Classical Optimization Theory: Constrained Optimization (Equality Constraints)

1. Preliminaries

• Framework:

- Consider a set $A \subset \Re^n$.
- Consider the functions $f : A \to \Re$ and $g : A \to \Re$.
- Constraint set:

$$C = \left\{ x \in A : g(x) = 0 \right\}.$$

- A typical optimization problem:

Maximize
$$f(x)$$
,
subject to $x \in C$.

(P)

1

• Local Maximum:

A point $x^* \in C$ is said to be a *point of local maximum of* f *subject to the constraints* g(x) = 0, if there exists an open ball around x^* , $B_{\epsilon}(x^*)$, such that $f(x^*) \ge f(x)$ for all $x \in B_{\epsilon}(x^*) \cap C$.

• Global Maximum:

A point $x^* \in C$ is a point of global maximum of f subject to the constraint g(x) = 0, if x^* solves the problem (P).

• Local minimum and global minimum can be defined similarly by just reverting the inequalities.

2. Necessary Conditions for Constrained Local Maximum and Minimum

- The basic necessary condition for a constrained local maximum is provided by Lagrange's theorem.
- Theorem 1(a) (Lagrange Theorem: Single Equality Constraint):

Let $A \subset \Re^n$ be open, and $f : A \to \Re$, $g : A \to \Re$ be continuously differentiable functions on A. Suppose x^* is a point of local maximum or minimum of f subject to the constraint g(x) = 0. Suppose further that $\nabla g(x^*) \neq 0$. Then there is $\lambda^* \in \Re$ such that

$$\nabla f(x^*) = \lambda^* \cdot \nabla g(x^*). \tag{1}$$

- The (n + 1) equations given by (1) and the constraint g(x) = 0 are called the *first-order conditions* for a constrained local maximum or minimum.

- There is an easy way to remember the conclusion of Lagrange Theorem.
 - Consider the function $L: A \times \Re \to \Re$ defined by

$$L(x,\lambda) = f(x) - \lambda g(x)$$

- L is known as the Lagrangian, and λ as the Lagrange multiplier.
- Consider now the problem of finding the local maximum (or minimum) in an unconstrained maximization (or minimization) problem in which L is the function to be maximized (or minimized).
- The first-order conditions are:

$$D_i L(x, \lambda) = 0$$
, for $i = 1, ..., n + 1$,

which yields

$$D_{i}f(x) = \lambda D_{i}g(x)$$
, for $i = 1, ..., n$; and $g(x) = 0$.

- The first *n* equations can be written as $\nabla f(x) = \lambda \cdot \nabla g(x)$ as in the conclusion of Lagrange Theorem.
- The method described above is known as the "Lagrange multiplier method".

• The Constraint Qualification:

The condition, $\nabla g(x^*) \neq 0$, is known as the *constraint qualification*.

- It is particularly important to check the constraint qualification before applying the conclusion of Lagrange's Theorem.
 - Without this condition, the conclusion of Lagrange's Theorem would not be valid, as the following example shows.
- #1. Let $f : \Re^2 \to \Re$ be given by $f(x_1, x_2) = 2x_1 + 3x_2$ for all $(x_1, x_2) \in \Re^2$, and $g : \Re^2 \to \Re$ be given by $g(x_1, x_2) = x_1^2 + x_2^2$ for all $(x_1, x_2) \in \Re^2$.

- Consider the constraint set

$$C = \left\{ (x_1, x_2) \in \Re^2 : g(x_1, x_2) = 0 \right\}.$$

- Now consider the maximization problem: Maximize $f(x_1, x_2) \in C$

(a) Demonstrate that the conclusion of Lagrange's Theorem does not hold here.

(b) What is the solution to the maximization problem?

(c) What goes wrong? Explain clearly.

• Several Equality Constraints:

In Problem (P) we have considered only one equality constraint, g(x) = 0. Now we consider more than one, say m, equality constraints: $g^j : A \to \Re$, such that $g^j(x) = 0$, j = 1, 2, ..., m.

- Constraint set:

$$C = \left\{ x \in A : g^{j}(x) = 0, \ j = 1, 2, ..., m \right\}.$$

- Constraint Qualification:

The natural generalization of the constraint qualification with single constraint, $\nabla g(x^*) \neq 0$, involves the Jacobian derivative of the constraint functions:

$$Dg(x^*) = \begin{pmatrix} \frac{\partial g^1}{\partial x_1}(x^*) & \frac{\partial g^1}{\partial x_2}(x^*) & \cdots & \frac{\partial g^1}{\partial x_n}(x^*) \\ \frac{\partial g^2}{\partial x_1}(x^*) & \frac{\partial g^2}{\partial x_2}(x^*) & \cdots & \frac{\partial g^2}{\partial x_n}(x^*) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g^m}{\partial x_1}(x^*) & \frac{\partial g^m}{\partial x_2}(x^*) & \cdots & \frac{\partial g^m}{\partial x_n}(x^*) \end{pmatrix}$$

