Real Analysis: Convex Analysis

1. Convex Sets

Line Segment: If x, y ∈ ℜⁿ, the *line segment joining x and y* is given by the set of points

 $\{z \in \Re^n : z = \theta x + (1 - \theta) y, \text{ for some } 0 \le \theta \le 1\}.$

- Convex Set: A set $S \subset \Re^n$ is a convex set if for every $x, y \in S$, the line segment joining x and y is contained in S.
 - For example, the set of points $\{(x, y) \in \Re^2: x^2 + y^2 \le 1\}$ is a convex set.
 - But the set of points $\{(x, y) \in \Re^2: x^2 + y^2 = 1\}$ is *not* a convex set.
- #1. **Examples:** Suppose two sets S_1 and S_2 are convex in \Re^n .

(a) Prove that the intersection of S_1 and S_2 , that is, the set

$$S = \{z \in \mathfrak{R}^n \colon z \in S_1 \text{ and } z \in S_2\},\$$

is a convex set in \Re^n .

(b) Prove that the sum of S_1 and S_2 , that is, the set

$$S = \{z \in \Re^n : z = x + y, \text{ where } x \in S_1 \text{ and } y \in S_2\},\$$

is a convex set in \Re^n .

(c) Prove that the Cartesian product of S_1 and S_2 , that is, the set

$$S = \left\{ z \in \Re^{2n} : z = (x, y), \text{ where } x \in S_1 \text{ and } y \in S_2
ight\},$$

is a convex set in \Re^n .

(d) Is the union of S_1 and S_2 , that is, the set

$$S = \{ z \in \mathfrak{R}^n \colon z \in S_1 \text{ or } z \in S_2 \},\$$

a convex set in \Re^n ?

• Convex Combination: A vector $y \in \Re^n$ is said to be a *convex combination* of the vectors $x^1, x^2, ..., x^m \in \Re^n$ if there exist m non-negative real numbers $\theta_1, \theta_2, ..., \theta_m$ such that

(i)
$$\sum_{i=1}^{m} \theta_i = 1$$
, and (ii) $y = \sum_{i=1}^{m} \theta_i x^i$.

- A convex set $A \subset \Re^n$ can then be redefined as a set such that for every *two* vectors in the set A, all convex combinations of these two vectors are also in the set A.
- It can be shown that in the above statement "two" can be replaced by "m" where m is any integer exceeding 1.

• Proposition 1:

A set $S \subset \Re^n$ is convex if and only if for any integer m > 1 and for any m vectors in S, every convex combination of these m vectors is in S.

- Proof: To be discussed in class.
- Hints: Proof by induction.
 - Step 1: Show that the property is true for m = 2.
 - Step 2: Assume that the property is true for m = k; then show that it is also true for m = k + 1.

2. Continuous & Differentiable Functions on Convex Sets

• We now provide three very useful theorems on continuous and differential functions on convex sets.

• Theorem 1 (Intermediate Value Theorem):

Suppose *A* is a convex subset of \Re^n , and $f : A \to \Re$ is a continuous function on *A*. Suppose x^1 and x^2 are in *A*, and $f(x^1) > f(x^2)$. Then, given any $c \in \Re$ such that $f(x^1) > c > f(x^2)$, there is $0 < \theta < 1$ such that $f(\theta x^1 + (1 - \theta) x^2) = c$.

#2. Example: Suppose X = [a, b] is a closed interval in \Re (with a < b), and $f : X \rightarrow \Re$ is a continuous function. Use Weierstrass Theorem and the Intermediate Value Theorem to prove that f(X) is itself a closed interval.

• Theorem 2 (Mean Value Theorem):

Suppose *A* is an open convex subset of \Re^n , and $f : A \to \Re$ is continuously differentiable on *A*. Suppose x^1 and x^2 are in *A*. Then there is $0 \le \theta \le 1$ such that

$$f(x^{2}) - f(x^{1}) = (x^{2} - x^{1}) \cdot \nabla f(\theta x^{1} + (1 - \theta) x^{2}).$$

- #3. Example: We say that $f : A \to \Re$ (where $A \subset \Re$) is an *increasing function* if whenever $x^1 > x^2$, we have $f(x^1) > f(x^2)$.
 - (a) Suppose that $g : A \to \Re$, $A \subset \Re$, A is open and convex, and g'(x) > 0, for all $x \in A$. Prove, using the Mean Value Theorem, that g is an increasing function.
 - (b) Suppose g is an increasing function on A. Does it follow that g'(x) > 0, for all $x \in A$?

