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1. Meaning of the Multiplier
� The multipliers play an important role in economic analysis.
� The multipliers measure the sensitivity of the optimal value of the objective function
to changes in the right-hand sides of the constraints.
� As a result, they provide a natural measure of value for scarce resources in max-
imization problems in economics.

� Theorem 1 (One Equality Constraint):
Let f and h be C1 functions on <2: For any �xed value of the parameter a; let
(x� (a) ; y� (a)) maximizes f subject to the constraint h (x; y) = a; and let the corre-
sponding Lagrange multiplier be �� (a) : Suppose that x�; y� and �� are C1 functions
of a and that NDCQ holds at (x� (a) ; y� (a) ; �� (a)) : Then

�� (a) =
d

da
f (x� (a) ; y� (a)) :

� Proof: To be discussed in class.
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� Theorem 2 (Several Equality Constraints):
Let f; h1; :::; hm be C1 functions on <n: Let a = (a1; :::; am) be an m-tuple of ex-
ogenous parameters, and consider the problem of maximizing f (x1; :::; xn) subject
to the constraints

h1 (x1; :::; xn) = a1; :::; h
m (x1; :::; xn) = am:

Let x�1 (a) ; :::; x�n (a) solves the problem with corresponding Lagrange multipliers
��1 (a) ; :::; �

�
m (a) : Suppose further that x�1; :::; x�n and ��1; :::; ��m are C1 functions

of a and that NDCQ holds. Then

��j (a) =
@

@aj
f (x�1 (a) ; :::; x

�
n (a)) :

� Proof: To be discussed in class.
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� Theorem 3 (Inequality Constraints):
Let f; g1; :::; gm be C1 functions on <n: Let a = (a1; :::; am) be an m-tuple of ex-
ogenous parameters, and consider the problem of maximizing f (x1; :::; xn) subject
to the constraints

g1 (x1; :::; xn) � a1; :::; gm (x1; :::; xn) � am:

Let x�1 (a) ; :::; x�n (a) solves the problem with corresponding Lagrange multipliers
��1 (a) ; :::; �

�
m (a) : Suppose further that x�1; :::; x�n and �

�
1; :::; �

�
m are C1 functions

of a and that NDCQ holds. Then

��j (a) =
@

@aj
f (x�1 (a) ; :::; x

�
n (a)) :

� Proof: To be discussed in class.
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2. Envelope Theorems
� Theorems 1, 2 and 3 are special cases of a class of theorems which describe how
the optimal value of the objective function in a parameterized optimization problem
changes as one of the parameters change.
� Such theorems are called Envelope Theorems.

� Theorem 4 (Unconstrained Problems):
Let f (x; a) be a C1 function of x 2 <n and the scalar a: For each choice of the
parameter a; consider the unconstrained maximization problem:

Maximize f (x; a) with respect to x:

Let x� (a) be a solution to this problem. Suppose that x� (a) is a C1 function of a:
Then

d

da
f (x� (a) ; a) =

@

@a
f (x� (a) ; a) :

� Proof: To be discussed in class.
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� Theorem 5 (Constrained Problems):
Let f; h1; :::; hm : <n�< ! < be C1 functions: Consider the problem of maximizing
f (x1; :::; xn; a) subject to the constraints

h1 (x1; :::; xn; a) = 0; :::; h
m (x1; :::; xn; a) = 0:

Let x� (a) = (x�1 (a) ; :::; x
�
n (a)) solves the problem with corresponding Lagrange

multipliers ��1 (a) ; :::; ��m (a) : Suppose further that x�1; :::; x�n and ��1; :::; ��m are C1
functions of a and that NDCQ holds. Then

d

da
f (x� (a) ; a) =

@

@a
L (x� (a) ; �� (a) ; a)

where L (x; �; a) = f (x; a) � �1h1 (x; a)� ::: ��mhm (x; a), the Lagrangian for this
problem.
� Proof: To be discussed in class.
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3. Smooth Dependence on the Parameters
� Theorems 1 � 5 have two basic hypotheses:
� the smooth dependence of the maximizers on the parameters of the problem, and
� the nondegenerate constraint quali�cation (NDCQ).
� Now we will look at these two hypotheses a little more carefully and show how to
phrase them in terms of the problem's objective and constraint functions.