- In general, a point x^* is called a *critical point* of $g = (g^1, g^2, ..., g^m)$, if the rank of the Jacobian matrix, $Dg(x^*)$, is < m.
- So the natural generalization of the constraint qualification is: rank $(Dg(x^*)) = m$.
 - This version of the constraint qualification is called the **nondegenerate con**straint qualification (NDCQ).
- The NDCQ is a regularity condition. It implies that the constraint set has a well-defined (n m)-dimensional tangent plane everywhere.
- Theorem 1(b) (Lagrange Theorem: Several Equality Constraints):

Let $A \subset \Re^n$ be open, and $f : A \to \Re$, $g^j : A \to \Re$ be continuously differentiable functions on A, j = 1, 2, ..., m. Suppose x^* is a point of local maximum or minimum of f subject to the constraints $g^j(x) = 0, j = 1, 2, ..., m$. Suppose further that rank $(Dg(x^*)) = m$. Then there exist $(\lambda_1^*, \lambda_2^*, ..., \lambda_m^*) \in \Re^m$ such that $(x^*, \lambda^*) \equiv (x_1^*, x_2^*, ..., x_n^*, \lambda_1^*, \lambda_2^*, ..., \lambda_m^*)$ is a critical point of the Lagrangian

$$L(x,\lambda) \equiv f(x) - \lambda_1 g^1(x) - \lambda_2 g^2(x) - \dots - \lambda_m g^m(x).$$

In other words,

$$\frac{\partial L}{\partial x_i} (x^*, \lambda^*) = 0, \ i = 1, 2, ..., n,$$

$$and$$

$$\frac{\partial L}{\partial \lambda_j} (x^*, \lambda^*) = 0, \ j = 1, 2, ..., m.$$
(2)

- Proof: To be discussed in class (Section 19.6 of textbook).
- The (n+1) equations given by (2) are called the *first-order conditions* for a constrained local maximum or minimum.
- The following theorem provides a necessary condition involving the second-order partial derivatives of the relevant functions (called "second-order necessary conditions").

• Theorem 2:

Let $A \subset \Re^n$ be open, and $f : A \to \Re$, $g : A \to \Re$ be twice continuously differentiable functions on A. Suppose x^* is a point of local maximum of f subject to the constraint g(x) = 0. Suppose further that $\nabla g(x^*) \neq 0$. Then there is $\lambda^* \in \Re$ such that

(i) First-Order Condition: $\nabla f(x^*) = \lambda^* \cdot \nabla g(x^*)$,

(ii) Second-Order Necessary Condition: $y^T \cdot H_L(x^*, \lambda^*) \cdot y \leq 0$, for all y satisfying $y \cdot \nabla g(x^*) = 0$

[where $L(x, \lambda^*) = f(x) - \lambda^* g(x)$ for all $x \in A$, and $H_L(x^*, \lambda^*)$ is the $n \times n$ Hessian matrix of $L(x, \lambda^*)$ with respect to x evaluated at (x^*, λ^*)].

- The second-order *necessary* condition for maximization requires that the Hessian is *negative semi-definite* on the linear constraint set $\{y : y \cdot \nabla g(x^*) = 0\}$.
- Second-Order Necessary Condition for Minimization: $y^T \cdot H_L(x^*, \lambda^*) \cdot y \ge 0$ (that is, the Hessian is *positive semi-definite*), for all y satisfying $y \cdot \nabla g(x^*) = 0$.
- For *m* constraints, $g^{j}(x) = 0$, j = 1, 2, ..., m, $\forall g(x^{*}) \neq 0$ is replaced by the NDCQ: rank $(Dg(x^{*})) = m$.

3. Sufficient Conditions for Constrained Local Maximum and Minimum

• Theorem 3(a) [Single Equality Constraint]:

Let $A \subset \Re^n$ be open, and $f : A \to \Re$, $g : A \to \Re$ be twice continuously differentiable functions on A. Suppose $(x^*, \lambda^*) \in C \times \Re$ and

(i) First-Order Condition: $\nabla f(x^*) = \lambda^* \cdot \nabla g(x^*)$,

(ii) Second-Order Sufficient Condition: $y^T \cdot H_L(x^*, \lambda^*) \cdot y < 0$, for all $y \neq 0$ satisfying $y \cdot \nabla g(x^*) = 0$

[where $L(x, \lambda^*) = f(x) - \lambda^* g(x)$ for all $x \in A$, and $H_L(x^*, \lambda^*)$ is the $n \times n$ Hessian matrix of $L(x, \lambda^*)$ with respect to x evaluated at (x^*, λ^*)]. Then x^* is a point of local maximum of f subject to the constraint g(x) = 0.