• Theorem 3 (Taylor's Expansion upto Second Order):

Suppose *A* is an open convex subset of \Re^n , and $f : A \to \Re$ is twice continuously differentiable on *A*. Suppose x^1 and x^2 are in *A*. Then there is $0 \le \theta \le 1$ such that

$$f(x^{2}) - f(x^{1}) = (x^{2} - x^{1}) \cdot \nabla f(x^{1}) + \frac{1}{2}(x^{2} - x^{1}) \cdot H_{f}(\theta x^{1} + (1 - \theta)x^{2}) \cdot (x^{2} - x^{1}).$$

3. Concave Functions

• Let A be a convex set in \Re^n . Then $f : A \to \Re$ is a *concave function* (on A) if for all $x^1, x^2 \in A$, and for all $0 \le \theta \le 1$,

$$f\left(\theta x^{1} + (1-\theta) x^{2}\right) \ge \theta f\left(x^{1}\right) + (1-\theta) f\left(x^{2}\right).$$

– The function f is *strictly concave* on A if

$$f\left(\theta x^{1} + (1-\theta)x^{2}\right) > \theta f\left(x^{1}\right) + (1-\theta)f\left(x^{2}\right)$$

whenever $x^1, x^2 \in A, x^1 \neq x^2$, and $0 < \theta < 1$.

• Let A be a convex set in \Re^n . Then $f : A \to \Re$ is a *convex function* (on A) if for all $x^1, x^2 \in A$, and for all $0 \le \theta \le 1$,

$$f\left(\theta x^{1} + (1-\theta) x^{2}\right) \leq \theta f\left(x^{1}\right) + (1-\theta) f\left(x^{2}\right).$$

– The function f is strictly convex on A if

$$f\left(\theta x^{1} + (1-\theta) x^{2}\right) < \theta f\left(x^{1}\right) + (1-\theta) f\left(x^{2}\right)$$

whenever $x^1, x^2 \in A, x^1 \neq x^2$, and $0 < \theta < 1$.

• Relation between Concave Functions and Convex Sets:

The relation between concave function and convex sets is given by the following results.

• Theorem 4:

Suppose A is a convex set in \Re^n and $f : A \to \Re$. Then f is a concave function if and only if the set $\{(x, \alpha) \in A \times \Re : f(x) \ge \alpha\}$ is a convex set in \Re^{n+1} .

- Proof: To be discussed in class.
- Theorem 5: Suppose A is a convex set in \Re^n and $f : A \to \Re$ is a concave function. Then, for every $\alpha \in \Re$, the set $S(\alpha) = \{x \in A : f(x) \ge \alpha\}$ is a convex set in \Re^n .
 - Proof: To be discussed in class.

• A result on concave functions which parallels Proposition 1 on convex sets can now be noted. It is known as Jensen's Inequality, and is a very useful tool in convex analysis.

• Proposition 2 (Jensen's Inequality):

Suppose *A* is a convex set in \Re^n and $f : A \to \Re$ is a concave function. Then, for any integer m > 1,

$$f\left(\sum_{i=1}^{m} \theta_{i} x^{i}\right) \ge \sum_{i=1}^{m} \theta_{i} f\left(x^{i}\right)$$

whenever $x^1, x^2, ..., x^m \in A, (\theta_1, \theta_2, ..., \theta_m) \in \Re^m_+$ and $\sum_{i=1}^m \theta_i = 1$.

- Proof: To be discussed in class.
- Hints: Proof by induction.
 - Step 1: Show that the property is true for m = 2.
 - Step 2: Assume that the property is true for m = k; then show that it is also true for m = k + 1.

• Continuity of Concave Functions:

In general, if A is a convex set in \Re^n and $f : A \to \Re$ is concave on A, then f need not be continuous on A.

#4. Give an example to illustrate the above statement.

– But if f is an open convex set in \Re^n and $f : A \to \Re$ is concave on A, then one can show that f is continuous on A.

• Theorem 6:

Suppose *A* is an open convex set in \Re^n and $f : A \to \Re$ is a concave function on *A*. Then *f* is a continuous function on *A*.

- Proof: Homework.

• Differentiable Concave Functions:

In general, if A is an open convex set in \Re^n and $f : A \to \Re$ is concave on A, then f need not be differentiable on A.

#5. Give an example to illustrate the above statement.

- If f is continuously differentiable on A, then a convenient characterization for f to be concave on A can be given in terms of the gradient vector of f.

• Theorem 7:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is continuously differentiable on A. Then f is concave on A if and only if for all x^1 and x^2 in A

$$f(x^2) - f(x^1) \le \nabla f(x^1) \cdot (x^2 - x^1).$$

- Proof: To be discussed in class.

• Corollary 1: Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is continuously differentiable on A. Then f is concave on A if and only if for all x^1 and x^2 in A

$$\left(\nabla f\left(x^{2}\right) - \nabla f\left(x^{1}\right) \right) \cdot \left(x^{2} - x^{1}\right) \leq 0.$$

• It is interesting to note that a characterization of *strictly* concave functions can be given by replacing the weak inequalities in Theorem 7 and Corollary 1 with strict inequalities (for x^1 , x^2 in A with $x^1 \neq x^2$).

