Math 271: Mathematical Methods Semester I, 2022-23 Tridip Ray ISI, Delhi

Final Exam (04 December 2022)

- Answer all the questions. You have 3 hours to write this exam.
- 1. [17 marks]

Recall the following theorem.

Theorem (Taylor's Expansion up to Second Order):

Suppose A is an open convex subset of \mathbb{R}^n , and $f : A \to \mathbb{R}$ is twice continuously differentiable on A. Suppose x^1 and x^2 are in A. Then there is $0 \le \theta \le 1$ such that

$$f(x^{2}) - f(x^{1}) = (x^{2} - x^{1}) \cdot \nabla f(x^{1}) + \frac{1}{2}(x^{2} - x^{1}) \cdot H_{f}(\theta x^{1} + (1 - \theta) x^{2}) \cdot (x^{2} - x^{1}).$$

 $[H_f(y)]$ is the Hessian matrix of f evaluated at $y \in A$.]

- Let A be an open convex subset of \mathbb{R}^n , and $f : A \to \mathbb{R}$ be twice continuously differentiable on A. Using the above theorem prove carefully that if $x^* \in A$ is a point of *local maximum* of f, then $H_f(x^*)$ is negative semi-definite.
- 2. [18 marks]

Consider the following theorem.

Let $f: I \to \mathbb{R}$ be a C^3 function defined on an open interval I in \mathbb{R} . For any two points a and a + h in I, there exists a point a < c < a + h such that

$$f(a+h) = f(a) + f'(a)h + \frac{1}{2!}f''(a)h^{2} + \frac{1}{3!}f'''(c)h^{3}.$$

- Let $f: I \to \mathbb{R}$ be a C^3 function defined on an open interval I in \mathbb{R} and $x^* \in I$. Using the above theorem prove carefully that if $f'(x^*) = 0$ and $f''(x^*) < 0$, then x^* is a point of *strict local maximum* of f.

- 3. [25 marks: 13 + 12]
- Consider the following optimization problem:

Maximize
$$f(x)$$

subject to $g^{j}(x) \ge 0$, for $j = 1, 2, ..., m$
and $x \in \mathbb{R}^{n}_{+}$. (P)

where $f, g^j \ (j = 1, 2, ..., m)$ are functions from \mathbb{R}^n to \mathbb{R} . The constraint set for problem (P) is defined as $C = \left\{ x \in \mathbb{R}^n_+ : g^j \ (x) \ge 0, \text{ for } j = 1, 2, ..., m \right\}$.

• Kuhn-Tucker Conditions:

A pair $(\hat{x}, \hat{\lambda}) \in (\mathbb{R}^n_+ \times \mathbb{R}^m_+)$ satisfies the Kuhn-Tucker conditions if

(i)
$$\frac{\partial f}{\partial x_i}(\hat{x}) + \sum_{j=1}^m \hat{\lambda}_j \frac{\partial g^j}{\partial x_i}(\hat{x}) \le 0, \ \hat{x}_i \left[\frac{\partial f}{\partial x_i}(\hat{x}) + \sum_{j=1}^m \hat{\lambda}_j \frac{\partial g^j}{\partial x_i}(\hat{x}) \right] = 0, \text{ and } \hat{x}_i \ge 0, \ i = 1, 2, ..., n;$$

(ii) $g^j(\hat{x}) \ge 0, \ \hat{\lambda}_j g^j(\hat{x}) = 0, \text{ and } \hat{\lambda}_j \ge 0, \ j = 1, 2, ..., m.$

• Lemma:

Suppose f, g^j (j = 1, 2, ..., m) are continuously differentiable functions on \mathbb{R}^n . Suppose there is a pair $(\hat{x}, \hat{\lambda}) \in (\mathbb{R}^n_+ \times \mathbb{R}^m_+)$ such that $(\hat{x}, \hat{\lambda})$ satisfies the Kuhn-Tucker conditions. If each g^j is quasi-concave, then

$$x \in C \text{ implies } (x - \hat{x}) \cdot \nabla f(\hat{x}) \leq 0.$$

• For both the parts of this question assume that $f, g^j \ (j = 1, 2, ..., m)$ are continuously differentiable quasi-concave functions on \mathbb{R}^n and the pair $(x^*, \lambda^*) \in (\mathbb{R}^n_+ \times \mathbb{R}^m_+)$ satisfies the Kuhn-Tucker conditions.

