Modern Optimization Theory:

Concave Programming




1. Preliminaries

e We will present below the elements of “modern optimization theory” as formulated by
Kuhn and Tucker, and a number of authors who have followed their general approach.

e Modern constrained maximization theory is concerned with the following problem:
Maximize f (x) )

subjectto ¢/ (x) >0,forj=1,2,....m » (P)

and reX )
where
— X is a non-empty subset of k", and
- f, ¢’ ( =1,2,...,m) are functions from X to .

— Constraint Set:
C = {:zz cX:¢'(x)>0, forj = 1,2,...,m}.
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— A point z € X is a point of constrained global maximum if 2 solves the problem

(P).

— A point £ € X is a point of constrained local maximum if there exists an open
ball around z, B, (z), such that f (z) > f (x) forallx € B, (z) N C.

— A pair (:?3, 5\) € (X x R7) is a saddle point if

& (:M) < ¢ (95)\) < ¢(#,)) forallz € X and all A € R,
where
¢ (x,\) = f(z)+ Ag(x) forall (z,\) € (X xRY).
- (i, 5\) is simultaneously a point of maximum and minimum of ¢ (z, A): maximum

with respect to x, and minimum with respect to .

e The constraint minimization problem and the corresponding constrained global
minimum and constrained local minimum can be defined analogously.



2. Constrained Global Maxima and Saddle Points

e A major part of modern optimization theory is concerned with establishing (under
suitable conditions) an equivalence result between a point of constrained global max-
imum and saddle point.

— We explore this theory in what follows.

e Theorem 1:
If (:f:, 5\) € (X x R7) is a saddle point, then
(i) Ag (&) =0,

(i) g (2) > 0, and

(iii) x is a point of constrained global maximum.

— Proof: To be discussed in class.
— Hints:
- For (i) and (ii) use the second inequality in the definition of a saddle point.
- Then use (i), (ii) and the first inequality in the saddle point definition to prove (iii).



e A converse of Theorem 1 can be proved if
— X is a convex set,
- f. ¢’ (j = 1,2,...,m) are concave functions on X, and
— a condition on the constraints, generally known as “Slater’s condition” is satisfied.
- Notice that none of these conditions are needed for the validity of Theorem 1.

e Slater’s Condition:

Given the problem (P), we will say that Slater’s condition holds if there exists r € X
such that ¢’ (z) > 0, for j =1,2,....,m.

e Theorem 2 (Kuhn-Tucker):

Suppose 1 € X is a point of constrained global maximum. If X is a convex set, f, ¢’
(J = 1,2,...,m) are concave functions on X, and Slater’s condition holds, then there
is A € &' such that

(i) Ag (#) = 0, and
(ii) (x X) is a saddle point.
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e Examples: The following examples demonstrate why the assumptions of Theorem
2 are needed for the conclusion to be valid.

#l.let X =R, f : X — Rbegivenby f(zr) = z,and g : X — R be given by

g(z)=—a°

(@) What is the point of constrained global maximum (z) for the problem (P) for this
characterization of X, f and g7

(b) Can you find a \e R such that (92‘, 5\> is a saddle point? Explain clearly.

(c) What goes wrong? Explain clearly.

#2.let X = R, f : X — Rbegivenby f(z) = 2%, and g : X — R be given by
g(x)=1-—=x.

(a) What is the point of constrained global maximum (z) for the problem (P) for this
characterization of X, f and g”

(b) Can you find a \e R, such that (@, 5\) is a saddle point? Explain clearly.

(c) Is the Slater’s condition satisfied? What goes wrong? Explain clearly.



3. The Kuhn-Tucker Conditions and Saddle Points

e The Kuhn-Tucker Conditions:

Let X be an open setin R, and f, ¢/ (j = 1,2, ..., m) be continuously differentiable
on X. A pair (a: 5\) € (X x N7T) satisfies the Kuhn-Tucker conditions if

of m o
(i) ax@() §:j Jaxz()_o,z_1,2,...,n

(i) g () > 0, and A\g (&) = 0.

— The condition Ag () = 0 is called the ‘Complementary Slackness’ condition. Note
Ag (&) = 0= Mg (&) + ..ot Aug™ (&) =0,
= Mg (2) =0, ..., \ug™ (2) = 0, since \; > 0as A € R7 and ¢/ (&) > 0.

-So if ¢/ (Z) > 0, then 5\]- = 0. That is, if a constraint is not binding, then the
corresponding multiplier is 0.

- But if ¢/ (2) = 0, then 5\j can be either > 0 or equal to zero.
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e A part of modern optimization theory is concerned with establishing the equivalence
(under some suitable conditions) between a saddle point and a point where the Kuhn-
Tucker conditions are satisfied.

e Theorem 3:

Let X be an open setin ®", and f, ¢’ (j = 1,2, ..., m) be continuously differentiable
on X. Suppose a pair (i, X) € (X x R7) satisfies the Kuhn-Tucker conditions. If X

is convex and f, ¢’ (j = 1,2, ...,m) are concave on X, then
(i) (i, 5\) is a saddle point, and
(i) x is a point of constrained global maximum.