� Parameterized Unconstrained Problems:
Consider the problem:

Maximize f (x; a) with respect to x:

� Since we are assuming that a maximizer x� (a) exists, then x� (a) is a solution to
the �rst-order conditions:

@

@x1
f (x1; :::; xn; a) = 0; :::;

@

@xn
f (x1; :::; xn; a) = 0:
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� By the Implicit Function Theorem, we can solve these n equations for the n un-
knowns x1; :::; xn as C1 functions of the exogenous variable a provided that the

Jacobian of the functions
@f

@x1
; :::;

@f

@xn
; with respect to the endogenous variables

x1; :::; xn; is nonsingular at (x� (a) ; a) :

� But the Jacobian is simply the Hessian of f at (x� (a) ; a):

Hf (x
� (a) ; a) =

0BBBBBBBB@

@2f

@x21

@2f

@x2x1
� � � @2f

@xnx1
@2f

@x1x2

@2f

@x21
� � � @2f

@xnx2... ... . . . ...
@2f

@x1xn

@2f

@x2xn
� � � @2f

@x21

1CCCCCCCCA
:

� Hence, we can replace the hypothesis that x� (a) is a C1 function of a; by the
hypothesis that the Hessian matrix of f is nonsingular at (x� (a) ; a).
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� Parameterized Constrained Problems:
Consider the problem:

Maximize f (x1; :::; xn; a)

subject to hj (x) = 0; for j = 1; 2; :::;m:

� Assuming that NDCQ

rank

0BBBB@
@h1

@x1
(x� (a) ; a) � � � @h

1

@xn
(x� (a) ; a)

... . . . ...
@hm

@x1
(x� (a) ; a) � � � @h

m

@xn
(x� (a) ; a)

1CCCCA = m

holds at x� (a) ; we write the Lagrangian for this problem as

L (x; �; a) = f (x; a)� �1h1 (x; a)� :::� �mhm (x; a) :
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� The constrained maximizer x� (a) must satisfy the �rst order conditions
@L

@�j
(x; �; a) = 0; j = 1; 2; :::;m; and

@L

@xi
(x; �; a) = 0; i = 1; 2; :::; n;

a system of (n +m) equations in (n +m) unknowns �1; :::; �m; x1; :::; xn:

� Once again, we call on the Implicit Function Theorem for conditions that will guar-
antee that x� (a) and �� (a) are C1 functions of a: the Jacobian of the functions
@L

@�1
; :::;

@L

@�m
;
@L

@x1
; :::;

@L

@xn
; with respect to the endogenous variables �1; :::; �m;

x1; :::; xn; is nonsingular at (x� (a) ; �� (a) ; a) :
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� This Jacobian is simply the Hessian of the Lagrangian:

HL =

0BBBBBBBBBBBBBB@

0 � � � 0 �@h
1

@x1
� � � �@h

1

@xn... . . . ... ... . . . ...

0 � � � 0 �@h
m

@x1
� � � �@h

m

@xn

�@h
1

@x1
� � � �@h

m

@x1

@2L

@x21
� � � @2L

@xnx1... . . . ... ... . . . ...

�@h
1

@xn
� � � �@h

m

@xn

@2L

@x1xn
� � � @2L

@x2n

1CCCCCCCCCCCCCCA
evaluated at (x� (a) ; �� (a) ; a) :

� So the required condition is that HL is nonsingular at (x� (a) ; �� (a) ; a) :

� Note the important role played by the NDCQ.
- If NDCQ does not hold, then HL is singular at (x� (a) ; �� (a) ; a) :
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� In summary, we can replace the conditions in Theorem 5 that �x�1; :::; x�n and ��1; :::;
��m are C1 functions of a and that NDCQ holds� by the condition that the Hessian
of the Lagrangian, HL; is nonsingular at (x� (a) ; �� (a) ; a) :

� Theorem 6:
Let f; h1; :::; hm : <n�< ! < be C1 functions: Consider the problem of maximizing
f (x1; :::; xn; a) subject to the constraints

h1 (x1; :::; xn; a) = 0; :::; h
m (x1; :::; xn; a) = 0:

Let x� (a) = (x�1 (a) ; :::; x
�
n (a)) solves the problem with corresponding Lagrange

multipliers ��1 (a) ; :::; ��m (a) : If the Hessian matrix of the Lagrangian, HL; is nonsin-
gular at (x� (a) ; �� (a) ; a) ; then

(a) x� (a) and �� (a) are C1 functions of a; and

(b) the NDCQ holds at (x� (a) ; �� (a) ; a) :
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