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1. Preliminaries
�We will present below the elements of �modern optimization theory� as formulated by
Kuhn and Tucker, and a number of authors who have followed their general approach.

� Modern constrained maximization theory is concerned with the following problem:

Maximize f (x)

subject to gj (x) � 0; for j = 1; 2; :::;m

and x 2 X

9>>=>>; (P)
where

�X is a non-empty subset of <n; and

� f; gj (j = 1; 2; :::;m) are functions from X to <:

� Constraint Set:

C =
�
x 2 X: gj (x) � 0; for j = 1; 2; :::;m

	
:
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� A point x̂ 2 X is a point of constrained global maximum if x̂ solves the problem
(P).

� A point x̂ 2 X is a point of constrained local maximum if there exists an open
ball around x̂; B� (x̂) ; such that f (x̂) � f (x) for all x 2 B� (x̂) \ C:

� A pair
�
x̂; �̂

�
2 (X �<m+) is a saddle point if

�
�
x; �̂

�
� �

�
x̂; �̂

�
� � (x̂; �) for all x 2 X and all � 2 <m+ ;

where

� (x; �) = f (x) + �g (x) for all (x; �) 2 (X �<m+) :

-
�
x̂; �̂

�
is simultaneously a point of maximum and minimum of � (x; �): maximum

with respect to x; and minimum with respect to �:

� The constraint minimization problem and the corresponding constrained global
minimum and constrained local minimum can be de�ned analogously.
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2. Constrained Global Maxima and Saddle Points
� A major part of modern optimization theory is concerned with establishing (under
suitable conditions) an equivalence result between a point of constrained global max-
imum and saddle point.
�We explore this theory in what follows.

� Theorem 1:
If
�
x̂; �̂

�
2 (X �<m+) is a saddle point, then

(i) �̂g (x̂) = 0;
(ii) g (x̂) � 0; and
(iii) x̂ is a point of constrained global maximum.

� Proof: To be discussed in class.
� Hints:
- For (i) and (ii) use the second inequality in the de�nition of a saddle point.
- Then use (i), (ii) and the �rst inequality in the saddle point de�nition to prove (iii).
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� A converse of Theorem 1 can be proved if
�X is a convex set,
� f; gj (j = 1; 2; :::;m) are concave functions on X; and
� a condition on the constraints, generally known as �Slater's condition� is satis�ed.
- Notice that none of these conditions are needed for the validity of Theorem 1.

� Slater's Condition:
Given the problem (P), we will say that Slater's condition holds if there exists �x 2 X
such that gj (�x) > 0; for j = 1; 2; :::;m:

� Theorem 2 (Kuhn-Tucker):
Suppose x̂ 2 X is a point of constrained global maximum. If X is a convex set, f; gj
(j = 1; 2; :::;m) are concave functions on X; and Slater's condition holds, then there
is �̂ 2 <m+ such that

(i) �̂g (x̂) = 0; and

(ii)
�
x̂; �̂

�
is a saddle point.
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� Examples: The following examples demonstrate why the assumptions of Theorem
2 are needed for the conclusion to be valid.

#1. Let X = <+; f : X ! < be given by f (x) = x; and g : X ! < be given by
g (x) = �x2:

(a) What is the point of constrained global maximum (x̂) for the problem (P) for this
characterization of X; f and g?

(b) Can you �nd a �̂ 2 <+ such that
�
x̂; �̂

�
is a saddle point? Explain clearly.

(c) What goes wrong? Explain clearly.

#2. Let X = <+; f : X ! < be given by f (x) = x2; and g : X ! < be given by
g (x) = 1� x:

(a) What is the point of constrained global maximum (x̂) for the problem (P) for this
characterization of X; f and g?

(b) Can you �nd a �̂ 2 <+ such that
�
x̂; �̂

�
is a saddle point? Explain clearly.

(c) Is the Slater's condition satis�ed? What goes wrong? Explain clearly.
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3. The Kuhn-Tucker Conditions and Saddle Points
� The Kuhn-Tucker Conditions:
Let X be an open set in <n; and f; gj (j = 1; 2; :::;m) be continuously differentiable
on X: A pair

�
x̂; �̂

�
2 (X �<m+) satis�es the Kuhn-Tucker conditions if

(i)
@f

@xi
(x̂) +

mP
j=1

�̂j
@gj

@xi
(x̂) = 0; i = 1; 2; :::; n;

(ii) g (x̂) � 0; and �̂g (x̂) = 0:

� The condition �̂g (x̂) = 0 is called the `Complementary Slackness' condition. Note

�̂g (x̂) = 0) �̂1g
1 (x̂) + :::+ �̂mg

m (x̂) = 0;

) �̂1g
1 (x̂) = 0; :::; �̂mg

m (x̂) = 0; since �̂j � 0 as �̂ 2 <m+ and gj (x̂) � 0.

