Final Exam (04 December 2022)

- Answer all the questions. You have 3 hours to write this exam.

1. [17 marks]

Recall the following theorem.
Theorem (Taylor's Expansion upto Second Order):
Suppose A is an open convex subset of \mathbb{R}^{n}, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on A. Suppose x^{1} and x^{2} are in A. Then there is $0 \leq \theta \leq 1$ such that
$f\left(x^{2}\right)-f\left(x^{1}\right)=\left(x^{2}-x^{1}\right) \cdot \nabla f\left(x^{1}\right)+\frac{1}{2}\left(x^{2}-x^{1}\right) \cdot H_{f}\left(\theta x^{1}+(1-\theta) x^{2}\right) \cdot\left(x^{2}-x^{1}\right)$.
[$H_{f}(y)$ is the Hessian matrix of f evaluated at $y \in A$.]

- Let A be an open convex subset of \mathbb{R}^{n}, and $f: A \rightarrow \mathbb{R}$ be twice continuously differentiable on A. Using the above theorem prove carefully that if $x^{*} \in A$ is a point of local maximum of f, then $H_{f}\left(x^{*}\right)$ is negative semi-definite.

2. [18 marks]

Consider the following theorem.

Let $f: I \rightarrow \mathbb{R}$ be a C^{3} function defined on an open interval I in \mathbb{R}. For any two points a and $a+h$ in I, there exists a point $a<c<a+h$ such that

$$
f(a+h)=f(a)+f^{\prime}(a) h+\frac{1}{2!} f^{\prime \prime}(a) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(c) h^{3} .
$$

- Let $f: I \rightarrow \mathbb{R}$ be a C^{3} function defined on an open interval I in \mathbb{R} and $x^{*} \in I$. Using the above theorem prove carefully that if $f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}\left(x^{*}\right)<0$, then x^{*} is a point of strict local maximum of f.

3. [25 marks: $13+12$]

- Consider the following optimization problem:

where $f, g^{j}(j=1,2, \ldots, m)$ are functions from \mathbb{R}^{n} to \mathbb{R}. The constraint set for problem (P) is defined as $C=\left\{x \in \mathbb{R}_{+}^{n}: g^{j}(x) \geq 0\right.$, for $\left.j=1,2, \ldots, m\right\}$.
- Kuhn-Tucker Conditions:

A pair $(\hat{x}, \hat{\lambda}) \in\left(\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}\right)$ satisfies the Kuhn-Tucker conditions if
(i) $\frac{\partial f}{\partial x_{i}}(\hat{x})+\sum_{j=1}^{m} \hat{\lambda}_{j} \frac{\partial g^{j}}{\partial x_{i}}(\hat{x}) \leq 0, \hat{x}_{i}\left[\frac{\partial f}{\partial x_{i}}(\hat{x})+\sum_{j=1}^{m} \hat{\lambda}_{j} \frac{\partial g^{j}}{\partial x_{i}}(\hat{x})\right]=0$, and $\hat{x}_{i} \geq 0, i=$ $1,2, \ldots, n$;
(ii) $g^{j}(\hat{x}) \geq 0, \hat{\lambda}_{j} g^{j}(\hat{x})=0$, and $\hat{\lambda}_{j} \geq 0, j=1,2, \ldots, m$.

- Lemma:

Suppose $f, g^{j}(j=1,2, \ldots, m)$ are continuously differentiable functions on \mathbb{R}^{n}. Suppose there is a pair $(\hat{x}, \hat{\lambda}) \in\left(\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}\right)$ such that $(\hat{x}, \hat{\lambda})$ satisfies the Kuhn-Tucker conditions. If each g^{j} is quasi-concave, then

