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1. Convex Sets
� Line Segment: If x; y 2 <n; the line segment joining x and y is given by the set of
points

fz 2 <n : z = �x + (1� �) y; for some 0 � � � 1g :

� Convex Set: A set S � <n is a convex set if for every x; y 2 S; the line segment
joining x and y is contained in S:

� For example, the set of points
�
(x; y) 2 <2: x2 + y2 � 1

	
is a convex set.

� But the set of points
�
(x; y) 2 <2: x2 + y2 = 1

	
is not a convex set.

#1. Examples: Suppose two sets S1 and S2 are convex in <n:

(a) Prove that the intersection of S1 and S2, that is, the set

S = fz 2 <n: z 2 S1 and z 2 S2g ;

is a convex set in <n:
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(b) Prove that the sum of S1 and S2, that is, the set

S = fz 2 <n: z = x + y; where x 2 S1 and y 2 S2g ;

is a convex set in <n:

(c) Prove that the Cartesian product of S1 and S2, that is, the set

S =
�
z 2 <2n: z = (x; y) ; where x 2 S1 and y 2 S2

	
;

is a convex set in <n:

(d) Is the union of S1 and S2, that is, the set

S = fz 2 <n: z 2 S1 or z 2 S2g ;

a convex set in <n?
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� Convex Combination: A vector y 2 <n is said to be a convex combination of the
vectors x1; x2; :::; xm 2 <n if there existm non-negative real numbers �1; �2; :::�m such
that

(i)
mX
i=1

�i = 1; and (ii) y =
mX
i=1

�ix
i:

� A convex set A � <n can then be rede�ned as a set such that for every two vectors
in the set A; all convex combinations of these two vectors are also in the set A:

� It can be shown that in the above statement �two� can be replaced by �m� wherem
is any integer exceeding 1:
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� Proposition 1:
A set S � <n is convex if and only if for any integer m > 1 and for any m vectors in
S; every convex combination of these m vectors is in S:

� Proof: To be discussed in class.

� Hints: Proof by induction.

- Step 1: Show that the property is true for m = 2:

- Step 2: Assume that the property is true for m = k; then show that it is also true
for m = k + 1:
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2. Continuous & Differentiable Functions on Convex Sets
�We now provide three very useful theorems on continuous and differential functions
on convex sets.

� Theorem 1 (Intermediate Value Theorem):
Suppose A is a convex subset of <n; and f : A! < is a continuous function on A:
Suppose x1 and x2 are in A; and f

�
x1
�
> f

�
x2
�
: Then, given any c 2 < such that

f
�
x1
�
> c > f

�
x2
�
; there is 0 < � < 1 such that f

�
�x1 + (1� �)x2

�
= c:

#2. Example: Suppose X = [a; b] is a closed interval in < (with a < b); and f : X !
< is a continuous function. Use Weierstrass Theorem and the Intermediate Value
Theorem to prove that f (X) is itself a closed interval.

� Theorem 2 (Mean Value Theorem):
Suppose A is an open convex subset of <n; and f : A! < is continuously differen-
tiable on A: Suppose x1 and x2 are in A: Then there is 0 � � � 1 such that

f
�
x2
�
� f

�
x1
�
=
�
x2 � x1

�
� Of

�
�x1 + (1� �)x2

�
:
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#3. Example: We say that f : A ! < (where A � <) is an increasing function if when-
ever x1 > x2; we have f

�
x1
�
> f

�
x2
�
:

(a) Suppose that g : A ! <, A � <; A is open and convex, and g0 (x) > 0; for all
x 2 A: Prove, using the Mean Value Theorem, that g is an increasing function.

(b) Suppose g is an increasing function on A: Does it follow that g0 (x) > 0; for all
x 2 A?