- So if gj (x̂) > 0; then �̂j = 0: That is, if a constraint is not binding, then the
corresponding multiplier is 0:

- But if gj (x̂) = 0; then �̂j can be either > 0 or equal to zero.
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� A part of modern optimization theory is concerned with establishing the equivalence
(under some suitable conditions) between a saddle point and a point where the Kuhn-
Tucker conditions are satis�ed.

� Theorem 3:
Let X be an open set in <n; and f; gj (j = 1; 2; :::;m) be continuously differentiable
on X: Suppose a pair

�
x̂; �̂

�
2 (X �<m+) satis�es the Kuhn-Tucker conditions. If X

is convex and f; gj (j = 1; 2; :::;m) are concave on X; then
(i)
�
x̂; �̂

�
is a saddle point, and

(ii) x̂ is a point of constrained global maximum.
� Proof: To be discussed in class.

� Theorem 4:
Let X be an open set in <n; and f; gj (j = 1; 2; :::;m) be continuously differentiable
on X: Suppose a pair

�
x̂; �̂

�
2 (X �<m+) is a saddle point. Then

�
x̂; �̂

�
satis�es

the Kuhn-Tucker conditions.
� Proof: To be discussed in class.
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4. Suf�cient Conditions for Constrained Global Maximum
and Minimum

� Now we have all the ingredients to �nd out the suf�cient conditions for a constrained
global maximum or minimum involving the Kuhn-Tucker conditions.

#3. State and prove rigorously a theorem that gives the suf�cient conditions for a con-
strained global maximum involving the Kuhn-Tucker conditions.

#4. State and prove rigorously a theorem that gives the suf�cient conditions for a con-
strained global minimum involving the Kuhn-Tucker conditions.
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5. Constrained Local and Global Maxima
� It is clear that if x̂ is a point of constrained global maximum, then x̂ is also a point of
constrained local maximum.
� The circumstances under which the converse is true are given by the following
theorem.

� Theorem 5:
Let X be a convex set in <n: Let f; gj (j = 1; 2; :::;m) be concave functions on
X: Suppose x̂ is a point of constrained local maximum. Then x̂ is also a point of
constrained global maximum.

� Proof: To be discussed in class.

� Hints: Establish �rst that since X is a convex set and gj (j = 1; 2; :::;m)'s are
concave functions, the constraint set C is a convex set.
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6. Necessary Conditions for Constrained Local Maximum
and Minimum

�We now establish the useful result (corresponding to the classical Lagrange Theo-
rem) that if x� 2 X is a point of constrained local maximum then, under suitable
conditions, there exists �� 2 <k+ such that (x�; ��) satis�es the Kuhn-Tucker condi-
tions.

� Theorem 6 (Constrained Local Maximum):
Let X be an open set in <n; and f; gj (j = 1; 2; :::; k) be continuously differentiable
on X: Suppose that x� 2 X is a point of constrained local maximum of f subject to
k inequality constraints:

g1 (x) � b1; :::; gk (x) � bk:

Without loss of generality, assume that the �rst k0 constraints are binding at x� and
that the last (k � k0) constraints are not binding. Suppose that the following nonde-
generate constraint quali�cation is satis�ed at x�:
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The rank at x� of the following Jacobian matrix of the binding constraints is k0:0BBBB@
@g1

@x1
(x�) � � � @g

1

@xn
(x�)

... . . . ...
@gk0

@x1
(x�) � � � @g

k0

@xn
(x�)

1CCCCA :
Form the Lagrangian

L (x; �) � f (x)� �1
�
g1 (x)� b1

�
� :::� �k

�
gk (x)� bk

�
:

Then, there exist multipliers (��1; :::; �
�
k) such that

(a)
@L

@x1
(x�; ��) = 0; :::;

@L

@xn
(x�; ��) = 0;

(b) ��1
�
g1 (x�)� b1

�
= 0; :::; ��k

�
gk (x�)� bk

�
= 0;

(c) ��1 � 0; :::; ��k � 0;

(d) g1 (x�) � b1; :::; gk (x�) � bk:
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� Proof: To be discussed in class (see Section 19.6, pages 480-482, of the textbook).
� Note that the conditions (a) � (d) are the Kuhn-Tucker conditions.

