Final Exam: Question 1 (01 April 2021)

- Maximum marks: 15
- Time allotted (including uploading on Moodle): $\mathbf{3 5}$ minutes
- Consider the following definition of differentiability. Suppose that f is defined on an open interval I containing the point ξ. Then f is said to be differentiable at the point ξ if and only if the limit

$$
\lim _{x \rightarrow \xi} \frac{f(x)-f(\xi)}{x-\xi}
$$

exists. If the limit exists, it is called the derivative of f at the point ξ and denoted by $f^{\prime}(\xi)$.

- Question: Use the above definition of differentiability to prove the following theorem.

Suppose that f is differentiable on (a, b) and that $\xi \in(a, b)$. If f has a local maximum or local minimum at ξ, then $f^{\prime}(\xi)=0$.

Final Exam: Question 2 (01 April 2021)

- Maximum marks: 35
- Time allotted (including uploading on Moodle): $\mathbf{8 0}$ minutes
- Suppose $w_{1}, w_{2}, q>0$. Consider the following constrained minimization problem:

$$
\left.\begin{array}{ll}
\underset{\left\{x_{1}, x_{2}\right\}}{\operatorname{Minimize}} & w_{1} x_{1}+w_{2} x_{2} \tag{Q}\\
\text { subject to } & x_{1}+x_{1} x_{2}+x_{2} \geq q \\
\text { and } & \left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2} .
\end{array}\right\}
$$

(a) [7 marks] Mention clearly which route (necessary or sufficient) you are taking to solve problem (Q) and demonstrate carefully that all the required conditions of that route are satisfied.
(b) [25 marks] Solve the constrained minimization problem (Q) showing your procedure clearly and answer the following questions.
(i) Suppose $\frac{w_{1}}{w_{2}} \leq \frac{1}{1+q}$. Obtain the solution(s) to the problem, and draw an appropriate diagram to illustrate your solution.
(ii) Suppose $\frac{w_{1}}{w_{2}} \geq 1+q$. Obtain the solution(s) to the problem, and draw an appropriate diagram to illustrate your solution.
(iii) Suppose $\frac{1}{1+q}<\frac{w_{1}}{w_{2}}<1+q$. Obtain the solution(s) to the problem, and draw an appropriate diagram to illustrate your solution.
(c) [3 marks] For each specification of $\left(w_{1}, w_{2}, q\right) \in \Re_{++}^{3}$, define the value function,

$$
\left.V\left(w_{1}, w_{2}, q\right)=\begin{array}{ll}
\underset{\left\{x_{1}, x_{2}\right\}}{\operatorname{Minimize}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { subject to } & x_{1}+x_{1} x_{2}+x_{2} \geq q \\
\text { and } & \left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}
\end{array}\right\}
$$

For each case in part (b), compute $\frac{\partial}{\partial q} V\left(w_{1}, w_{2}, q\right)$ and compare it with the KuhnTucker multiplier associated with the constraint " $x_{1}+x_{1} x_{2}+x_{2} \geq q$ " obtained in that case.

Final Exam: Question 3 (01 April 2021)

- Maximum marks: 28
- Time allotted (including uploading on Moodle): 50 minutes
- Consider the following optimization problem:

$$
\left.\begin{array}{ll}
\text { Maximize } & f(x) \\
\text { subject to } & g^{j}(x)=0, \text { for } j=1,2, \ldots, m \\
\text { and } & x \in A
\end{array}\right\}(\mathrm{P})
$$

where A is a non-empty open subset of \mathbb{R}^{n}, and $f, g^{j}(j=1,2, \ldots, m)$ are continuously differentiable functions from A to \mathbb{R}. We define the constraint set as

$$
C=\left\{x \in A: g^{j}(x)=0, \text { for } j=1,2, \ldots, m\right\} .
$$

We also define the Lagrangian, $L: A \times \mathbb{R}^{m} \rightarrow \mathbb{R}$, as

$$
L(x, \lambda)=f(x)+\sum_{j=1}^{m} \lambda_{j} g^{j}(x) .
$$

(a) [3 marks] Write down the appropriate first-order conditions for the optimization problem.
(b) [10 marks] Suppose a pair $\left(x^{*}, \lambda^{*}\right) \in\left(A \times \mathbb{R}_{+}^{m}\right)$ satisfies the first-order conditions. Prove that if each g^{j} is quasi-concave, then

$$
x \in C \text { implies }\left(x-x^{*}\right) \cdot \nabla f\left(x^{*}\right) \leq 0 .
$$