� Theorem 3 (Taylor's Expansion upto Second Order):
Suppose A is an open convex subset of <n; and f : A ! < is twice continuously
differentiable on A: Suppose x1 and x2 are in A: Then there is 0 � � � 1 such that

f
�
x2
�
� f

�
x1
�
=
�
x2 � x1

�
� Of

�
x1
�
+
1

2

�
x2 � x1

�
�Hf

�
�x1 + (1� �)x2

�
�
�
x2 � x1

�
:
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3. Concave Functions
� Let A be a convex set in <n: Then f : A ! < is a concave function (on A) if for all
x1; x2 2 A; and for all 0 � � � 1;

f
�
�x1 + (1� �)x2

�
� �f

�
x1
�
+ (1� �) f

�
x2
�
:

� The function f is strictly concave on A if

f
�
�x1 + (1� �)x2

�
> �f

�
x1
�
+ (1� �) f

�
x2
�

whenever x1; x2 2 A; x1 6= x2; and 0 < � < 1:

� Let A be a convex set in <n: Then f : A ! < is a convex function (on A) if for all
x1; x2 2 A; and for all 0 � � � 1;

f
�
�x1 + (1� �)x2

�
� �f

�
x1
�
+ (1� �) f

�
x2
�
:

� The function f is strictly convex on A if

f
�
�x1 + (1� �)x2

�
< �f

�
x1
�
+ (1� �) f

�
x2
�

whenever x1; x2 2 A; x1 6= x2; and 0 < � < 1:



8

� Relation between Concave Functions and Convex Sets:
The relation between concave function and convex sets is given by the following
results.

� Theorem 4:
Suppose A is a convex set in <n and f : A! <: Then f is a concave function if and
only if the set {(x; �) 2 A�< : f (x) � �g is a convex set in <n+1:

� Proof: To be discussed in class.

� Theorem 5: Suppose A is a convex set in <n and f : A! < is a concave function.
Then, for every � 2 <; the set S (�) = fx 2 A : f (x) � �g is a convex set in <n:

� Proof: To be discussed in class.
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� A result on concave functions which parallels Proposition 1 on convex sets can now
be noted. It is known as Jensen's Inequality, and is a very useful tool in convex
analysis.

� Proposition 2 (Jensen's Inequality):
Suppose A is a convex set in <n and f : A! < is a concave function. Then, for any
integer m > 1,

f

�
mP
i=1

�ix
i

�
�

mP
i=1

�if
�
xi
�

whenever x1; x2; :::; xm 2 A; (�1; �2; :::; �m) 2 <m+ and
mP
i=1

�i = 1:

� Proof: To be discussed in class.

� Hints: Proof by induction.

- Step 1: Show that the property is true for m = 2:

- Step 2: Assume that the property is true for m = k; then show that it is also true
for m = k + 1:
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� Continuity of Concave Functions:

In general, if A is a convex set in <n and f : A ! < is concave on A; then f need
not be continuous on A:

#4. Give an example to illustrate the above statement.

� But if f is an open convex set in <n and f : A! < is concave on A; then one can
show that f is continuous on A.

� Theorem 6:
Suppose A is an open convex set in <n and f : A ! < is a concave function on A:
Then f is a continuous function on A:

� Proof: Homework.
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� Differentiable Concave Functions:
In general, if A is an open convex set in <n and f : A ! < is concave on A; then f
need not be differentiable on A:

#5. Give an example to illustrate the above statement.

� If f is continuously differentiable on A; then a convenient characterization for f to
be concave on A can be given in terms of the gradient vector of f:

� Theorem 7:
Suppose A � <n is an open convex set, and f : A! < is continuously differentiable
on A: Then f is concave on A if and only if for all x1 and x2 in A

f
�
x2
�
� f

�
x1
�
� Of

�
x1
�
�
�
x2 � x1

�
:

� Proof: To be discussed in class.

� Corollary 1: Suppose A � <n is an open convex set, and f : A! < is continuously
differentiable on A: Then f is concave on A if and only if for all x1 and x2 in A�

Of
�
x2
�
� Of

�
x1
��
�
�
x2 � x1

�
� 0:
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� It is interesting to note that a characterization of strictly concave functions can be
given by replacing the weak inequalities in Theorem 7 and Corollary 1 with strict
inequalities (for x1, x2 in A with x1 6= x2).

