Classical Optimization Theory:

Constrained Optimization
(Equality Constraints)




1. Preliminaries

e Framework:
— Consider a set A C R".
— Consider the functions f : A — Randg: A — R.

— Constraint set:
C={xeA:g(x)=0}.

— A typical optimization problem:

Maximize f (x),

(P)

subjectto x € C.



e Local Maximum:

A point x* € ('is said to be a point of local maximum of f subject to the constraints
g(x) = 0, if there exists an open ball around z*, B, (z*), such that f (z*) > f (z) for
allx € B.(z*)NC.

e Global Maximum:

A point z* € C'is a point of global maximum of f subject to the constraint g(x) = 0,
If * solves the problem (P).

e Local minimum and global minimum can be defined similarly by just reverting the
Inequalities.
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2. Necessary Conditions for Constrained Local Maximum
and Minimum

e The basic necessary condition for a constrained local maximum is provided by La-
grange’s theorem.

e Theorem 1(a) (Lagrange Theorem: Single Equality Constraint):

Let A C R"beopen,and f : A — R, g : A — R be continuously differentiable
functions on A. Suppose z* is a point of local maximum or minimum of f subject to
the constraint g(x) = 0. Suppose further that Vg(z*) # 0. Then there is \* € R such
that

Vf(a") =X vgla®). (1)

— The (n + 1) equations given by (1) and the constraint g(x) = 0 are called the first-
order conditions for a constrained local maximum or minimum.



e There is an easy way to remember the conclusion of Lagrange Theorem.
— Consider the function L : A x &t — R defined by

L(x,A)=f(z)—Ag(z).
— L is known as the Lagrangian, and A as the Lagrange multiplier.

— Consider now the problem of finding the local maximum (or minimum) in an uncon-
strained maximization (or minimization) problem in which L is the function to be
maximized (or minimized).

— The first-order conditions are:
D;L(x,\)=0,fori=1,...n+1,
which yields
Dif (x) =AD;g(x), fori =1,...,n; and g(z) = 0.

— The first n equations can be written as vV f(x) = A - Vg(x) as in the conclusion of
Lagrange Theorem.

— The method described above is known as the “Lagrange multiplier method”.



e The Constraint Qualification:
The condition, Vg(z*) # 0, is known as the constraint qualification.

— It is particularly important to check the constraint qualification before applying the
conclusion of Lagrange’s Theorem.

- Without this condition, the conclusion of Lagrange’s Theorem would not be valid,
as the following example shows.

#1.Let f : N2 — R be given by f (x1,29) = 22, + 3z, for all (z1,22) € R2, and
g:R? — RN be given by g (1, x9) = 22 + 23 for all (xq, x5) € N2

— Consider the constraint set
C = {(ZCMZCQ) S %2 : 9(371,562) — O} .

— Now consider the maximization problem: I\(Aaxir)nize f(z1,229) .
x1,x9)EC

(a) Demonstrate that the conclusion of Lagrange’s Theorem does not hold here.
(b) What is the solution to the maximization problem?

(c) What goes wrong? Explain clearly.



e Several Equality Constraints:
In Problem (P) we have considered only one equality constraint, g(z) = 0. Now we
consider more than one, say m, equality constraints: ¢/ : A — %, such that ¢’(z) = 0,
17=12,...m
— Constraint set:
C={zeA: ¢x)=0,j=12,...m}.

— Constraint Qualification:

The natural generalization of the constraint qualification with single constraint,
Vg(z*) # 0, involves the Jacobian derivative of the constraint functions:

(%) By o B
Dg (z*) = gil o gi( ) gﬁn( )

\Ziﬁ ) 21; ) - gin@”)




—In general, a point z* is called a critical point of g = (¢', ¢%, ..., ") , if the rank of
the Jacobian matrix, Dg (x*), is < m.

— So the natural generalization of the constraint qualification is: rank (Dg (z*)) = m.

- This version of the constraint qualification is called the nondegenerate con-
straint qualification (NDCQ).

— The NDCQ is a regularity condition. It implies that the constraint set has a well-
defined (n — m)-dimensional tangent plane everywhere.

e Theorem 1(b) (Lagrange Theorem: Several Equality Constraints):

Let A C R" beopen,and f : A — R, ¢/ : A — R be continuously differen-
tiable functions on A, 7 = 1,2,...,m. Suppose z* is a point of local maximum or
minimum of f subject to the constraints ¢/(z) = 0, j = 1,2,...,m. Suppose fur-
ther that rank (Dg(xz*)) = m. Then there exist (A],A3,..., A ) € R such that
(", N°) = (F, 23, ..., 25, A\[, A5, ..., A ) is a critical point of the Lagrangian

Lz, \) = f(x) = Mg (z) — Xag® (z) — ... = Ang™ (2) .



