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1. Preliminaries

• The theory of concave programming, as developed by Kuhn and Tucker, is a very

convenient and powerful tool in optimization theory.

– For many economic applications, however, it is difficult to justify the assumption of

concavity of the objective and constraint functions.

• In many such cases, one finds it easier to defend the assumption that these functions

are quasi-concave.

– It is with these economic applications in mind that Arrow and Enthoven developed

the theory of quasi-concave programming.

• In what follows, we cover the elements of this theory by focusing on its two main

results.

– One result provides conditions under which a point satisfying the Kuhn-Tucker con-

ditions is a point of constrained global maximum.

– Another result provides conditions under which a point of constrained global maxi-

mum satisfies the Kuhn-Tucker conditions.
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• Modification in the Maximization Problem and the Kuhn-Tucker conditions:

– So far we were concerned with the following constrained maximization problem:

Maximize f (x)

subject to gj (x) ≥ 0, for j = 1, 2, ...,m

and x ∈ X

 (P)

where

- X is a non-empty subset of <n, and

- f, gj (j = 1, 2, ...,m) are functions from X to <.

– And the corresponding Kuhn-Tucker conditions are:
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- The Kuhn-Tucker Conditions:

Let X be an open set in <n, and f, gj (j = 1, 2, ...,m) be continuously differen-

tiable on X. A pair
(
x̂, λ̂
)
∈ (X ×<m+) satisfies Kuhn-Tucker conditions if

(a)
∂f

∂xi
(x̂) +

m∑
i=1

λ̂j
∂gj

∂xi
(x̂) = 0, i = 1, 2, ..., n;

(b) gj (x̂) ≥ 0, and λ̂jg
j (x̂) = 0, j = 1, 2, ...,m.

– The maximization problem that we discuss under quasi-concave programming is

somewhat more restrictive in theory than the one considered under concave pro-

gramming, but not in practice for most applications.

– The optimization problem is:

Maximize f (x)

subject to gj (x) ≥ 0, for j = 1, 2, ...,m

and x ∈ <n+.

 (Q)

where f, gj (j = 1, 2, ...,m) are functions from <n to <.
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– The (Modified) Kuhn-Tucker Conditions:

A pair
(
x̂, λ̂
)
∈ (<n+ ×<m+) satisfies the Kuhn-Tucker conditions if

(i)
∂f

∂xi
(x̂) +

m∑
j=1

λ̂j
∂gj

∂xi
(x̂) ≤ 0, i = 1, 2, ..., n;

(ii) x̂i

[
∂f

∂xi
(x̂) +

m∑
j=1

λ̂j
∂gj

∂xi
(x̂)

]
= 0, i = 1, 2, ..., n;

(iii) x̂i ≥ 0, i = 1, 2, ..., n;

(iv) gj (x̂) ≥ 0, j = 1, 2, ...,m;

(v) λ̂jg
j (x̂) = 0, j = 1, 2, ...,m;

(vi) λ̂j ≥ 0, j = 1, 2, ...,m.

#1. Show that the (modified) Kuhn-Tucker conditions ((i) - (vi)) for problem (Q) are equiv-

alent to the Kuhn-Tucker conditions ((a) - (b)) for problem (P).

• The constraint set for problem (Q) is defined as

C =
{
x ∈ <n+: gj (x) ≥ 0, for j = 1, 2, ...,m

}
.
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2. The Sufficiency Theorem of Arrow-Enthoven

• Lemma 1:

Suppose f, gj (j = 1, 2, ...,m) are continuously differentiable functions on <n. Sup-

pose there is a pair (x̂, λ̂) ∈ (<n+ ×<m+) such that (x̂, λ̂) satisfies the Kuhn-Tucker

conditions. If each gj is quasi-concave, then

x ∈ C implies (x− x̂) · Of (x̂) ≤ 0.

– Proof: To be discussed in class.

– Hints:

◦ (x− x̂) · Of (x̂) = (x− x̂) · [Of (x̂) +
m∑
j=1

λ̂jOgj (x̂)]− (x− x̂) · [
m∑
j=1

λ̂jOgj (x̂)].

- Use the Kuhn-Tucker conditions to show that the R.H.S≤ − (x− x̂)·[
m∑
j=1

λ̂jOgj (x̂)].

◦ If λ̂j > 0 for some j, use the Kuhn-Tucker conditions and the quasi-concavity of

gj to argue that (x− x̂) · λ̂jOgj (x̂) ≥ 0 for that j.
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• Relevant Index:

An index k ∈ {1, 2, ..., n} is called a relevant index if there exists x∗ ∈ C such that

x∗k > 0.

