, x


1, ..., x


n).

) The sufficient condition for the existence of implicit functions for the nonlinear sys-
tem (E) is: the coefficient matrix in (F) is invertible.
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• Furthermore, one can actually use the linear solution (G) of (dy1, dy2, ..., dym) in
terms of (dx1, dx2, ..., dxn) to find the derivatives of the yi’s with respect to the xj’s
at (y1, ..., ym, x1, ..., xn).

• To compute @yk
@xh

for some h and k, recall that this derivative estimates the effect on
yk of a unit increase in xh (dxh = 1).

• So we set all the dxj’s equal to zero in (E 0) or (G) except dxh and then solve (E 0) or
(G) for the corresponding dyi’s.
– For example, if we use (G), we find

2

6664

@y1
@xh...
@ym
@xh

3

7775
= 

2

66664

@F 1

@y1
. . .

@F 1

@ym... . . . ...
@Fm

@y1
. . .

@Fm

@ym

3

77775

12

66664

@F 1

@xh...
@Fm

@xh

3

77775
.
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• Alternatively we can apply Cramer’s Rule to (E 0) and compute

@yk
@xh

= 



@F 1

@y1
. . .

@F 1

@xh
. . .

@F 1

@ym... . . . ... . . . ...
@Fm

@y1
. . .

@Fm

@xh
. . .

@Fm

@ym




@F 1

@y1
. . .

@F 1

@yk
. . .

@F 1

@ym... . . . ... . . . ...
@Fm

@y1
. . .

@Fm

@yk
. . .

@Fm

@ym



.

• The following theorem – the most general form of the Implicit Function Theorem –
summarizes these conclusions.
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• Theorem 11(c) (Implicit Function Theorem: most general form):
Let F 1, F 2, ..., Fm : Rm+n ! R be C1 functions. Consider the system of equations

F 1 (y1, ..., ym, x1, ..., xn) = c1
F 2 (y1, ..., ym, x1, ..., xn) = c2

...
Fm (y1, ..., ym, x1, ..., xn) = cm

as possibly defining y1, ..., ym as implicit functions of x1, ..., xn. Suppose that
(y1, ..., y


m, x


1, ..., x


n) is a solution to the system of equations. If the determinant of

the mm matrix
0

BBBB@

@F 1

@y1
. . .

@F 1

@ym... . . . ...
@Fm

@y1
. . .

@Fm

@ym

1

CCCCA

evaluated at (y1, ..., ym, x1, ..., xn) is nonzero, then there exist C1 functions
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y1 = f 1 (x1, ..., xn)

y2 = f 2 (x1, ..., xn)
...

ym = fm (x1, ..., xn)

defined on an open ball B around (x1, ..., xn) such that

F 1

f 1 (x) , ..., fm (x) , x1, ..., xn


= c1

F 2

f 1 (x) , ..., fm (x) , x1, ..., xn


= c2
...

Fm

f 1 (x) , ..., fm (x) , x1, ..., xn


= cm

for all x = (x1, ..., xn) in B and

y1 = f 1 (x1, ..., x

n)

y2 = f 2 (x1, ..., x

n)

...
ym = fm (x1, ..., x


n) .
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Furthermore, one can compute @yk
@xh

(y, x) =
@fk

@xh
(x) by setting dxh = 1 and dxj = 0

for j 6= h in

@F 1

@y1
dy1 + · · · +

@F 1

@ym
dym +

@F 1

@x1
dx1 + · · · +

@F 1

@xn
dxn = 0

...

@Fm

@y1
dy1 + · · · +

@Fm

@ym
dym +

@Fm

@x1
dx1 + · · · +

@Fm

@xn
dxn = 0

and solving the resulting system for dyk.
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