- The second-order *sufficient* condition for maximization requires that the Hessian is *negative definite* on the linear constraint set $\{y : y \cdot \nabla g(x^*) = 0\}$.
- Second-Order Sufficient Condition for Minimization: $y^T \cdot H_L(x^*, \lambda^*) \cdot y > 0$ (that is, the Hessian is *positive definite*), for all $y \neq 0$ satisfying $y \cdot \nabla g(x^*) = 0$.

• There is a convenient method of checking the second-order sufficient condition stated in Theorem 3(a), by checking the signs of the leading principal minors of the relevant "bordered" matrix. This method is stated in the following Proposition.

• Proposition 1(a):

Let A be an $n \times n$ symmetric matrix and b be an n-vector with $b_1 \neq 0$. Define the $(n+1) \times (n+1)$ matrix S by

$$S = \left(\begin{array}{cc} 0 & b \\ b & A \end{array}\right)$$

(a) If |S| has the same sign as $(-1)^n$ and if the last (n-1) leading principal minors of *S* alternate in sign, then $y^T A y < 0$ for all $y \neq 0$ such that yb = 0;

(b) If |S| and the last (n - 1) leading principal minors all have the same negative sign, then $y^T A y > 0$ for all $y \neq 0$ such that yb = 0.

• Theorem 3(b) [Several Equality Constraints]:

Let $A \subset \Re^n$ be open, and $f : A \to \Re, g^j : A \to \Re$ be twice continuously differentiable functions on A, j = 1, 2, ..., m. Suppose $(x^*, \lambda^*) \in C \times \Re^m$ and

(i) First-Order Condition:
$$\frac{\partial L}{\partial x_i}(x^*, \lambda^*) = 0, i = 1, 2, ..., n$$
, and $\frac{\partial L}{\partial \lambda_j}(x^*, \lambda^*) = 0, j = 1, 2, ..., m$,

(ii) Second-Order Sufficient Condition: $y^T \cdot H_L(x^*, \lambda^*) \cdot y < 0$, for all $y \neq 0$ satisfying $Dg(x^*) \cdot y = 0$

[where $L(x, \lambda^*) = f(x) - \lambda_1^* g^1(x) - \lambda_2^* g^2(x) - \dots - \lambda_m^* g^m(x)$, for all $x \in A$, and $H_L(x^*, \lambda^*)$ is the $n \times n$ Hessian matrix of $L(x, \lambda^*)$ with respect to x evaluated at (x^*, λ^*)]. Then x^* is a point of local maximum of f subject to the constraints $g^j(x) = 0, j = 1, 2, ..., m$.

- The second-order *sufficient* condition for maximization requires that the Hessian is *negative definite* on the linear constraint set $\{y : Dg(x^*) \cdot y = 0\}$.

- Second-Order Sufficient Condition for Minimization: $y^T \cdot H_L(x^*, \lambda^*) \cdot y > 0$ (that is, the Hessian is *positive definite*), for all $y \neq 0$ satisfying $Dg(x^*) \cdot y = 0$.
- Proof: The proof for the case of 'two variables and one constraint' will be discussed in class (see Theorem 19.7, pages 461 – 462, of the textbook).
 - For the proof of the general case, refer to Section 30.5 (Constrained Maximization), pages 841 – 844, of the textbook.
- There is a convenient method of checking the *second-order sufficient condition* stated in Theorem 3(b), by checking the signs of the leading principal minors of the relevant "bordered" matrix. This method is stated in the following Proposition.

• Proposition 1(b):

To determine the definiteness of a quadratic form of n variables, $Q(x) = x^T A x$, when restricted to a constraint set given by m linear equations Bx = 0, construct the $(n+m) \times (n+m)$ matrix S by bordering the matrix A above and to the left by the coefficients B of the linear constraints:

$$S = \left(\begin{array}{cc} 0 & B \\ B^T & A \end{array}\right).$$

Check the signs of the last (n - m) leading principal minors of S, starting with the determinant of S itself.

- (a) If |S| has the same sign as $(-1)^n$ and if these last (n m) leading principal minors alternate in sign, then Q is negative definite on the constraint set Bx = 0.
- (b) If |S| and these last (n m) leading principal minors all have the same sign as $(-1)^m$, then Q is positive definite on the constraint set Bx = 0.
- For discussions on Propositions 1(a) and 1(b) refer to Section 16.3 (Linear Constraints and Bordered Matrices) (pages 386-393) of the textbook.