In other words,

L
gxi (2" A) = 0,i=12 ..n
and (2)
oL
—(2* X)) =0 17=1.2.... )
aA‘] <$ 9 ) 9 ] 9 9 7m

— Proof: To be discussed in class (Section 19.6 of textbook).

—The (n + 1) equations given by (2) are called the first-order conditions for a con-
strained local maximum or minimum.

e The following theorem provides a necessary condition involving the second-order
partial derivatives of the relevant functions (called “second-order necessary condi-
tions”).



e Theorem 2:

Let AC R"beopen,and f: A — R, g: A — R be twice continuously differentiable
functions on A. Suppose x* is a point of local maximum of f subject to the constraint
g(x) = 0. Suppose further that Vg(z*) # 0. Then there is \* € R such that

(i) First-Order Condition: vV f(x*) = A" - Vg(x¥),
(i) Second-Order Necessary Condition: y! - Hy (z*,\*) - y < 0, for all y satisfying
y-Vg(a®) =0

[Where L (z,\*) = f(x) — X¢g(x) forall x € A, and Hj, (z*, \") is the n x n Hessian
matrix of L (x, \*) with respect to = evaluated at (z*, \™)].

— The second-order necessary condition for maximization requires that the Hessian
is negative semi-definite on the linear constraint set {y : y - Vg(z*) =0} .

e Second-Order Necessary Condition for Minimization: y! - Hy (z*, \*) -y > 0 (that
is, the Hessian is positive semi-definite), for all y satisfying y - Vg(x*) = 0.

e For m constraints, ¢/(z) = 0, j = 1,2, ...,m, Vg(z*) # 0 is replaced by the NDCQ:
rank (Dg(xz*)) = m.
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3. Sufficient Conditions for Constrained Local Maximum
and Minimum

e Theorem 3(a) [Single Equality Constraint]:

Let AC R" beopen,and f: A — R, g: A — R be twice continuously differentiable
functions on A. Suppose (z*, \") € C' x R and

(i) First-Order Condition: vV f(x*) = A" - Vg(x*),

(i) Second-Order Sufficient Condition: y! - Hy (z*, \*) - y < 0, for all y # 0 satisfying
y-Vg(a*) =0

[wWhere L (z,\") = f(x) — Xg(x) forall x € A, and Hy, (z*, \") is the n x n Hessian
matrix of L (z, \*) with respect to x evaluated at (z*, \*)]. Then z* is a point of local
maximum of f subject to the constraint g(x) = 0.

— The second-order sufficient condition for maximization requires that the Hessian is
negative definite on the linear constraint set {y : y - Vg(z*) =0} .

e Second-Order Sufficient Condition for Minimization: y* - Hy (z*, \*) -y > 0 (that
is, the Hessian is positive definite), for all y # 0 satisfying y - Vg(z*) = 0.
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e There is a convenient method of checking the second-order sufficient condition stated
In Theorem 3(a), by checking the signs of the leading principal minors of the relevant
“bordered” matrix. This method is stated in the following Proposition.

e Proposition 1(a):

Let A be an n x n symmetric matrix and b be an n-vector with b; # 0. Define the
(n+1) X (n+ 1) matrix S by
0 b
s=(3 )

(a) If |S| has the same sign as (—1)" and if the last (n — 1) leading principal minors of
S alternate in sign, then y’ Ay < 0 for all y # 0 such that yb = 0;

(b) If |S] and the last (n — 1) leading principal minors all have the same negative sign,
then y! Ay > 0 for all y # 0 such that yb = 0.
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e Theorem 3(b) [Several Equality Constraints]:

Let A C R" beopen,and f: A — R, ¢/ : A — R be twice continuously differentiable
functionson A, j = 1,2,...,m. Suppose (z*, \*) € C' x ™ and
oL

L
(", A") =0, =1,2,....,n,and — (2", \*) = 0, j =

) First-Order Condition:
(i) First-Order Condition . o\,

1,2,...,m,

(i) Second-Order Sufficient Condition: y! - Hy (z*, \*) - y < 0, for all y # 0 satisfying
Dg(z*) -y =0

[where L (z,\*) = f(z) — Ng' (z) — Nsg* (z) — ... — X g™ (x), forall z € A, and
Hp (z*,\") is the n x n Hessian matrix of L (x, \") with respect to = evaluated at

(z*, \*)]. Then z* is a point of local maximum of f subject to the constraints ¢/ (z) =
0,7=12,..,m.

