Modern Optimization Theory: Topics in Optimization Theory

1. Meaning of the Multiplier

- The multipliers play an important role in economic analysis.
 - The multipliers measure the sensitivity of the optimal value of the objective function to changes in the right-hand sides of the constraints.
 - As a result, they provide a natural measure of value for scarce resources in maximization problems in economics.

• Theorem 1 (One Equality Constraint):

Let f and h be C^1 functions on \Re^2 . For any fixed value of the parameter a, let $(x^*(a), y^*(a))$ maximizes f subject to the constraint h(x, y) = a, and let the corresponding Lagrange multiplier be $\mu^*(a)$. Suppose that x^*, y^* and μ^* are C^1 functions of a and that NDCQ holds at $(x^*(a), y^*(a), \mu^*(a))$. Then

$$\mu^{*}(a) = \frac{d}{da} f(x^{*}(a), y^{*}(a)).$$

- Proof: To be discussed in class.

• Theorem 2 (Several Equality Constraints):

Let $f, h^1, ..., h^m$ be C^1 functions on \Re^n . Let $a = (a_1, ..., a_m)$ be an *m*-tuple of exogenous parameters, and consider the problem of maximizing $f(x_1, ..., x_n)$ subject to the constraints

$$h^{1}(x_{1},...,x_{n}) = a_{1}, ..., h^{m}(x_{1},...,x_{n}) = a_{m}.$$

Let $x_1^*(a)$, ..., $x_n^*(a)$ solves the problem with corresponding Lagrange multipliers $\mu_1^*(a)$, ..., $\mu_m^*(a)$. Suppose further that x_1^* , ..., x_n^* and μ_1^* , ..., μ_m^* are C^1 functions of *a* and that NDCQ holds. Then

$$\mu_{j}^{*}\left(a\right) = \frac{\partial}{\partial a_{j}} f\left(x_{1}^{*}\left(a\right), \ ..., \ x_{n}^{*}\left(a\right)\right).$$

– Proof: To be discussed in class.

• Theorem 3 (Inequality Constraints):

Let $f, g^1, ..., g^m$ be C^1 functions on \Re^n . Let $a = (a_1, ..., a_m)$ be an *m*-tuple of exogenous parameters, and consider the problem of maximizing $f(x_1, ..., x_n)$ subject to the constraints

$$g^{1}(x_{1},...,x_{n}) \leq a_{1}, ..., g^{m}(x_{1},...,x_{n}) \leq a_{m}.$$

Let $x_1^*(a)$, ..., $x_n^*(a)$ solves the problem with corresponding Lagrange multipliers $\lambda_1^*(a)$, ..., $\lambda_m^*(a)$. Suppose further that x_1^* , ..., x_n^* and λ_1^* , ..., λ_m^* are C^1 functions of *a* and that NDCQ holds. Then

$$\lambda_{j}^{*}\left(a
ight) = rac{\partial}{\partial a_{j}} f\left(x_{1}^{*}\left(a
ight), \ ..., \ x_{n}^{*}\left(a
ight)
ight).$$

– Proof: To be discussed in class.

2. Envelope Theorems

- Theorems 1, 2 and 3 are special cases of a class of theorems which describe how the optimal value of the objective function in a parameterized optimization problem changes as one of the parameters change.
 - Such theorems are called *Envelope Theorems*.

• Theorem 4 (Unconstrained Problems):

Let f(x; a) be a C^1 function of $x \in \Re^n$ and the scalar a. For each choice of the parameter a, consider the unconstrained maximization problem:

Maximize f(x; a) with respect to x.

Let $x^*(a)$ be a solution to this problem. Suppose that $x^*(a)$ is a C^1 function of a. Then

$$\frac{d}{da}f\left(x^{*}\left(a\right);\;a\right)=\frac{\partial}{\partial a}f\left(x^{*}\left(a\right);\;a\right).$$

– Proof: To be discussed in class.