— Proof: To be discussed in class.

e Theorem 4:

Let X be an open setin ®", and f, ¢’ (j = 1,2, ..., m) be continuously differentiable
on X. Suppose a pair (:%, 5\) € (X x R is a saddle point. Then (:E, 5\) satisfies
the Kuhn-Tucker conditions.

— Proof:. To be discussed in class.
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4. Sufficient Conditions for Constrained Global Maximum
and Minimum

e Now we have all the ingredients to find out the sufficient conditions for a constrained
global maximum or minimum involving the Kuhn-Tucker conditions.

#3. State and prove rigorously a theorem that gives the sufficient conditions for a con-
strained global maximum involving the Kuhn-Tucker conditions.

#4. State and prove rigorously a theorem that gives the sufficient conditions for a con-
strained global minimum involving the Kuhn-Tucker conditions.



5. Constrained Local and Global Maxima

e |t is clear that if z is a point of constrained global maximum, then 2 is also a point of
constrained local maximum.

— The circumstances under which the converse is true are given by the following
theorem.

e Theorem 5:

Let X be a convex set in ®". Let f, ¢’ (; = 1,2,...,m) be concave functions on
X. Suppose z is a point of constrained local maximum. Then z is also a point of
constrained global maximum.

— Proof: To be discussed in class.

— Hints: Establish first that since X is a convex set and ¢/ (j = 1,2,...,m)'s are
concave functions, the constraint set C is a convex set.
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6. Necessary Conditions for Constrained Local Maximum
and Minimum

e We now establish the useful result (corresponding to the classical Lagrange Theo-
rem) that if z* € X is a point of constrained local maximum then, under suitable
conditions, there exists \* € R such that (z*, \*) satisfies the Kuhn-Tucker condi-
tions.

e Theorem 6 (Constrained Local Maximum):

Let X be an open setin ", and f, ¢’ (j = 1,2, ..., k) be continuously differentiable
on X. Suppose that x* € X is a point of constrained local maximum of f subject to
k inequality constraints:

g' (z) < biy e g" (2) < by

Without loss of generality, assume that the first k, constraints are binding at =* and
that the last (k — kg) constraints are not binding. Suppose that the following nonde-
generate constraint qualification is satisfied at x*:



The rank at x* of the following Jacobian matrix of the binding constraints is ky:

( a_gl(x*) agl
85131 &zzn

(%) \

691%. : agko.

\ 2, ) 5 )

Form the Lagrangian

L@ ) =f(x)=M]g (®)=b] — ... — N\ [gk () — by -
Then, there exist multipliers ()1, ..., \;.) such that
oL oL
— (2", \7) =0, ... ) =0;
(a) aajl (x I ) Y 7656” ('CC Y ) )

(b) AT [g" (%) = bu] = 0,..., A [9" (2%) — by] = 0;
(C) A1 = 0,..., Ay > 0;
(d) g' (%) < by, 9" (%) < by
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— Proof: To be discussed in class (see Section 19.6, pages 480-482, of the textbook).
— Note that the conditions (a) — (d) are the Kuhn-Tucker conditions.
e Example:

Consider the following problem:

Maximize =z«
subjectto (1 —x)° >y,
x>0,y >0.

(a) Define carefully X, f, and the ¢’’s and b;’s for this problem.

(b) Draw carefully the constraint set for this problem and find out (z*,3*) such that
(z*,y*) solves this problem.

(c) Are there A;f’s (the number of Aj’s should be in accordance with the number of ¢/’s)

such that (z*, y*) and the \’’s satisfy the Kuhn-Tucker conditions? Explain carefully.
(d) What goes wrong? Explain carefully.
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e Theorem 7 (Mixed Constraints):

Let X be an open set in R", and f, ¢’ (j = 1,2,....,k)and h' (: = 1,2,...,m) be
continuously differentiable on X. Suppose that x* € X is a point of constrained local
maximum of f subject to k inequality constraints and m equality constraints:

gl <.I'> < bl)"'agk (3:) S bk)
Rt (z) = c1,..., K™ (z) = ¢,

Without loss of generality, assume that the first k, inequality constraints are binding
at x* and that the last (k — k) constraints are not binding. Suppose that the following
nondegenerate constraint qualification is satisfied at x*:



The rank at x* of the Jacobian matrix of the equality constraints and the binding in-

equality constraints

IS (IZC() -I-TTL).

8331

Ogho
8[131
Oh'

(z7)

o™

fag

: agko.