• Theorem 1:

Suppose f, gj (j = 1, 2, ...,m) are continuously differentiable quasi-concave functions

on <n. Suppose there is a pair (x̂, λ̂) ∈ (<n+ ×<m+) such that (x̂, λ̂) satisfies the

Kuhn-Tucker conditions. Suppose further that at least one of the following conditions

is satisfied :

(a)
∂f

∂xi
(x̂) < 0 for some i ∈ {1, 2, ..., n} ;

(b)
∂f

∂xi
(x̂) > 0 for some i which is a relevant index ;

(c) f is concave on <n.
Then x̂ solves problem (Q).

– Proof: To be discussed in class.
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• Proof of Theorem 1(a): There is some index k, such that
∂f

∂xk
(x̂) < 0.

Let ek be the k-th unit vector, and define x̄ = x̂ + ek. Then x̄ ∈ <n+, and

(x̄− x̂) · Of (x̂) < 0. (1)

Let x be an arbitrary vector in C. We have to show that f (x) ≤ f (x̂) .

Define, for 0 < θ < 1, x (θ) = θx̄ + (1− θ)x, and y (θ) = θx̄ + (1− θ) x̂.

Then, using θ > 0 and (1), we have

(y (θ)− x̂) · Of (x̂) = θ (x̄− x̂) · Of (x̂) < 0.

Also, by Lemma 1,

(x (θ)− y (θ)) · Of (x̂) = (1− θ) (x− x̂) · Of (x̂) ≤ 0.

Combining the above two inequalities we get (x (θ)− x̂) · Of (x̂) < 0,

and since f is quasi-concave, we have f (x (θ)) < f (x̂) .

Finally, letting θ → 0, we get f (x) ≤ f (x̂) .
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• Proof of Theorem 1(b):

Suppose condition (b) holds. If condition (a) still holds, we are already done. So

assume that condition (a) does not hold. That is, Of (x̂) ≥ 0, and
∂f

∂xk
(x̂) > 0, for

some index k which is a relevant index. Thus, there is x∗ ∈ C such that x∗k > 0.

Using Lemma 1,

x̂ · Of (x̂) ≥ x∗ · Of (x̂) > 0. (2)

Let x be an arbitrary vector in C. Then, for 0 < θ < 1,

(θx) · Of (x̂) ≤ (θx̂) · Of (x̂) < x̂ · Of (x̂) .

Then quasi-concavity of f implies f (θx) < f (x̂) .

Finally, letting θ → 1, we get f (x) ≤ f (x̂) .
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• Corollary 1:

Suppose f, gj (j = 1, 2, ...,m) are continuously differentiable quasi-concave functions

on <n. Suppose there is a pair (x̂, λ̂) ∈ (<n+ ×<m+) such that (x̂, λ̂) satisfies the Kuhn-

Tucker conditions. Suppose there is x∗ � 0, such that gj (x∗) ≥ 0, for j = 1, 2, ...,m,
and Of (x̂) 6= 0. Then x̂ solves problem (Q).

– Proof: To be discussed in class.

• Slater’s Condition:

We say that Slater’s condition holds if there exists x̄ ∈ C such that gj (x̄) > 0, for

j = 1, 2, ...,m.

• Corollary 2:

Suppose f, gj (j = 1, 2, ...,m) are continuously differentiable quasi-concave functions

on <n. Suppose there is a pair (x̂, λ̂) ∈ (<n+ ×<m+) such that (x̂, λ̂) satisfies the Kuhn-

Tucker conditions. Suppose Slater’s condition is satisfied, and Of (x̂) 6= 0. Then x̂
solves problem (Q).

– Proof: To be discussed in class.
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3. The Necessity Theorem of Arrow-Enthoven

• Theorem 2:

Suppose f, gj (j = 1, 2, ...,m) are continuously differentiable functions on <n. Sup-

pose gj (j = 1, 2, ...,m) are quasi-concave on <n, and there is x∗ ∈ C such that

gj (x∗) > 0, for j = 1, 2, ...,m. If x̂ ∈ <n+ solves problem (Q), and for each j =

1, 2, ...,m, Ogj (x̂) 6= 0, then there is λ̂ ∈ <m+ such that (x̂, λ̂) satisfies the Kuhn-

Tucker conditions.
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#2. Example 1:

Suppose a, b, c > 0. Consider the following minimization problem:

Minimize ax1 + bx2

subject to x1x2 ≥ c,

and (x1, x2) ∈ <2+.


Find out the solution(s) to the minimization problem.

– (Mention clearly which theorem you are using, and demonstrate carefully that all

the required conditions of that theorem are satisfied.)
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#3. Example 2:

Consider the following maximization problem:

Maximize x1 + x1x2 + x2

subject to 1− αx1 − βx2 ≥ 0, α > 0, β > 0

and (x1, x2) ∈ <2+.


(a) Take the sufficiency route to find the solution(s) to this problem. Explain your steps

clearly.

(b) Take the necessary route to find the solution(s) to this problem. Explain your steps

clearly.
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