(a) [13 marks] In this part we will prove that if $\frac{\partial f}{\partial x_i}(x^*) < 0$ for some $i \in \{1, 2, ..., n\}$, then x^* solves problem (P).

- Let x be an arbitrary vector in C. Let e^i be the *i*-th unit vector, and define $\bar{x} = x^* + e^i$. Also define, for $0 < \theta < 1$, $x(\theta) = \theta \bar{x} + (1 \theta) x$, and $y(\theta) = \theta \bar{x} + (1 \theta) x^*$.
- (i) Show that $(y(\theta) x^*) \cdot \nabla f(x^*) < 0$, and $(x(\theta) y(\theta)) \cdot \nabla f(x^*) \le 0$.
- (ii) Show that $f(x(\theta)) < f(x^*)$, and complete the proof for this part.

- (b) [12 marks] An index $k \in \{1, 2, ..., n\}$ is called a *relevant index* if there exists $\tilde{x} \in C$ such that $\tilde{x}_k > 0$. In this part we will prove that if $\frac{\partial f}{\partial x_i}(x^*) > 0$ for some *i* which is a relevant index, then x^* solves problem (P).
 - (i) Argue that, given part (a) above, we need to consider only the case where $\nabla f(x^*) \ge 0$, and $\frac{\partial f}{\partial x_k}(x^*) > 0$, for some index k which is a relevant index.
 - (ii) Let $\tilde{x} \in C$ be such that $\tilde{x}_k > 0$. Show that $x^* \cdot \nabla f(x^*) > 0$.
 - (iii) Let x be an arbitrary vector in C. Show that, for $0 < \theta < 1$, $(\theta x) \cdot \nabla f(x^*) < x^* \cdot \nabla f(x^*)$, and complete the proof for this part.
- 4. [40 marks: 5 + 3 + 1 + 25 + 6]

A person lives for two periods: period 1 (youth) and period 2 (working age). In her youth (period 1) she inherits an wealth $W \ge 0$ from her parents and acquires education for which she has to spend an amount E > 0, $E \le W$. Her education gets her a job that pays her an income Y > 0 during her working period (period 2). Her preference between period 1 consumption (c_1) and period 2 consumption (c_2) is given by the utility function

$$u(c_1, c_2) = \log c_1 + \beta \log c_2, \ \beta > 0.$$

She can do intertemporal substitution of consumption through borrowing and saving. But the credit market does not work perfectly and she faces two different interest rates for borrowing and lending: the borrowing interest rate, $r_B > 0$, is strictly greater than the lending interest rate, $r_L > 0$, that is, $r_B > r_L$.

- (a) [5 marks] Set up the utility maximization problem. Draw the budget constraint with c_1 on x-axis and c_2 on y-axis, and label the important points clearly.
- (b) [3 marks] Mention clearly which route (necessary or sufficient) you are taking to solve the utility maximization problem and demonstrate carefully that all the required conditions of that route are satisfied.
- (c) [1 mark] Can either $c_1 = 0$ or $c_2 = 0$ be a solution to the utility maximization problem? Explain clearly.

- (d) [25 marks] Solve this utility maximization problem showing your procedure clearly and answer the following questions.
 - (i) Show that there exist two wealth thresholds, \underline{W} and \overline{W} , with $0 < \underline{W} < \overline{W}$, such that the nature of the solution to the utility maximization problem differs according as whether $0 \le W < \underline{W}$, or $\underline{W} \le W \le \overline{W}$, or $\overline{W} < W$. (You have to derive \underline{W} and \overline{W} in terms of the parameters of the problem: E, Y, β, r_L and r_B .)
 - (ii) For each of the three cases (I) $0 \le W < \underline{W}$, (II) $\underline{W} \le W \le \overline{W}$, and (III) $\overline{W} < W$ derive the optimal choices of c_1, c_2 , borrowing and saving in terms of the parameters of the problem.
- (e) [6 marks] Draw the wealth expansion path, that is, the combinations of choices of c_1 and c_2 when only W changes, with c_1 on x-axis and c_2 on y-axis, clearly illustrating your answers in part (d). (You must label all the important points clearly.)