4. Sufficient Conditions for Constrained Global Maximum and Minimum

• Theorem 4:

Let $A \subset \Re^n$ be an open convex set, and $f : A \to \Re$, $g^j : A \to \Re$ be continuously differentiable functions on A, j = 1, 2, ..., m. Suppose $(x^*, \lambda^*) \in C \times \Re^m$ and $\nabla f(x^*) = \lambda_1^* \nabla g^1(x^*) + \lambda_2^* \nabla g^2(x^*) + ... + \lambda_m^* \nabla g^m(x^*)$. If $L(x, \lambda^*) = f(x) - \lambda_1^* g^1(x) - \lambda_2^* g^2(x) - ... - \lambda_m^* g^m(x)$ is concave (respectively, convex) in x on A, then x^* is a point of global maximum (respectively, minimum) of f subject to the constraints $g^j(x) = 0, j = 1, 2, ..., m$.

- Proof: To be discussed in class.

5. How to Solve Optimization Problems

- Two Routes:
 - Route 1 (Sufficiency Route): Use the sufficient conditions.
 - These will involve the concavity (convexity) and/or the second-order conditions.
 - Route 2 (Necessary Route): Use the necessary conditions PLUS the Weierstrass Theorem.
 - This route is useful when there is not enough information about the second-order conditions (bordered Hessian) or concavity/quasiconcavity.

#2. An Example of the Sufficiency Route:

Let $f: \Re^2 \to \Re$ be given by $f(x, y) = (1 - x^2 - y^2)$ and $g: \Re^2 \to \Re$ be given by g(x, y) = x + 4y - 2.

- (a) Set up the Lagrangian and find out the values of (x^*, y^*, λ^*) satisfying the first-order conditions and the constraint g(x, y) = 0.
- (b) Set up the appropriate bordered Hessian matrix and check whether (x^*, y^*) is a point of *local* maximum of f subject to the constraint g(x, y) = 0.
- (c) Check whether is also a point of *global* maximum of f subject to the constraint g(x, y) = 0.
- More Examples of the Sufficiency Route: Examples 19.7 and 19.8 of the textbook.

#3. An Example of the Necessary Route:

Consider the following constrained maximization problem:

Maximize
$$\prod_{i=1}^{n} x_i$$

subject to $\sum_{i=1}^{n} x_i = n$,
and $x_i \ge 0, i = 1, 2, ...n$. (P)

[Note that we have not yet encountered the inequality constraints of the " ≥ 0 " type. We will see how to handle them in this specific context.]

- (a) Step I: Define $C = \left\{ x \in \Re_{+}^{n} : \sum_{i=1}^{n} x_{i} = n \right\}$. Apply Weierstrass Theorem carefully to show that there exists $x^{*} \in C$ such that x^{*} solves (P).
- (b) Step II: Convert the problem "suitably" so that Lagrange Theorem is applicable.
 (Note that Lagrange Theorem is applicable on an *open* set whereas Weierstrass Theorem on a *closed* set.)

- Since x^* solves (P), $x_i^* > 0$, i = 1, 2, ..., n. We can therefore conclude that x^* also solves the following problem:

Maximize
$$\prod_{i=1}^{n} x_i$$

subject to $\sum_{i=1}^{n} x_i = n$,
and $x_i > 0, i = 1, 2, ...n$. $\left. \right\}$ (Q)

- Define
$$A = \Re_{++}^n$$
, so that A is an open subset of \Re^n . Define $f : A \to \Re$ by $f(x_1, x_2, ..., x_n) = \prod_{i=1}^n x_i$, and $g : A \to \Re$ by $g(x_1, x_2, ..., x_n) = \sum_{i=1}^n x_i - n$.

(c) Step III: Apply Lagrange Theorem to find x^* .

• More Examples of the Necessary Route:

Examples 18.4, 18.5 and 18.6 of the textbook.

References

- Must read the following sections from the textbook:
 - Section 16.3 (pages 386 393): Linear Constraints and Bordered Matrices,
 - Section 18.1 and 18.2 (pages 411 424): Equality Constraints,
 - Section 19.3 (pages 457 469): Second-Order Conditions (skip the subsection on Inequality Constraints for the time-being),
 - Section 30.5 (pages 841 844): Constrained Maximization.
- This material is based on
- 1. Bartle, R., The Elements of Real Analysis, (chapter 7),
- 2. Apostol, T., *Mathematical Analysis: A Modern Approach to Advanced Calculus*, (chapter 6).
- 3. Takayama, A., Mathematical Economics, (chapter 1).

- A proof of the important Proposition 1 can be found in
- 4. Mann, H.B., "Quadratic Forms with Linear Constraints", *American Mathematical Monthly* (1943), pages 430 433, and also in
- 5. Debreu, G., "Definite and Semidefinite Quadratic Forms", *Econometrica* (1952), pages 295 300.