� Theorem 8:
Suppose A � <n is an open convex set, and f : A! < is continuously differentiable
on A: Then f is strictly concave on A if and only if for all x1, x2 in A with x1 6= x2;

f
�
x2
�
� f

�
x1
�
< Of

�
x1
�
�
�
x2 � x1

�
:

� Corollary 2:
Suppose A � <n is an open convex set, and f : A! < is continuously differentiable
on A: Then f is strictly concave on A if and only if for all x1, x2 in A with x1 6= x2;�

Of
�
x2
�
� Of

�
x1
��
�
�
x2 � x1

�
< 0:
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� Twice Differentiable Concave Functions:
If A � <n is an open convex set, and f : A ! < is twice continuously differentiable
on A; then we can �nd a convenient characterization for f to be concave on A in
terms of the negative semi-de�niteness of the Hessian matrix of f:

� Theorem 9:
Suppose A � <n is an open convex set, and f : A ! < is twice continuously
differentiable on A: Then f is concave on A if and only if the Hessian matrix Hf (x)
is negative semi-de�nite for all x in A:

� Theorem 10:
Suppose A � <n is an open convex set, and f : A ! < is twice continuously
differentiable on A: If the Hessian matrix Hf (x) is negative de�nite for all x in A;
then f is strictly concave on A:

#6. Give a counter-example to establish that the converse of Theorem 10 does not
hold.
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4. Quasi-Concave Functions
� Let A � <n be a convex set, and f a real-valued function on A: Then f is quasi-
concave on A if

f
�
x2
�
� f

�
x1
�
implies f

�
�x1 + (1� �)x2

�
� f

�
x1
�

whenever x1; x2 2 A; and 0 � � � 1:

� The function f is strictly quasi-concave on A if

f
�
x2
�
� f

�
x1
�
implies f

�
�x1 + (1� �)x2

�
> f

�
x1
�

whenever x1; x2 2 A; x1 6= x2; and 0 < � < 1:

�While the conditions stated in Theorem 5 did not characterize concave functions, it
does characterize quasi-concave functions.

� Theorem 11:
Suppose A is a convex set in <n and f : A! <: Then f is a quasi-concave function
on A if and only if for every � 2 <; the set S (�) = fx 2 A : f (x) � �g is a convex
set in <n:
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� Differentiable Quasi-Concave Functions:
A characterization of differentiable quasi-concave function can be given which paral-
lels the characterization of differentiable concave functions given in Theorem 8.

� Theorem 12:
Suppose A � <n is an open convex set, and f : A! < is continuously differentiable
on A: Then f is quasi-concave on A if and only if for all x1 and x2 in A

f
�
x2
�
� f

�
x1
�
implies

�
x2 � x1

�
� Of

�
x1
�
� 0:

� Proof: To be discussed in class.

� Twice Differentiable Quasi-Concave Functions:
An interesting characterization of twice differentiable quasi-concave functions can be
given in terms of the �bordered� Hessian matrix associated with the functions.
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� Let A � <n is an open convex set, and f : A! < is twice continuously differentiable
on A: The bordered Hessian matrix of f at x 2 A is denoted by Gf (x) and is de�ned
by the following (n + 1)� (n + 1) matrix:

Gf (x) =

0@ 0 Of (x)

Of (x) Hf (x)

1A :
�We denote the (k + 1)th leading principal minor of Gf (x) by jGf (x; k)j ; where k =
1; 2; :::; n:

� Theorem 13:
Suppose A � <n is an open convex set, and f : A ! < is twice continuously
differentiable on A:

(i) If f is quasi-concave on A; then (�1)k jGf (x; k)j � 0 for x 2 A; and k = 1; 2; :::; n:

(ii) If (�1)k jGf (x; k)j > 0 for x 2 A; and k = 1; 2; :::; n; then f is strictly quasi-concave
on A:
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