— The second-order sufficient condition for maximization requires that the Hessian is
negative definite on the linear constraint set {y : Dg (z*) -y = 0} .
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— Second-Order Sufficient Condition for Minimization: y! - H; (z*, \*)-y > 0 (that
is, the Hessian is positive definite), for all y # 0 satisfying Dg (z*) - y = 0.

— Proof: The proof for the case of ‘two variables and one constraint’ will be discussed
In class (see Theorem 19.7, pages 461 — 462, of the textbook).

- For the proof of the general case, refer to Section 30.5 (Constrained Maximiza-
tion), pages 841 — 844, of the textbook.

e There is a convenient method of checking the second-order sufficient condition stated
In Theorem 3(b), by checking the signs of the leading principal minors of the relevant
“bordered” matrix. This method is stated in the following Proposition.
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e Proposition 1(b):

To determine the definiteness of a quadratic form of n variables, Q (z) = 2! Az,
when restricted to a constraint set given by m linear equations Bx = 0, construct the
(n+m) x (n+m) matrix S by bordering the matrix A above and to the left by the
coefficients B of the linear constraints:

0 B
s=( )
Check the signs of the last (n — m) leading principal minors of S, starting with the
determinant of S itself.

(a) If |.S| has the same sign as (—1)" and if these last (n — m) leading principal minors
alternate in sign, then () is negative definite on the constraint set Bx = 0.

(b) If |S| and these last (n — m) leading principal minors all have the same sign as
(—1)™, then @ is positive definite on the constraint set Bz = 0.

e For discussions on Propositions 1(a) and 1(b) refer to Section 16.3 (Linear Con-
straints and Bordered Matrices) (pages 386-393) of the textbook.
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4. Sufficient Conditions for Constrained Global Maximum
and Minimum

e Theorem 4:
Let A C R" be an open convex set, and f : A — R, ¢/ : A — R be continuously
differentiable functionson A, j = 1,2, ..., m. Suppose (z*, \") € CxR"™and V f(z*) =
Vgl (x*) + ANV gt (xt) + o+ N Vg™ (x) I L(x, X)) = f(x) — Mgt (x) — N5 (z) —
... — A g™ (x) is concave (respectively, convex) in x on A, then z* is a point of
global maximum (respectively, minimum) of f subject to the constraints ¢’(z) = 0,
1=1,2,...,m.

— Proof: To be discussed in class.
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5. How to Solve Optimization Problems

e Two Routes:
— Route 1 (Sufficiency Route): Use the sufficient conditions.

- These will involve the concavity (convexity) and/or the second-order conditions.

— Route 2 (Necessary Route): Use the necessary conditions PLUS the Weierstrass
Theorem.

- This route is useful when there is not enough information about the second-order
conditions (bordered Hessian) or concavity/quasiconcavity.
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#2. An Example of the Sufficiency Route:

Let f : R — R be given by f (z,y) = (1 —2*—4?) and g : R* — R be given by
g(x,y)=o+4y — 2.

(a) Set up the Lagrangian and find out the values of (z*, y*, \*) satisfying the first-order
conditions and the constraint g (x,y) = 0.

(b) Set up the appropriate bordered Hessian matrix and check whether (z*,3*) is a
point of local maximum of f subject to the constraint g (z,y) = 0.

(c) Check whether is also a point of global maximum of f subject to the constraint
g (z,y)=0.

e More Examples of the Sufficiency Route: Examples 19.7 and 19.8 of the textbook.
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#3. An Example of the Necessary Route:

Consider the following constrained maximization problem:

n )
Maximize [[ x;
i=1

subjectto ) x; =n, r (P)
1=1
and ;> 0,1=1,2,..n.

[Note that we have not yet encountered the inequality constraints of the “> 0" type.
We will see how to handle them in this specific context.]
(a) Step I: Define C' = {:c eRL: ) x; = n} . Apply Welerstrass Theorem carefully to
1=1
show that there exists z* € C' such that =* solves (P).
(b) Step Il: Convert the problem “suitably” so that Lagrange Theorem is applicable.

(Note that Lagrange Theorem is applicable on an open set whereas Weierstrass
Theorem on a closed set.)
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- Since z* solves (P), 7 > 0,7 = 1,2, ..., n. We can therefore conclude that =* also
solves the following problem:

Maximize [] z;

subjectto Y 2, =n, e (Q)
=1
and i >0,i=12.n.

- Define A = R _, so that A is an open subset of R". Deflne f:A— R by
f(x1, @, .y y) = Hazz, andg: A — Rbyg(z,29,...,2,) = sz—n
1=1

(c) Step lll: Apply Lagrange Theorem to find z*.

e More Examples of the Necessary Route:

Examples 18.4, 18.5 and 18.6 of the textbook.
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