[Note that $\lambda_{j} \geq 0$, for each j.]
(c) [15 marks] Suppose a pair $\left(x^{*}, \lambda^{*}\right) \in\left(A \times \mathbb{R}^{m}\right)$ satisfies the first-order conditions. Prove that if C is a convex set, then

$$
x \in C \text { implies }\left(x-x^{*}\right) \cdot \nabla f\left(x^{*}\right) \leq 0
$$

[Observe that the non-negativity of the multipliers is not required here.]

- [Hint: Calculate, for each $\left.j,\left(x-x^{*}\right) \cdot \nabla g^{j}\left(x^{*}\right).\right]$

Final Exam: Question 4 (01 April 2021)

- Maximum marks: 22
- Time allotted (including uploading on Moodle): 45 minutes
- Consider the following optimization problem:

$$
\left.\begin{array}{ll}
\text { Maximize } & f(x) \\
\text { subject to } & g^{j}(x)=0, \text { for } j=1,2, \ldots, m \\
\text { and } & x \in A
\end{array}\right\}(\mathrm{P})
$$

where A is a non-empty open subset of \mathbb{R}^{n}, and $f, g^{j}(j=1,2, \ldots, m)$ are continuously differentiable functions from A to \mathbb{R}. We define the constraint set as

$$
C=\left\{x \in A: g^{j}(x)=0, \text { for } j=1,2, \ldots, m\right\}
$$

We also define the Lagrangian, $L: A \times \mathbb{R}^{m} \rightarrow \mathbb{R}$, as

$$
L(x, \lambda)=f(x)+\sum_{j=1}^{m} \lambda_{j} g^{j}(x) .
$$

- In part (b) of Question 3 you have proved the following. Suppose a pair $\left(x^{*}, \lambda^{*}\right) \in$ $\left(A \times \mathbb{R}_{+}^{m}\right)$ satisfies the first-order conditions. If each g^{j} is quasi-concave, then

$$
x \in C \text { implies }\left(x-x^{*}\right) \cdot \nabla f\left(x^{*}\right) \leq 0 .
$$

- In part (c) of Question 3 you have proved the following. Suppose a pair $\left(x^{*}, \lambda^{*}\right) \in$ $\left(A \times \mathbb{R}^{m}\right)$ satisfies the first-order conditions. If C is a convex set, then

$$
x \in C \text { implies }\left(x-x^{*}\right) \cdot \nabla f\left(x^{*}\right) \leq 0 .
$$

- Question: Prove the following two theorems.
- Theorem 1: If $f, g^{j}(j=1,2, \ldots, m)$ are quasi-concave functions, and if $\left(x^{*}, \lambda^{*}\right)$ satisfy the first-order conditions, $\nabla f\left(x^{*}\right) \neq 0, \lambda_{j}^{*} \geq 0$ for each j, and $x^{*} \in C$, then x^{*} solves the optimization problem (P).
- Theorem 2: If f is a quasi-concave function, C is a convex set, and if $\left(x^{*}, \lambda^{*}\right)$ satisfy the first-order conditions, $\nabla f\left(x^{*}\right) \neq 0$, and $x^{*} \in C$, then x^{*} solves the optimization problem (P).

- Hints:

- With reference to your answers to Question 3, think about a common proposition that will prove both the theorems.
- In order to prove that common proposition, you need to rule out the case

$$
\left(x-x^{*}\right) \cdot \nabla f\left(x^{*}\right)=0 \quad \text { and } f(x)>f\left(x^{*}\right) .
$$

Consider perturbing x to x^{\prime} given by $x^{\prime}=x+t v$, where $t>0$ is a scalar and v is the non-zero vector $-\nabla f\left(x^{*}\right)$.