8_331.@*) .

dg'

(z7)

0x,,
Oh!

o, )

Oy 2

0x,,

(z7) )
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Form the Lagrangian

Lz, A\p) = f(@) =X [g" () —b] — .. — N [9" (2) — by
—py [h' (2) = 1] = oo = g, [P (2) — ]

Then, there exist multipliers ()3, ..., \., ui, ..., ) such that

a) S (0, X ) = 0, 5 X ) = 0
D) Af [g" (@) — ba] = 0,00 Xf [0 (%) = B] = 0
c) ht (z%) = cq1,..., A" (%) = ¢
d)A] >0,..., A > 0;

&) ¢! (%) < by, oo g* () < by
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e Theorem 8 (Constrained Local Minimum):

Let X be an open set in R", and f, ¢’ (j = 1,2,....,k)and h' (: = 1,2,...,m) be
continuously differentiable on X. Suppose that x* € X is a point of constrained local
minimum of f subject to k inequality constraints and m equality constraints:

gl <.I'> > bl)"'agk (3:) Z bk)
Rt (z) = c1,..., K™ (z) = ¢,

Without loss of generality, assume that the first k, inequality constraints are binding
at x* and that the last (k — k) constraints are not binding. Suppose that the following
nondegenerate constraint qualification is satisfied at x*:
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The rank at x* of the Jacobian matrix of the equality constraints and the binding in-

equality constraints

8[131 c‘?xn
agko agko .
oy @) o)
oh (%) 8h1< :
5’5131 &zzn *
ahm Oh™
\ 5 &) g ) )

IS (k() +m).



Form the Lagrangian

Lz, A\p) = f(@) =X [g" () —b] — .. — N [9" (2) — by
—py [h' (2) = 1] = oo = g, [P (2) — ]

Then, there exist multipliers ()3, ..., \., ui, ..., ) such that

a) S (0, X ) = 0, 5 X ) = 0
D) Af [g" (@) — ba] = 0,00 Xf [0 (%) = B] = 0
c) ht (z%) = cq1,..., A" (%) = ¢
d)A] >0,..., A > 0;

&) g' (%) > br, oo g () > by
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7. Sufficient Conditions for Constrained Local Maximum
and Minimum

e \We use techniques similar to the necessary conditions.

— Given a solution (z*, \*, u*) of the Kuhn-Tucker conditions (the first-order condi-
tions), divide the inequality constraints into binding constraints and non-binding
constraints at x*.

- On the one hand, we treat the binding inequality constraints like equality constraints;

- on the other hand, the multipliers for the non-binding constraints must be zero
and these constraints drop out of the Lagrangian.
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e Theorem 9:

Let X be an open set in R", and f, ¢’ (j = 1,2,....,k)and h' (: = 1,2,...,m) be
twice continuously differentiable on X. Consider the problem of maximizing f on the
constraint set:

_ g’ (x) < b, forj =1,2,...k,
Cg,h—{[leX hz(:I:):Cu fori:l)Q),,,jm

Form the Lagrangian

Lz, A\p) = f@) =X [g" (@) =b] — .. — N [9" (2) — by
—pay [ (@) = 2] = = po [ () — ]
(a) Suppose that there exist multipliers ()7, ..., \i, 13, ..., (),) such that
oL oL
¥, 0, ... N =0;
axl (x ) Y 7axn ('CE Y 7/’L > )

AL >0, A >0;
ALt () = bi] =0, 07 [g" (2%) — by = 0;
ht(z*) =cqy,..., W (2* ) = Cpp-
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(b) Without loss of generality, assume that the first k, inequality constraints are binding
at x* and that the last (k — ky) constraints are not binding. Write (gl, - gkO) as g,
(k' ..., ™) as h, the Jacobian derivative of g;, at z* as Dy, (z*) , and the Jacobian
derivative of h at x* as Dh (x*) .

Suppose that the Hessian of L with respect to x at (x*, \*, u*) is negative definite
on the linear constraint set

{v: Dgy, () -v=0and Dh(z") -v =0},
that is,

v # 0, Dgg, (") -v=0and Dh(z*)-v =0
= ol Hp (", N, 11*) - v < 0.

Then z* is a point of constrained local maximum of f on the constraint set C', .



e To check condition (b), form the bordered Hessian

T

( o --- 0 0
O --- 0 0
0 0 0
0 0 0

oh™

on"

81'1

ox,,

O0x1T,
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Check the signs of the last (n — (ky + m)) leading principal minors of H, starting with
the determinant of H itself.

— If |H| has the same sign as (—1)" and if these last (n — (ko + m)) leading principal
minors alternate in sign, then condition (b) holds.

e \We need to make the following changes in the wording of Theorem 9 for an inequality-
constrained minimization problem:

(i) write the inequality constraints as ¢/ (z) > b; in the presentation of the constraint
set Uy,

(i) change “negative definite” and “< 0” in condition (b) to “positive definite” and “> 0.

— The bordered Hessian check requires that the last (n — (ky + m)) leading principal
minors of H all have the same sign as (—1)"""".



e Example 1:

Consider the following constrained maximization problem:

n )
Maximize [] z;
i=1

subjectto > x; < n,  (P)
1=1
and x> 0,1=12,..n.

/

Find out the solution to (P) by showing your steps clearly.

e Example 2:
Consider the following constrained maximization problem:

Maximize 2+ z + 43> )

subjectto 2z +2y <1, ¢ (Q
and r >0,y >0.

Find out the solution to (Q) by showing your steps clearly.

24
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