• Theorem 8:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is continuously differentiable on A. Then f is strictly concave on A if and only if for all x^1 , x^2 in A with $x^1 \neq x^2$,

$$f(x^{2}) - f(x^{1}) < \nabla f(x^{1}) \cdot (x^{2} - x^{1}).$$

• Corollary 2:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is continuously differentiable on A. Then f is strictly concave on A if and only if for all x^1 , x^2 in A with $x^1 \neq x^2$,

$$\left(\nabla f\left(x^{2}\right) - \nabla f\left(x^{1}\right)\right) \cdot \left(x^{2} - x^{1}\right) < 0.$$

• Twice Differentiable Concave Functions:

If $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is twice continuously differentiable on A, then we can find a convenient characterization for f to be concave on A in terms of the negative semi-definiteness of the Hessian matrix of f.

• Theorem 9:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is twice continuously differentiable on A. Then f is concave on A if and only if the Hessian matrix $H_f(x)$ is negative semi-definite for all x in A.

• Theorem 10:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is twice continuously differentiable on A. If the Hessian matrix $H_f(x)$ is negative definite for all x in A, then f is strictly concave on A.

#6. Give a counter-example to establish that the converse of Theorem 10 does not hold.

4. Quasi-Concave Functions

• Let $A \subset \Re^n$ be a convex set, and f a real-valued function on A. Then f is *quasi-concave* on A if

$$f(x^2) \ge f(x^1)$$
 implies $f(\theta x^1 + (1-\theta)x^2) \ge f(x^1)$

whenever $x^1, x^2 \in A$, and $0 \le \theta \le 1$.

- The function f is strictly quasi-concave on A if

$$f(x^2) \ge f(x^1)$$
 implies $f(\theta x^1 + (1-\theta)x^2) > f(x^1)$

whenever $x^1, x^2 \in A, x^1 \neq x^2$, and $0 < \theta < 1$.

• While the conditions stated in Theorem 5 did not characterize concave functions, it does characterize quasi-concave functions.

• Theorem 11:

Suppose *A* is a convex set in \Re^n and $f : A \to \Re$. Then *f* is a quasi-concave function on *A* if and only if for every $\alpha \in \Re$, the set $S(\alpha) = \{x \in A : f(x) \ge \alpha\}$ is a convex set in \Re^n .

• Differentiable Quasi-Concave Functions:

A characterization of differentiable quasi-concave function can be given which parallels the characterization of differentiable concave functions given in Theorem 8.

• Theorem 12:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is continuously differentiable on A. Then f is quasi-concave on A if and only if for all x^1 and x^2 in A

$$f(x^2) \ge f(x^1)$$
 implies $(x^2 - x^1) \cdot \nabla f(x^1) \ge 0$.

- Proof: To be discussed in class.

• Twice Differentiable Quasi-Concave Functions:

An interesting characterization of twice differentiable quasi-concave functions can be given in terms of the "bordered" Hessian matrix associated with the functions.

• Let $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is twice continuously differentiable on A. The bordered Hessian matrix of f at $x \in A$ is denoted by $G_f(x)$ and is defined by the following $(n + 1) \times (n + 1)$ matrix:

$$G_{f}(x) = \begin{pmatrix} 0 & \nabla f(x) \\ \\ \nabla f(x) & H_{f}(x) \end{pmatrix}.$$

– We denote the (k + 1)th leading principal minor of $G_f(x)$ by $|G_f(x;k)|$, where k = 1, 2, ..., n.

• Theorem 13:

Suppose $A \subset \Re^n$ is an open convex set, and $f : A \to \Re$ is twice continuously differentiable on A.

- (i) If f is quasi-concave on A, then $(-1)^k |G_f(x;k)| \ge 0$ for $x \in A$, and k = 1, 2, ..., n.
- (ii) If $(-1)^k |G_f(x;k)| > 0$ for $x \in A$, and k = 1, 2, ..., n, then f is strictly quasi-concave on A.

References

- Must read the following chapters and sections from the textbook:
 - Section 30.1 (pages 822 827): Weierstrass Theorem and Mean Value Theorems,
 - Section 30.2 (pages 827 832): Taylor Polynomials on \Re^1 ,
 - Section 30.3 (pages 832 836): Taylor Polynomials on \Re^n ,
 - Section 21.1 (pages 505 516): Concave and Convex Functions,
 - Section 21.2 (pages 516 520): Properties of Concave Functions,
 - Section 21.3 (pages 522 527): Quasi-concave and Quasi-convex Functions.
- This material is based on
 - 1. Nikaido, H., Convex Structures and Economic Theory, (chapter 1),
- 2. Takayama, A., Mathematical Economics, (chapters 0, 1),
- 3. Apostol, T., Mathematical Analysis, (chapters 4, 6),
- 4. Bartle, R., The Elements of Real Analysis, (chapter 7),
- 5. Mangasarian, O. L., Non-Linear Programming, (chapters 2, 3, 4, 6, 9).