Classical Optimization Theory: Unconstrained Optimization

1. Preliminaries

• Framework:

- Consider a set $A \subset \Re^n$, and a function $f : A \to \Re$.
- We are interested in identifying points in A at which the function f attains a (local or global) maximum and/or minimum.

1

• Local Maximum:

Let $A \subset \Re^n$, and let f be a function from A to \Re . A point $x^* \in A$ is said to be a *point of local maximum* of f if there exists an open ball around x^* , $B_{\epsilon}(x^*)$, such that $f(x^*) \ge f(x)$ for all $x \in B_{\epsilon}(x^*) \cap A$.

– That is, a point x^* is a local maximum if there are no nearby points at which f takes on a larger value.

• Global Maximum:

Let $A \subset \Re^n$, and let f be a function from A to \Re . A point $x^* \in A$ is said to be a *point* of global maximum of f if $f(x^*) \ge f(x)$ for all $x \in A$.

• Local and global minimum can be defined similarly by just reverting the inequalities.

• Two issues:

(a) Existence of a solution: Weierstrass Theorem;

(b) Uniqueness of the solution: Strict Quasi-concavity.

• Theorem 1 (Weierstrass Theorem: Existence of a Solution):

Let *A* be a compact subset of \Re^n and $f : A \to \Re$ be continuous on *A*. Then there exists x_m and x_M in *A* such that $f(x_m) \leq f(x) \leq f(x_M)$ for all $x \in A$.

– That is, x_M is a point of global maximum and x_m is a point of global minimum of f.

• Theorem 2 (Uniqueness of the Solution):

Suppose *A* is a non-empty, compact and convex subset of \Re^n . Suppose $f : A \to \Re$ is a continuous and strictly quasi-concave (respectively, quasi-convex) function on *A*. Then there exists $x^* \in A$ such that $f(x^*) > f(x)$ (respectively, $f(x^*) < f(x)$) for all $x \in A$ where $x \neq x^*$.

- That is, x^* is the unique global maximum (respectively, minimum) of f.
- Proof: To be discussed in class.

2. Necessary Conditions for Local Maximum & Minimum

- We will present two necessary conditions for local maximum and minimum:
 - one is a condition on the first-order partial derivatives of the relevant function (called the "first-order conditions"),
 - the other is a condition on the second-order partial derivatives of the relevant function (called the "second-order necessary conditions").

• Theorem 3:

Let *A* be an open set in \Re^n , and let $f : A \to \Re$ be a continuously differentiable function on *A*. If $x^* \in A$ is a point of local maximum or minimum of *f*, then

$$\nabla f\left(x^*\right) = 0. \tag{1}$$

- Proof: To be discussed in class.
- Remark: The *n* equations given by (1) are called the *first-order conditions* for a local maximum or minimum.

• Theorem 4:

Let *A* be an open set in \Re^n , and let $f : A \to \Re$ be a twice continuously differentiable function on *A*. If $x^* \in A$ is a point of local maximum (respectively, minimum) of *f*, then

 $H_f(x^*)$ is negative (respectively, positive) semi-definite. (2)

- Proof: To be discussed in class. [Theorem 30.11, pages 840-841, of the textbook.]
- Remark: Condition (2) is called the second-order necessary condition for a local maximum (respectively, minimum).
- Necessary conditions like (1) and (2) help us to rule out points where a local maximum cannot occur, thereby narrowing our search for points where a local maximum does occur. The following two examples illustrate this point.
- #1. Let $f : \Re \to \Re$ be given by $f(x) = 1 x^2$ for all $x \in \Re$. Does f have a local maximum at the point x = 1?
- #2. Let $f : \Re \to \Re$ be given by $f(x) = 1 2x + x^2$ for all $x \in \Re$. Does f have a local maximum at the point x = 1?

3. Sufficient Conditions for Local Maximum and Minimum

• We present below a set of sufficient conditions for local maximum and minimum.