• Theorem 5 (Constrained Problems):

Let $f, h^1, ..., h^m : \Re^n \times \Re \to \Re$ be C^1 functions. Consider the problem of maximizing $f(x_1, ..., x_n; a)$ subject to the constraints

$$h^{1}(x_{1},...,x_{n};a) = 0, ..., h^{m}(x_{1},...,x_{n};a) = 0.$$

Let $x^*(a) = (x_1^*(a), ..., x_n^*(a))$ solves the problem with corresponding Lagrange multipliers $\mu_1^*(a), ..., \mu_m^*(a)$. Suppose further that $x_1^*, ..., x_n^*$ and $\mu_1^*, ..., \mu_m^*$ are C^1 functions of a and that NDCQ holds. Then

$$\frac{d}{da}f\left(x^{*}\left(a\right);a\right) = \frac{\partial}{\partial a}L\left(x^{*}\left(a\right),\mu^{*}\left(a\right);a\right)$$

where $L(x,\mu;a) = f(x;a) - \mu_1 h^1(x;a) - \dots - \mu_m h^m(x;a)$, the Lagrangian for this problem.

- Proof: To be discussed in class.

3. Smooth Dependence on the Parameters

- Theorems 1 5 have two basic hypotheses:
 - the smooth dependence of the maximizers on the parameters of the problem, and
 - the nondegenerate constraint qualification (NDCQ).
- Now we will look at these two hypotheses a little more carefully and show how to phrase them in terms of the problem's objective and constraint functions.

• Parameterized Unconstrained Problems:

Consider the problem:

Maximize f(x; a) with respect to x.

– Since we are assuming that a maximizer $x^*(a)$ exists, then $x^*(a)$ is a solution to the first-order conditions:

$$\frac{\partial}{\partial x_1} f(x_1, \dots, x_n; a) = 0, \dots, \ \frac{\partial}{\partial x_n} f(x_1, \dots, x_n; a) = 0.$$

- By the Implicit Function Theorem, we can solve these n equations for the n unknowns $x_1, ..., x_n$ as C^1 functions of the exogenous variable a provided that the Jacobian of the functions $\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}$, with respect to the endogenous variables $x_1, ..., x_n$, is *nonsingular* at $(x^*(a); a)$.
- But the Jacobian is simply the Hessian of f at $(x^*(a); a)$:

$$H_{f}\left(x^{*}\left(a\right);a\right) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{2}x_{1}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}x_{1}} \\ \frac{\partial^{2}f}{\partial x_{1}x_{2}} & \frac{\partial^{2}f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}x_{n}} & \frac{\partial^{2}f}{\partial x_{2}x_{n}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}^{2}} \end{pmatrix}$$

– Hence, we can replace the hypothesis that $x^*(a)$ is a C^1 function of a, by the hypothesis that the Hessian matrix of f is *nonsingular* at $(x^*(a); a)$.

• Parameterized Constrained Problems:

Consider the problem:

Maximize $f(x_1, ..., x_n; a)$ subject to $h^j(x) = 0$, for j = 1, 2, ..., m.

– Assuming that NDCQ

$$rank \left(\begin{array}{c} \frac{\partial h^{1}}{\partial x_{1}} \left(x^{*} \left(a \right) ; a \right) & \cdots & \frac{\partial h^{1}}{\partial x_{n}} \left(x^{*} \left(a \right) ; a \right) \\ \vdots & \ddots & \vdots \\ \frac{\partial h^{m}}{\partial x_{1}} \left(x^{*} \left(a \right) ; a \right) & \cdots & \frac{\partial h^{m}}{\partial x_{n}} \left(x^{*} \left(a \right) ; a \right) \end{array} \right) = m$$

holds at $x^{*}(a)$, we write the Lagrangian for this problem as

$$L(x,\mu;a) = f(x;a) - \mu_1 h^1(x;a) - \dots - \mu_m h^m(x;a).$$

– The constrained maximizer $x^*(a)$ must satisfy the first order conditions

$$\frac{\partial L}{\partial \mu_j}(x,\mu;a) = 0, \ j = 1, 2, ..., m, \text{ and}$$
$$\frac{\partial L}{\partial x_i}(x,\mu;a) = 0, \ i = 1, 2, ..., n,$$

a system of (n + m) equations in (n + m) unknowns $\mu_1, ..., \mu_m, x_1, ..., x_n$.

