Final Exam: Question 1 (19 January 2022)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Prove the following theorem.

Let $f, h^1, ..., h^m : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be C^1 functions. Consider the problem of maximizing $f(x_1, ..., x_n; a)$ subject to the constraints

$$h^{1}(x_{1},...,x_{n};a) = 0, ..., h^{m}(x_{1},...,x_{n};a) = 0.$$

Let $x^*(a) = (x_1^*(a), ..., x_n^*(a))$ solves the problem with corresponding Lagrange multipliers $\mu_1^*(a), ..., \mu_m^*(a)$. Suppose further that $x_1^*, ..., x_n^*$ and $\mu_1^*, ..., \mu_m^*$ are C^1 functions of a and that the nondegenerate constraint qualification (NDCQ) holds. Then

$$\frac{d}{da}f\left(x^{*}\left(a\right);a\right) = \frac{\partial}{\partial a}L\left(x^{*}\left(a\right),\mu^{*}\left(a\right);a\right)$$

where $L(x,\mu;a) = f(x;a) - \mu_1 h^1(x;a) - \dots - \mu_m h^m(x;a)$, the Lagrangian for this problem.

Final Exam: Question 2 (19 January 2022)

- Maximum marks: **30**
- Time allotted (including uploading on Moodle): 60 minutes
- Consider the following constrained maximization problem:

$$\underset{\{x \in \mathbb{R}^n\}}{\text{Maximize }} f(x) = x^T A x \quad \text{subject to} \quad x^T x = 1,$$

where A is a given symmetric $n \times n$ matrix.

- (a) [5 marks] Mention clearly which route (necessary or sufficient) you are taking to solve this problem and demonstrate carefully that all the required conditions of that route are satisfied.
 - Define the Lagrangian for this problem as $L(x, \lambda) = x^T A x + \lambda (1 x^T x)$.
- (b) [15 marks] Suppose $x^* \in \mathbb{R}^n$ is a solution to the problem. Show that x^* is a normalized *eigenvector* of A and $\lambda = f(x^*)$.
- (c) [10 marks] Explain how you can obtain $f(x^*)$. Illustrate your method when

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right),$$

with a > 0 and c > 0.

Final Exam: Question 3 (19 January 2022)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- Recall the following theorem.

Theorem (Taylor's Expansion up to Second Order):

Suppose A is an open convex subset of \mathbb{R}^n , and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. Suppose x^1 and x^2 are in A. Then there is $0 \le \theta \le 1$ such that

$$f(x^{2}) - f(x^{1}) = (x^{2} - x^{1}) \cdot \nabla f(x^{1}) + \frac{1}{2}(x^{2} - x^{1}) \cdot H_{f}(\theta x^{1} + (1 - \theta) x^{2}) \cdot (x^{2} - x^{1}).$$

• Suppose D is an open convex set in \mathbb{R}^n , and $g: D \to \mathbb{R}$ is twice continuously differentiable and *quasiconcave* on D. Suppose there exists $x^* \in D$ satisfying

- (a) [15 marks] Use the above theorem to prove that g has a strict local maximum at x^* .
- (b) [10 marks] Prove further that x^* is a point of global maximum of g on D.

Final Exam: Question 4 (19 January 2022)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- In this question we will prove the following *sufficiency theorem* under quasiconcave programming.

Suppose f, g^j (j = 1, 2, ..., m) are continuously differentiable quasiconcave functions on \mathbb{R}^n . Suppose there is a pair $(\hat{x}, \hat{\lambda}) \in (\mathbb{R}^n_+ \times \mathbb{R}^m_+)$ such that $(\hat{x}, \hat{\lambda})$ satisfies the Kuhn-Tucker conditions. Suppose further that $\nabla f(\hat{x}) \neq 0$. Then \hat{x} solves the following problem:

Maximize f(x), subject to $x \in C \equiv \left\{ x \in \mathbb{R}^n_+ : g^j(x) \ge 0, \text{ for } j = 1, 2, ..., m \right\}.$

- We will develop the proof in the following three steps.
- (a) [4 marks] **Step I:** Given the premises of the theorem, in the lectures we have proved that

 $x \in C$ implies $(x - \hat{x}) \cdot \nabla f(\hat{x}) \leq 0$.

- Which premises of the theorem we do not need to get this result?

- (b) [5 marks] **Step II:** Prove that if $x \in C$ and $(x \hat{x}) \cdot \nabla f(\hat{x}) < 0$, then \hat{x} solves the problem.
- (c) [16 marks: 5 + 6 + 5] **Step III**: In this step we will prove that if $x \in C$ and $(x \hat{x}) \cdot \nabla f(\hat{x}) = 0$, then \hat{x} solves the problem.

We will prove this by contradiction. That is, we will show that if $(x - \hat{x}) \cdot \nabla f(\hat{x}) = 0$ and $f(x) > f(\hat{x})$, then, given the premises of the theorem, a contradiction will arise.

(i) Given the premises of the theorem, choose $v \neq 0$ appropriately so that if $(x - \hat{x}) \cdot \nabla f(\hat{x}) = 0$, then $(x + tv - \hat{x}) \cdot \nabla f(\hat{x}) < 0$, for all t > 0.

- (ii) If $f(x) > f(\hat{x})$, then argue that there exists t > 0 small enough so that $f(x + tv) > f(\hat{x})$.
- (iii) Explain the contradiction clearly.