$$
x \in C \text { implies }(x-\hat{x}) \cdot \nabla f(\hat{x}) \leq 0 .
$$

- For both the parts of this question assume that $f, g^{j}(j=1,2, \ldots, m)$ are continuously differentiable quasi-concave functions on \mathbb{R}^{n} and the pair $\left(x^{*}, \lambda^{*}\right) \in\left(\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}\right)$ satisfies the Kuhn-Tucker conditions.
(a) [13 marks] In this part we will prove that if $\frac{\partial f}{\partial x_{i}}\left(x^{*}\right)<0$ for some $i \in\{1,2, \ldots, n\}$, then x^{*} solves problem (P).
- Let x be an arbitrary vector in C. Let e^{i} be the i-th unit vector, and define $\bar{x}=x^{*}+e^{i}$. Also define, for $0<\theta<1, x(\theta)=\theta \bar{x}+(1-\theta) x$, and $y(\theta)=$ $\theta \bar{x}+(1-\theta) x^{*}$.
(i) Show that $\left(y(\theta)-x^{*}\right) \cdot \nabla f\left(x^{*}\right)<0$, and $(x(\theta)-y(\theta)) \cdot \nabla f\left(x^{*}\right) \leq 0$.
(ii) Show that $f(x(\theta))<f\left(x^{*}\right)$, and complete the proof for this part.
(b) [12 marks] An index $k \in\{1,2, \ldots, n\}$ is called a relevant index if there exists $\tilde{x} \in C$ such that $\tilde{x}_{k}>0$. In this part we will prove that if $\frac{\partial f}{\partial x_{i}}\left(x^{*}\right)>0$ for some i which is a relevant index, then x^{*} solves problem (P).
(i) Argue that, given part (a) above, we need to consider only the case where $\nabla f\left(x^{*}\right) \geq$ 0 , and $\frac{\partial f}{\partial x_{k}}\left(x^{*}\right)>0$, for some index k which is a relevant index.
(ii) Let $\tilde{x} \in C$ be such that $\tilde{x}_{k}>0$. Show that $x^{*} \cdot \nabla f\left(x^{*}\right)>0$.
(iii) Let x be an arbitrary vector in C. Show that, for $0<\theta<1$, $(\theta x) \cdot \nabla f\left(x^{*}\right)<$ $x^{*} \cdot \nabla f\left(x^{*}\right)$, and complete the proof for this part.

4. [40 marks: $5+3+1+25+6]$

A person lives for two periods: period 1 (youth) and period 2 (working age). In her youth (period 1) she inherits an wealth $W \geq 0$ from her parents and acquires education for which she has to spend an amount $E>0, E \leq W$. Her education gets her a job that pays her an income $Y>0$ during her working period (period 2). Her preference between period 1 consumption $\left(c_{1}\right)$ and period 2 consumption $\left(c_{2}\right)$ is given by the utility function

$$
u\left(c_{1}, c_{2}\right)=\log c_{1}+\beta \log c_{2}, \beta>0
$$

She can do intertemporal substitution of consumption through borrowing and saving. But the credit market does not work perfectly and she faces two different interest rates for borrowing and lending: the borrowing interest rate, $r_{B}>0$, is strictly greater than the lending interest rate, $r_{L}>0$, that is, $r_{B}>r_{L}$.
(a) [5 marks] Set up the utility maximization problem. Draw the budget constraint with c_{1} on x-axis and c_{2} on y-axis, and label the important points clearly.
(b) [3 marks] Mention clearly which route (necessary or sufficient) you are taking to solve the utility maximization problem and demonstrate carefully that all the required conditions of that route are satisfied.
(c) [1 mark] Can either $c_{1}=0$ or $c_{2}=0$ be a solution to the utility maximization problem? Explain clearly.
(d) [25 marks] Solve this utility maximization problem showing your procedure clearly and answer the following questions.
(i) Show that there exist two wealth thresholds, \underline{W} and \bar{W}, with $0<\underline{W}<\bar{W}$, such that the nature of the solution to the utility maximization problem differs according as whether $0 \leq W<\underline{W}$, or $\underline{W} \leq W \leq \bar{W}$, or $\bar{W}<W$. (You have to derive \underline{W} and \bar{W} in terms of the parameters of the problem: E, Y, β, r_{L} and $r_{B .}$)
(ii) For each of the three cases - (I) $0 \leq W<\underline{W}$, (II) $\underline{W} \leq W \leq \bar{W}$, and (III) $\bar{W}<W$ - derive the optimal choices of c_{1}, c_{2}, borrowing and saving in terms of the parameters of the problem.
(e) [6 marks] Draw the wealth expansion path, that is, the combinations of choices of c_{1} and c_{2} when only W changes, with c_{1} on x-axis and c_{2} on y-axis, clearly illustrating your answers in part (d). (You must label all the important points clearly.)