- Once again, we call on the Implicit Function Theorem for conditions that will guarantee that $x^*(a)$ and $\mu^*(a)$ are C^1 functions of a: the Jacobian of the functions $\frac{\partial L}{\partial \mu_1}, ..., \frac{\partial L}{\partial \mu_m}, \frac{\partial L}{\partial x_1}, ..., \frac{\partial L}{\partial x_n}$, with respect to the endogenous variables $\mu_1, ..., \mu_m, x_1, ..., x_n$, is *nonsingular* at $(x^*(a), \mu^*(a); a)$.

- This Jacobian is simply the Hessian of the Lagrangian:

$$H_{L} = \begin{pmatrix} 0 & \cdots & 0 & -\frac{\partial h^{1}}{\partial x_{1}} & \cdots & -\frac{\partial h^{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -\frac{\partial h^{m}}{\partial x_{1}} & \cdots & -\frac{\partial h^{m}}{\partial x_{n}} \\ -\frac{\partial h^{1}}{\partial x_{1}} & \cdots & -\frac{\partial h^{m}}{\partial x_{1}} & \frac{\partial^{2}L}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2}L}{\partial x_{n}x_{1}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -\frac{\partial h^{1}}{\partial x_{n}} & \cdots & -\frac{\partial h^{m}}{\partial x_{n}} & \frac{\partial^{2}L}{\partial x_{1}x_{n}} & \cdots & \frac{\partial^{2}L}{\partial x_{n}^{2}} \end{pmatrix}$$

evaluated at $\left(x^{*}\left(a
ight),\mu^{*}\left(a
ight);a
ight)$.

- So the required condition is that H_L is *nonsingular* at $(x^*(a), \mu^*(a); a)$.
- Note the important role played by the NDCQ.
 - If NDCQ does not hold, then H_L is *singular* at $(x^*(a), \mu^*(a); a)$.

– In summary, we can replace the conditions in Theorem 5 that " x_1^* , ..., x_n^* and μ_1^* , ..., μ_m^* are C^1 functions of a and that NDCQ holds" by the condition that the Hessian of the Lagrangian, H_L , is *nonsingular* at $(x^*(a), \mu^*(a); a)$.

• Theorem 6:

Let $f, h^1, ..., h^m : \Re^n \times \Re \to \Re$ be C^1 functions. Consider the problem of maximizing $f(x_1, ..., x_n; a)$ subject to the constraints

 $h^{1}(x_{1},...,x_{n};a) = 0, ..., h^{m}(x_{1},...,x_{n};a) = 0.$

Let $x^*(a) = (x_1^*(a), ..., x_n^*(a))$ solves the problem with corresponding Lagrange multipliers $\mu_1^*(a), ..., \mu_m^*(a)$. If the Hessian matrix of the Lagrangian, H_L , is nonsingular at $(x^*(a), \mu^*(a); a)$, then

(a) $x^{*}(a)$ and $\mu^{*}(a)$ are C^{1} functions of a, and

(b) the NDCQ holds at $\left(x^{*}\left(a
ight),\mu^{*}\left(a
ight);a
ight)$.

References

- Must read the following sections from the textbook:
 - Section 19.1 (pages 448 453): The Meaning of the Multiplier;
 - Section 19.2 (pages 453 457): Envelope Theorems;
 - Section 19.4 (pages 469 472): Smooth Dependence on the Parameters.