� Example:
Consider the following problem:

Maximize x

subject to (1� x)3 � y;
x � 0; y � 0:

9=;
(a) De�ne carefully X; f; and the gj's and bj's for this problem.
(b) Draw carefully the constraint set for this problem and �nd out (x�; y�) such that
(x�; y�) solves this problem.

(c) Are there ��j 's (the number of �
�
j 's should be in accordance with the number of gj's)

such that (x�; y�) and the ��j 's satisfy the Kuhn-Tucker conditions? Explain carefully.
(d) What goes wrong? Explain carefully.
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� Theorem 7 (Mixed Constraints):
Let X be an open set in <n; and f; gj (j = 1; 2; :::; k) and hi (i = 1; 2; :::;m) be
continuously differentiable on X: Suppose that x� 2 X is a point of constrained local
maximum of f subject to k inequality constraints and m equality constraints:

g1 (x) � b1; :::; g
k (x) � bk;

h1 (x) = c1; :::; h
m (x) = cm:

Without loss of generality, assume that the �rst k0 inequality constraints are binding
at x� and that the last (k � k0) constraints are not binding. Suppose that the following
nondegenerate constraint quali�cation is satis�ed at x�:
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The rank at x� of the Jacobian matrix of the equality constraints and the binding in-
equality constraints 0BBBBBBBBBBBBBB@

@g1

@x1
(x�) � � � @g1

@xn
(x�)

... . . . ...
@gk0

@x1
(x�) � � � @g

k0

@xn
(x�)

@h1

@x1
(x�) � � � @h

1

@xn
(x�)

... . . . ...
@hm

@x1
(x�) � � � @h

m

@xn
(x�)

1CCCCCCCCCCCCCCA
is (k0 +m) :



15

Form the Lagrangian

L (x; �; �) � f (x)� �1
�
g1 (x)� b1

�
� :::� �k

�
gk (x)� bk

�
��1

�
h1 (x)� c1

�
� :::� �m [hm (x)� cm] :

Then, there exist multipliers (��1; :::; �
�
k; �

�
1; :::; �

�
m) such that

(a)
@L

@x1
(x�; ��; ��) = 0; :::;

@L

@xn
(x�; ��; ��) = 0;

(b) ��1
�
g1 (x�)� b1

�
= 0; :::; ��k

�
gk (x�)� bk

�
= 0;

(c) h1 (x�) = c1; :::; hm (x�) = cm;

(d) ��1 � 0; :::; ��k � 0;

(e) g1 (x�) � b1; :::; gk (x�) � bk:
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� Theorem 8 (Constrained Local Minimum):
Let X be an open set in <n; and f; gj (j = 1; 2; :::; k) and hi (i = 1; 2; :::;m) be
continuously differentiable on X: Suppose that x� 2 X is a point of constrained local
minimum of f subject to k inequality constraints and m equality constraints:

g1 (x) � b1; :::; g
k (x) � bk;

h1 (x) = c1; :::; h
m (x) = cm:

Without loss of generality, assume that the �rst k0 inequality constraints are binding
at x� and that the last (k � k0) constraints are not binding. Suppose that the following
nondegenerate constraint quali�cation is satis�ed at x�:
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The rank at x� of the Jacobian matrix of the equality constraints and the binding in-
equality constraints 0BBBBBBBBBBBBB@

@g1

@x1
(x�) � � � @g1

@xn
(x�)

... . . . ...
@gk0

@x1
(x�) � � � @g

k0

@xn
(x�)

@h1

@x1
(x�) � � � @h

1

@xn
(x�)

... . . . ...
@hm

@x1
(x�) � � � @h

m

@xn
(x�)

1CCCCCCCCCCCCCA
is (k0 +m) :
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Form the Lagrangian

L (x; �; �) � f (x)� �1
�
g1 (x)� b1

�
� :::� �k

�
gk (x)� bk

�
��1

�
h1 (x)� c1

�
� :::� �m [hm (x)� cm] :

Then, there exist multipliers (��1; :::; �
�
k; �

�
1; :::; �

�
m) such that

(a)
@L

@x1
(x�; ��; ��) = 0; :::;

@L

@xn
(x�; ��; ��) = 0;

(b) ��1
�
g1 (x�)� b1

�
= 0; :::; ��k

�
gk (x�)� bk

�
= 0;

(c) h1 (x�) = c1; :::; hm (x�) = cm;

(d) ��1 � 0; :::; ��k � 0;

(e) g1 (x�) � b1; :::; gk (x�) � bk:
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7. Suf�cient Conditions for Constrained Local Maximum
and Minimum