• Theorem 5:

Let A be an open set in \Re^n , and let $f : A \to \Re$ be a twice continuously differentiable function on A.

(a) If $x^* \in A$ and

$$abla f(x^*) = 0$$
, and (3a)
 $H_f(x^*)$ is negative definite, (4a)

then x^* is a point of local maximum of f.

(b) If $x^* \in A$ and

$$\nabla f(x^*) = 0, \text{ and}$$
(3b)
$$H_f(x^*) \text{ is positive definite,}$$
(4b)

then x^* is a point of local minimum of f.

(c) If $x^* \in A$ and

$$abla f(x^*) = 0$$
, and (3c)
 $H_f(x^*)$ is indefinite, (4c)

then x^* is neither a point of local maximum nor a point of local minimum of f.

- Proof: To be discussed in class. [Theorem 30.10, pages 836-840, of the textbook.]
- Remark: Condition (4a) (respectively, (4b)) is called the *second-order sufficient condition* for a local maximum (respectively, minimum).
- It should be noted that in the statement of Theorem 5 condition (4) *cannot* be weakened to condition (2).
- #3. Provide an example to establish this point.
- It should also be observed that in the statement of Theorem 4 condition (2) *cannot* be strengthened to condition (4).
- #4. Provide an example to establish this point.

- The outcome of this discussion is the following:
 - The second-order *necessary* conditions for a local maximum and minimum are different from (*weaker* than) the second-order *sufficient* conditions.
 - This simply reflects the fact that, in general, the first and second derivatives of a function at a point do not capture all aspects relevant to the occurrence of a local maximum or minimum of the function at that point.
- The sufficient conditions of Theorem 5 enable us to find points of local maximum or minimum of a function as the following example shows.
- #5. Let $f : \Re^2 \to \Re$ be given by $f(x_1, x_2) = 2x_1x_2 2x_1^2 x_2^2$ for all $(x_1, x_2) \in \Re^2$. Find out all the points of local maximum of f.

4. Sufficient Conditions for Global Maximum & Minimum

• Theorem 6:

Let *A* be an open convex set in \Re^n , and let $f : A \to \Re$ be a continuously differentiable function on *A*. If $x^* \in A$ satisfies $\nabla f(x^*) = 0$, and *f* is a concave (respectively, convex) function on *A*, then x^* is a point of global maximum (respectively, minimum) of *f*.

- Proof: To be discussed in class.

• Theorem 7:

Let A be an open convex set in \Re^n , and let $f : A \to \Re$ be a twice continuously differentiable function on A.

(a) If $x^* \in A$ and

```
abla f(x^*) = 0, and

H_f(x) is negative semi-definite for all x \in A,
```

then x^* is a point of global maximum of f.

(b) If $x^* \in A$ and

 $abla f(x^*) = 0$, and $H_f(x)$ is positive semi-definite for all $x \in A$,

then x^* is a point of global minimum of f.

- Proof: To be discussed in class.
- It is worth noting that Theorem 6 or 7 might be applicable in cases where Theorem 5 is not applicable.
 - Example: Consider $f : \Re \to \Re$ be given by $f(x) = -x^4$.
 - Note that f'(0) = 0 and $f''(x) = -12x^2 \le 0$ for all $x \in \Re$.
 - \Rightarrow Applying Theorem 6 or 7 we can conclude that x = 0 is a point of global maximum, and hence of local maximum.
 - But the conclusion that x = 0 is a point of local maximum cannot be derived from Theorem 5, since f''(0) = 0.

References

- Must read the following chapterand section from the textbook:
 - Chapter 17 (pages 396 410): Unconstrained Optimization,
 - Section 30.4 (pages 836 841): Second Order Optimization Conditions.
- This material is based on
- 1. Bartle, R., The Elements of Real Analysis, (chapter 7),
- 2. Apostol, T., *Mathematical Analysis: A Modern Approach to Advanced Calculus*, (chapter 6).
- 3. Takayama, A., *Mathematical Economics*, (chapter 1).