Final Exam: Question 1 (19 January 2022)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Prove the following theorem.

Let $f, h^{1}, \ldots, h^{m}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ be C^{1} functions. Consider the problem of maximizing $f\left(x_{1}, \ldots, x_{n} ; a\right)$ subject to the constraints

$$
h^{1}\left(x_{1}, \ldots, x_{n} ; a\right)=0, \ldots, h^{m}\left(x_{1}, \ldots, x_{n} ; a\right)=0
$$

Let $x^{*}(a)=\left(x_{1}^{*}(a), \ldots, x_{n}^{*}(a)\right)$ solves the problem with corresponding Lagrange multipliers $\mu_{1}^{*}(a), \ldots, \mu_{m}^{*}(a)$. Suppose further that $x_{1}^{*}, \ldots, x_{n}^{*}$ and $\mu_{1}^{*}, \ldots, \mu_{m}^{*}$ are C^{1} functions of a and that the nondegenerate constraint qualification (NDCQ) holds. Then

$$
\frac{d}{d a} f\left(x^{*}(a) ; a\right)=\frac{\partial}{\partial a} L\left(x^{*}(a), \mu^{*}(a) ; a\right)
$$

where $L(x, \mu ; a)=f(x ; a)-\mu_{1} h^{1}(x ; a)-\ldots-\mu_{m} h^{m}(x ; a)$, the Lagrangian for this problem.

Final Exam: Question 2 (19 January 2022)

- Maximum marks: $\mathbf{3 0}$
- Time allotted (including uploading on Moodle): $\mathbf{6 0}$ minutes
- Consider the following constrained maximization problem:

$$
\underset{\left\{x \in \mathbb{R}^{n}\right\}}{\operatorname{Maximize}} f(x)=x^{T} A x \quad \text { subject to } \quad x^{T} x=1,
$$

where A is a given symmetric $n \times n$ matrix.
(a) [5 marks] Mention clearly which route (necessary or sufficient) you are taking to solve this problem and demonstrate carefully that all the required conditions of that route are satisfied.

- Define the Lagrangian for this problem as $L(x, \lambda)=x^{T} A x+\lambda\left(1-x^{T} x\right)$.
(b) [15 marks] Suppose $x^{*} \in \mathbb{R}^{n}$ is a solution to the problem. Show that x^{*} is a normalized eigenvector of A and $\lambda=f\left(x^{*}\right)$.
(c) [10 marks] Explain how you can obtain $f\left(x^{*}\right)$. Illustrate your method when

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

with $a>0$ and $c>0$.

Final Exam: Question 3 (19 January 2022)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- Recall the following theorem.

Theorem (Taylor's Expansion upto Second Order):
Suppose A is an open convex subset of \mathbb{R}^{n}, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. Suppose x^{1} and x^{2} are in A. Then there is $0 \leq \theta \leq 1$ such that $f\left(x^{2}\right)-f\left(x^{1}\right)=\left(x^{2}-x^{1}\right) \cdot \nabla f\left(x^{1}\right)+\frac{1}{2}\left(x^{2}-x^{1}\right) \cdot H_{f}\left(\theta x^{1}+(1-\theta) x^{2}\right) \cdot\left(x^{2}-x^{1}\right)$.

- Suppose D is an open convex set in \mathbb{R}^{n}, and $g: D \rightarrow \mathbb{R}$ is twice continuously differentiable and quasiconcave on D. Suppose there exists $x^{*} \in D$ satisfying
(i) $\nabla g\left(x^{*}\right)=0$, and
(ii) $H_{g}\left(x^{*}\right)$ is negative definite.
(a) [15 marks] Use the above theorem to prove that g has a strict local maximum at x^{*}.
(b) [10 marks] Prove further that x^{*} is a point of global maximum of g on D.

Final Exam: Question 4 (19 January 2022)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- In this question we will prove the following sufficiency theorem under quasiconcave programming.

Suppose $f, g^{j}(j=1,2, \ldots, m)$ are continuously differentiable quasiconcave functions on \mathbb{R}^{n}. Suppose there is a pair $(\hat{x}, \hat{\lambda}) \in\left(\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}\right)$ such that $(\hat{x}, \hat{\lambda})$ satisfies the KuhnTucker conditions. Suppose further that $\nabla f(\hat{x}) \neq 0$. Then \hat{x} solves the following problem:

Maximize $f(x), \quad$ subject to $\quad x \in C \equiv\left\{x \in \mathbb{R}_{+}^{n}: g^{j}(x) \geq 0\right.$, for $\left.j=1,2, \ldots, m\right\}$.

- We will develop the proof in the following three steps.
(a) [4 marks] Step I: Given the premises of the theorem, in the lectures we have proved that

$$
x \in C \text { implies }(x-\hat{x}) \cdot \nabla f(\hat{x}) \leq 0
$$

- Which premises of the theorem we do not need to get this result?
(b) [5 marks] Step II: Prove that if $x \in C$ and $(x-\hat{x}) \cdot \nabla f(\hat{x})<0$, then \hat{x} solves the problem.
(c) [16 marks: $5+6+5]$ Step III: In this step we will prove that if $x \in C$ and $(x-\hat{x})$. $\nabla f(\hat{x})=0$, then \hat{x} solves the problem.

We will prove this by contradiction. That is, we will show that if $(x-\hat{x}) \cdot \nabla f(\hat{x})=0$ and $f(x)>f(\hat{x})$, then, given the premises of the theorem, a contradiction will arise.
(i) Given the premises of the theorem, choose $v \neq 0$ appropriately so that if $(x-\hat{x})$. $\nabla f(\hat{x})=0$, then $(x+t v-\hat{x}) \cdot \nabla f(\hat{x})<0$, for all $t>0$.
(ii) If $f(x)>f(\hat{x})$, then argue that there exists $t>0$ small enough so that $f(x+t v)>$ $f(\hat{x})$.
(iii) Explain the contradiction clearly.