�We use techniques similar to the necessary conditions.
� Given a solution (x�; ��; ��) of the Kuhn-Tucker conditions (the �rst-order condi-
tions), divide the inequality constraints into binding constraints and non-binding
constraints at x�:
- On the one hand, we treat the binding inequality constraints like equality constraints;
- on the other hand, the multipliers for the non-binding constraints must be zero
and these constraints drop out of the Lagrangian.
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� Theorem 9:
Let X be an open set in <n; and f; gj (j = 1; 2; :::; k) and hi (i = 1; 2; :::;m) be
twice continuously differentiable on X: Consider the problem of maximizing f on the
constraint set:

Cg;h �
�
x 2 X: g

j (x) � bj; for j = 1; 2; :::; k;
hi (x) = ci; for i = 1; 2; :::;m:

�
Form the Lagrangian

L (x; �; �) � f (x)� �1
�
g1 (x)� b1

�
� :::� �k

�
gk (x)� bk

�
��1

�
h1 (x)� c1

�
� :::� �m [hm (x)� cm] :

(a) Suppose that there exist multipliers (��1; :::; �
�
k; �

�
1; :::; �

�
m) such that

@L

@x1
(x�; ��; ��) = 0; :::;

@L

@xn
(x�; ��; ��) = 0;

��1 � 0; :::; ��k � 0;
��1
�
g1 (x�)� b1

�
= 0; :::; ��k

�
gk (x�)� bk

�
= 0;

h1 (x�) = c1; :::; h
m (x�) = cm:
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(b)Without loss of generality, assume that the �rst k0 inequality constraints are binding
at x� and that the last (k � k0) constraints are not binding. Write

�
g1; :::; gk0

�
as gk0;�

h1; :::; hm
�
as h; the Jacobian derivative of gk0 at x� as Dgk0 (x�) ; and the Jacobian

derivative of h at x� as Dh (x�) :
Suppose that the Hessian of L with respect to x at (x�; ��; ��) is negative de�nite
on the linear constraint set

fv: Dgk0 (x�) � v = 0 and Dh (x�) � v = 0g ;

that is,

v 6= 0; Dgk0 (x
�) � v = 0 and Dh (x�) � v = 0

) vT �HL (x�; ��; ��) � v < 0:

Then x� is a point of constrained local maximum of f on the constraint set Cg;h:
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� To check condition (b), form the bordered Hessian

H =

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 � � � 0 0 � � � 0 j @g1

@x1
� � � @g1

@xn... . . . ... ... . . . ... j ... . . . ...

0 � � � 0 0 � � � 0 j @gk0

@x1
� � � @gk0

@xn

0 � � � 0 0 � � � 0 j @h1

@x1
� � � @h1

@xn... . . . ... ... . . . ... j ... . . . ...

0 � � � 0 0 � � � 0 j @hm

@x1
� � � @hm

@xn
� � � � � � j � � �
@g1

@x1
� � � @g

k0

@x1

@h1

@x1
� � � @h

m

@x1
j @2L

@x21
� � � @2L

@xnx1... . . . ... ... . . . ... j ... . . . ...
@g1

@xn
� � � @g

k0

@xn

@h1

@xn
� � � @h

m

@xn
j @2L

@x1xn
� � � @2L

@x2n

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
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Check the signs of the last (n� (k0 +m)) leading principal minors ofH; starting with
the determinant of H itself.
� If

��H�� has the same sign as (�1)n and if these last (n� (k0 +m)) leading principal
minors alternate in sign, then condition (b) holds.

�We need to make the following changes in the wording of Theorem 9 for an inequality-
constrained minimization problem:
(i) write the inequality constraints as gj (x) � bj in the presentation of the constraint
set Cg;h;

(ii) change �negative de�nite� and �< 0� in condition (b) to �positive de�nite� and �> 0�.

� The bordered Hessian check requires that the last (n� (k0 +m)) leading principal
minors of H all have the same sign as (�1)k0+m :
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� Example 1:
Consider the following constrained maximization problem:

Maximize
nQ
i=1

xi

subject to
nP
i=1

xi � n;

and xi � 0; i = 1; 2; :::n:

9>>>>=>>>>; (P)
Find out the solution to (P) by showing your steps clearly.

� Example 2:
Consider the following constrained maximization problem:

Maximize x2 + x + 4y2

subject to 2x + 2y � 1;
and x � 0; y � 0:

9>=>; (Q)
Find out the solution to (Q) by showing your steps clearly.
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